kernel_samsung_a34x-permissive/drivers/misc/mediatek/flashlight/flashlights-dummy.c
2024-04-28 15:51:13 +02:00

680 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__
#include <linux/types.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/list.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include "flashlight-core.h"
#include "flashlight-dt.h"
/* define device tree */
/* TODO: modify temp device tree name */
#ifndef DUMMY_DTNAME
#define DUMMY_DTNAME "mediatek,flashlights_dummy"
#endif
#ifndef DUMMY_DTNAME_I2C
#define DUMMY_DTNAME_I2C "mediatek,flashlights_dummy_i2c"
#endif
/* TODO: define driver name */
#define DUMMY_NAME "flashlights-dummy"
/* define registers */
/* TODO: define register */
/* define level */
/* TODO: define brightness level and hardware timeout */
#define DUMMY_LEVEL_NUM 2
#define DUMMY_LEVEL_TORCH 1
#define DUMMY_HW_TIMEOUT 100 /* ms */
/* define mutex and work queue */
static DEFINE_MUTEX(dummy_mutex);
static struct work_struct dummy_work;
/* define usage count */
static int use_count;
/* define i2c */
static struct i2c_client *dummy_i2c_client;
/* platform data */
struct dummy_platform_data {
int channel_num;
struct flashlight_device_id *dev_id;
};
/* dummy chip data */
struct dummy_chip_data {
struct i2c_client *client;
struct dummy_platform_data *pdata;
struct mutex lock;
};
/******************************************************************************
* dummy operations
*****************************************************************************/
static const int dummy_current[DUMMY_LEVEL_NUM] = {
/* TODO: define current */
100, 1000
};
static const unsigned char dummy_flash_level[DUMMY_LEVEL_NUM] = {
/* TODO: define register value */
0x00, 0x01
};
static int dummy_level = -1;
static int dummy_is_torch(int level)
{
if (level >= DUMMY_LEVEL_TORCH)
return -1;
return 0;
}
static int dummy_verify_level(int level)
{
if (level < 0)
level = 0;
else if (level >= DUMMY_LEVEL_NUM)
level = DUMMY_LEVEL_NUM - 1;
return level;
}
/* i2c wrapper function */
static int dummy_write_reg(struct i2c_client *client, u8 reg, u8 val)
{
int ret;
struct dummy_chip_data *chip = i2c_get_clientdata(client);
mutex_lock(&chip->lock);
ret = i2c_smbus_write_byte_data(client, reg, val);
mutex_unlock(&chip->lock);
if (ret < 0)
pr_info("failed writing at 0x%02x\n", reg);
return ret;
}
static int dummy_read_reg(struct i2c_client *client, u8 reg)
{
int val;
struct dummy_chip_data *chip = i2c_get_clientdata(client);
mutex_lock(&chip->lock);
val = i2c_smbus_read_byte_data(client, reg);
mutex_unlock(&chip->lock);
return val;
}
/* flashlight enable function */
static int dummy_enable(void)
{
unsigned char reg = 0, val = 0;
/* TODO: wrap enable function */
if (!dummy_is_torch(dummy_level)) {
/* torch mode */
;
} else {
/* flash mode */
;
}
return dummy_write_reg(dummy_i2c_client, reg, val);
}
/* flashlight disable function */
static int dummy_disable(void)
{
unsigned char reg = 0, val = 0;
/* TODO: wrap disable function */
return dummy_write_reg(dummy_i2c_client, reg, val);
}
/* set flashlight level */
static int dummy_set_level(int level)
{
unsigned char reg = 0, val = 0;
/* TODO: wrap set level function */
return dummy_write_reg(dummy_i2c_client, reg, val);
}
static int dummy_get_hw_fault(int num)
{
unsigned char reg = 0;
if (num == 1)
return dummy_read_reg(dummy_i2c_client, reg);
else if (num == 2)
return dummy_read_reg(dummy_i2c_client, reg);
pr_info("Error num\n");
return 0;
}
/* flashlight init */
static int dummy_init(void)
{
unsigned char reg = 0, val = 0;
/* TODO: wrap init function */
return dummy_write_reg(dummy_i2c_client, reg, val);
}
/* flashlight uninit */
static int dummy_uninit(void)
{
unsigned char reg = 0, val = 0;
/* TODO: wrap uninit function */
return dummy_write_reg(dummy_i2c_client, reg, val);
}
/******************************************************************************
* Timer and work queue
*****************************************************************************/
static struct hrtimer dummy_timer;
static unsigned int dummy_timeout_ms;
static void dummy_work_disable(struct work_struct *data)
{
pr_debug("work queue callback\n");
dummy_disable();
}
static enum hrtimer_restart dummy_timer_func(struct hrtimer *timer)
{
schedule_work(&dummy_work);
return HRTIMER_NORESTART;
}
/******************************************************************************
* Flashlight operations
*****************************************************************************/
static int dummy_ioctl(unsigned int cmd, unsigned long arg)
{
struct flashlight_dev_arg *fl_arg;
int channel;
ktime_t ktime;
unsigned int s;
unsigned int ns;
fl_arg = (struct flashlight_dev_arg *)arg;
channel = fl_arg->channel;
switch (cmd) {
case FLASH_IOC_SET_TIME_OUT_TIME_MS:
pr_debug("FLASH_IOC_SET_TIME_OUT_TIME_MS(%d): %d\n",
channel, (int)fl_arg->arg);
dummy_timeout_ms = fl_arg->arg;
break;
case FLASH_IOC_SET_DUTY:
pr_debug("FLASH_IOC_SET_DUTY(%d): %d\n",
channel, (int)fl_arg->arg);
dummy_set_level(fl_arg->arg);
break;
case FLASH_IOC_SET_ONOFF:
pr_debug("FLASH_IOC_SET_ONOFF(%d): %d\n",
channel, (int)fl_arg->arg);
if (fl_arg->arg == 1) {
if (dummy_timeout_ms) {
s = dummy_timeout_ms / 1000;
ns = dummy_timeout_ms % 1000 * 1000000;
ktime = ktime_set(s, ns);
hrtimer_start(&dummy_timer, ktime,
HRTIMER_MODE_REL);
}
dummy_enable();
} else {
dummy_disable();
hrtimer_cancel(&dummy_timer);
}
break;
case FLASH_IOC_GET_DUTY_NUMBER:
pr_debug("FLASH_IOC_GET_DUTY_NUMBER(%d)\n", channel);
fl_arg->arg = DUMMY_LEVEL_NUM;
break;
case FLASH_IOC_GET_MAX_TORCH_DUTY:
pr_debug("FLASH_IOC_GET_MAX_TORCH_DUTY(%d)\n", channel);
fl_arg->arg = DUMMY_LEVEL_TORCH - 1;
break;
case FLASH_IOC_GET_DUTY_CURRENT:
fl_arg->arg = dummy_verify_level(fl_arg->arg);
pr_debug("FLASH_IOC_GET_DUTY_CURRENT(%d): %d\n",
channel, (int)fl_arg->arg);
fl_arg->arg = dummy_current[fl_arg->arg];
break;
case FLASH_IOC_GET_HW_TIMEOUT:
pr_debug("FLASH_IOC_GET_HW_TIMEOUT(%d)\n", channel);
fl_arg->arg = DUMMY_HW_TIMEOUT;
break;
case FLASH_IOC_GET_HW_FAULT:
pr_debug("FLASH_IOC_GET_HW_FAULT(%d)\n", channel);
fl_arg->arg = dummy_get_hw_fault(1);
break;
case FLASH_IOC_GET_HW_FAULT2:
pr_debug("FLASH_IOC_GET_HW_FAULT2(%d)\n", channel);
fl_arg->arg = dummy_get_hw_fault(2);
break;
default:
pr_info("No such command and arg(%d): (%d, %d)\n",
channel, _IOC_NR(cmd), (int)fl_arg->arg);
return -ENOTTY;
}
return 0;
}
static int dummy_open(void)
{
/* Move to set driver for saving power */
return 0;
}
static int dummy_release(void)
{
/* Move to set driver for saving power */
return 0;
}
static int dummy_set_driver(int set)
{
int ret = 0;
/* set chip and usage count */
mutex_lock(&dummy_mutex);
if (set) {
if (!use_count)
ret = dummy_init();
use_count++;
pr_debug("Set driver: %d\n", use_count);
} else {
use_count--;
if (!use_count)
ret = dummy_uninit();
if (use_count < 0)
use_count = 0;
pr_debug("Unset driver: %d\n", use_count);
}
mutex_unlock(&dummy_mutex);
return ret;
}
static ssize_t dummy_strobe_store(struct flashlight_arg arg)
{
dummy_set_driver(1);
dummy_set_level(arg.level);
dummy_timeout_ms = 0;
dummy_enable();
msleep(arg.dur);
dummy_disable();
dummy_set_driver(0);
return 0;
}
static struct flashlight_operations dummy_ops = {
dummy_open,
dummy_release,
dummy_ioctl,
dummy_strobe_store,
dummy_set_driver
};
/******************************************************************************
* I2C device and driver
*****************************************************************************/
static int dummy_chip_init(struct dummy_chip_data *chip)
{
/* NOTE: Chip initialication move to "set driver" for power saving.
* dummy_init();
*/
return 0;
}
static int dummy_parse_dt(struct device *dev,
struct dummy_platform_data *pdata)
{
struct device_node *np, *cnp;
u32 decouple = 0;
int i = 0;
if (!dev || !dev->of_node || !pdata)
return -ENODEV;
np = dev->of_node;
pdata->channel_num = of_get_child_count(np);
if (!pdata->channel_num) {
pr_info("Parse no dt, node.\n");
return 0;
}
pr_info("Channel number(%d).\n", pdata->channel_num);
if (of_property_read_u32(np, "decouple", &decouple))
pr_info("Parse no dt, decouple.\n");
pdata->dev_id = devm_kzalloc(dev,
pdata->channel_num *
sizeof(struct flashlight_device_id),
GFP_KERNEL);
if (!pdata->dev_id)
return -ENOMEM;
for_each_child_of_node(np, cnp) {
if (of_property_read_u32(cnp, "type", &pdata->dev_id[i].type))
goto err_node_put;
if (of_property_read_u32(cnp, "ct", &pdata->dev_id[i].ct))
goto err_node_put;
if (of_property_read_u32(cnp, "part", &pdata->dev_id[i].part))
goto err_node_put;
snprintf(pdata->dev_id[i].name, FLASHLIGHT_NAME_SIZE,
DUMMY_NAME);
pdata->dev_id[i].channel = i;
pdata->dev_id[i].decouple = decouple;
pr_info("Parse dt (type,ct,part,name,channel,decouple)=(%d,%d,%d,%s,%d,%d).\n",
pdata->dev_id[i].type, pdata->dev_id[i].ct,
pdata->dev_id[i].part, pdata->dev_id[i].name,
pdata->dev_id[i].channel,
pdata->dev_id[i].decouple);
i++;
}
return 0;
err_node_put:
of_node_put(cnp);
return -EINVAL;
}
static int dummy_i2c_probe(
struct i2c_client *client, const struct i2c_device_id *id)
{
struct dummy_chip_data *chip;
int err;
pr_debug("Probe start.\n");
/* check i2c */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
pr_info("Failed to check i2c functionality.\n");
err = -ENODEV;
goto err_out;
}
/* init chip private data */
chip = kzalloc(sizeof(struct dummy_chip_data), GFP_KERNEL);
if (!chip) {
err = -ENOMEM;
goto err_out;
}
chip->client = client;
i2c_set_clientdata(client, chip);
dummy_i2c_client = client;
/* init mutex and spinlock */
mutex_init(&chip->lock);
/* init chip hw */
dummy_chip_init(chip);
pr_debug("Probe done.\n");
return 0;
err_out:
return err;
}
static int dummy_i2c_remove(struct i2c_client *client)
{
struct dummy_chip_data *chip = i2c_get_clientdata(client);
pr_debug("Remove start.\n");
client->dev.platform_data = NULL;
/* free resource */
kfree(chip);
pr_debug("Remove done.\n");
return 0;
}
static const struct i2c_device_id dummy_i2c_id[] = {
{DUMMY_NAME, 0},
{}
};
MODULE_DEVICE_TABLE(i2c, dummy_i2c_id);
#ifdef CONFIG_OF
static const struct of_device_id dummy_i2c_of_match[] = {
{.compatible = DUMMY_DTNAME_I2C},
{},
};
MODULE_DEVICE_TABLE(of, dummy_i2c_of_match);
#endif
static struct i2c_driver dummy_i2c_driver = {
.driver = {
.name = DUMMY_NAME,
#ifdef CONFIG_OF
.of_match_table = dummy_i2c_of_match,
#endif
},
.probe = dummy_i2c_probe,
.remove = dummy_i2c_remove,
.id_table = dummy_i2c_id,
};
/******************************************************************************
* Platform device and driver
*****************************************************************************/
static int dummy_probe(struct platform_device *pdev)
{
struct dummy_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct dummy_chip_data *chip = NULL;
int err;
int i;
pr_debug("Probe start.\n");
if (i2c_add_driver(&dummy_i2c_driver)) {
pr_debug("Failed to add i2c driver.\n");
return -1;
}
/* init platform data */
if (!pdata) {
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
err = -ENOMEM;
goto err_free;
}
pdev->dev.platform_data = pdata;
err = dummy_parse_dt(&pdev->dev, pdata);
if (err)
goto err_free;
}
/* init work queue */
INIT_WORK(&dummy_work, dummy_work_disable);
/* init timer */
hrtimer_init(&dummy_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
dummy_timer.function = dummy_timer_func;
dummy_timeout_ms = 100;
/* clear usage count */
use_count = 0;
/* register flashlight device */
if (pdata->channel_num) {
for (i = 0; i < pdata->channel_num; i++)
if (flashlight_dev_register_by_device_id(
&pdata->dev_id[i],
&dummy_ops)) {
err = -EFAULT;
goto err_free;
}
} else {
if (flashlight_dev_register(DUMMY_NAME, &dummy_ops)) {
err = -EFAULT;
goto err_free;
}
}
pr_debug("Probe done.\n");
return 0;
err_free:
chip = i2c_get_clientdata(dummy_i2c_client);
i2c_set_clientdata(dummy_i2c_client, NULL);
kfree(chip);
return err;
}
static int dummy_remove(struct platform_device *pdev)
{
struct dummy_platform_data *pdata = dev_get_platdata(&pdev->dev);
int i;
pr_debug("Remove start.\n");
i2c_del_driver(&dummy_i2c_driver);
pdev->dev.platform_data = NULL;
/* unregister flashlight device */
if (pdata && pdata->channel_num)
for (i = 0; i < pdata->channel_num; i++)
flashlight_dev_unregister_by_device_id(
&pdata->dev_id[i]);
else
flashlight_dev_unregister(DUMMY_NAME);
/* flush work queue */
flush_work(&dummy_work);
pr_debug("Remove done.\n");
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id dummy_of_match[] = {
{.compatible = DUMMY_DTNAME},
{},
};
MODULE_DEVICE_TABLE(of, dummy_of_match);
#else
static struct platform_device dummy_platform_device[] = {
{
.name = DUMMY_NAME,
.id = 0,
.dev = {}
},
{}
};
MODULE_DEVICE_TABLE(platform, dummy_platform_device);
#endif
static struct platform_driver dummy_platform_driver = {
.probe = dummy_probe,
.remove = dummy_remove,
.driver = {
.name = DUMMY_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = dummy_of_match,
#endif
},
};
static int __init flashlight_dummy_init(void)
{
int ret;
pr_debug("Init start.\n");
#ifndef CONFIG_OF
ret = platform_device_register(&dummy_platform_device);
if (ret) {
pr_info("Failed to register platform device\n");
return ret;
}
#endif
ret = platform_driver_register(&dummy_platform_driver);
if (ret) {
pr_info("Failed to register platform driver\n");
return ret;
}
pr_debug("Init done.\n");
return 0;
}
static void __exit flashlight_dummy_exit(void)
{
pr_debug("Exit start.\n");
platform_driver_unregister(&dummy_platform_driver);
pr_debug("Exit done.\n");
}
module_init(flashlight_dummy_init);
module_exit(flashlight_dummy_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Simon Wang <Simon-TCH.Wang@mediatek.com>");
MODULE_DESCRIPTION("MTK Flashlight DUMMY Driver");