kernel_samsung_a34x-permissive/drivers/net/wireless/mediatek/mt76/mt76x0/phy.c
2024-04-28 15:51:13 +02:00

1008 lines
25 KiB
C

/*
* (c) Copyright 2002-2010, Ralink Technology, Inc.
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "mt76x0.h"
#include "mcu.h"
#include "eeprom.h"
#include "trace.h"
#include "phy.h"
#include "initvals.h"
#include "initvals_phy.h"
#include <linux/etherdevice.h>
static int
mt76x0_rf_csr_wr(struct mt76x0_dev *dev, u32 offset, u8 value)
{
int ret = 0;
u8 bank, reg;
if (test_bit(MT76_REMOVED, &dev->mt76.state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 64) || WARN_ON_ONCE(bank) > 8)
return -EINVAL;
mutex_lock(&dev->reg_atomic_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) {
ret = -ETIMEDOUT;
goto out;
}
mt76_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_DATA, value) |
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_WR |
MT_RF_CSR_CFG_KICK);
trace_mt76x0_rf_write(&dev->mt76, bank, offset, value);
out:
mutex_unlock(&dev->reg_atomic_mutex);
if (ret < 0)
dev_err(dev->mt76.dev, "Error: RF write %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int
mt76x0_rf_csr_rr(struct mt76x0_dev *dev, u32 offset)
{
int ret = -ETIMEDOUT;
u32 val;
u8 bank, reg;
if (test_bit(MT76_REMOVED, &dev->mt76.state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 64) || WARN_ON_ONCE(bank) > 8)
return -EINVAL;
mutex_lock(&dev->reg_atomic_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
mt76_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_KICK);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
val = mt76_rr(dev, MT_RF_CSR_CFG);
if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg &&
FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank) {
ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val);
trace_mt76x0_rf_read(&dev->mt76, bank, offset, ret);
}
out:
mutex_unlock(&dev->reg_atomic_mutex);
if (ret < 0)
dev_err(dev->mt76.dev, "Error: RF read %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int
rf_wr(struct mt76x0_dev *dev, u32 offset, u8 val)
{
if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mt76.state)) {
struct mt76_reg_pair pair = {
.reg = offset,
.value = val,
};
return mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_RF, &pair, 1);
} else {
WARN_ON_ONCE(1);
return mt76x0_rf_csr_wr(dev, offset, val);
}
}
static int
rf_rr(struct mt76x0_dev *dev, u32 offset)
{
int ret;
u32 val;
if (test_bit(MT76_STATE_MCU_RUNNING, &dev->mt76.state)) {
struct mt76_reg_pair pair = {
.reg = offset,
};
ret = mt76x0_read_reg_pairs(dev, MT_MCU_MEMMAP_RF, &pair, 1);
val = pair.value;
} else {
WARN_ON_ONCE(1);
ret = val = mt76x0_rf_csr_rr(dev, offset);
}
return (ret < 0) ? ret : val;
}
static int
rf_rmw(struct mt76x0_dev *dev, u32 offset, u8 mask, u8 val)
{
int ret;
ret = rf_rr(dev, offset);
if (ret < 0)
return ret;
val |= ret & ~mask;
ret = rf_wr(dev, offset, val);
if (ret)
return ret;
return val;
}
static int
rf_set(struct mt76x0_dev *dev, u32 offset, u8 val)
{
return rf_rmw(dev, offset, 0, val);
}
#if 0
static int
rf_clear(struct mt76x0_dev *dev, u32 offset, u8 mask)
{
return rf_rmw(dev, offset, mask, 0);
}
#endif
#define RF_RANDOM_WRITE(dev, tab) \
mt76x0_write_reg_pairs(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));
int mt76x0_wait_bbp_ready(struct mt76x0_dev *dev)
{
int i = 20;
u32 val;
do {
val = mt76_rr(dev, MT_BBP(CORE, 0));
printk("BBP version %08x\n", val);
if (val && ~val)
break;
} while (--i);
if (!i) {
dev_err(dev->mt76.dev, "Error: BBP is not ready\n");
return -EIO;
}
return 0;
}
static void
mt76x0_bbp_set_ctrlch(struct mt76x0_dev *dev, enum nl80211_chan_width width,
u8 ctrl)
{
int core_val, agc_val;
switch (width) {
case NL80211_CHAN_WIDTH_80:
core_val = 3;
agc_val = 7;
break;
case NL80211_CHAN_WIDTH_40:
core_val = 2;
agc_val = 3;
break;
default:
core_val = 0;
agc_val = 1;
break;
}
mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl);
mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl);
}
int mt76x0_phy_get_rssi(struct mt76x0_dev *dev, struct mt76x0_rxwi *rxwi)
{
s8 lna_gain, rssi_offset;
int val;
if (dev->mt76.chandef.chan->band == NL80211_BAND_2GHZ) {
lna_gain = dev->ee->lna_gain_2ghz;
rssi_offset = dev->ee->rssi_offset_2ghz[0];
} else {
lna_gain = dev->ee->lna_gain_5ghz[0];
rssi_offset = dev->ee->rssi_offset_5ghz[0];
}
val = rxwi->rssi[0] + rssi_offset - lna_gain;
return val;
}
static void mt76x0_vco_cal(struct mt76x0_dev *dev, u8 channel)
{
u8 val;
val = rf_rr(dev, MT_RF(0, 4));
if ((val & 0x70) != 0x30)
return;
/*
* Calibration Mode - Open loop, closed loop, and amplitude:
* B0.R06.[0]: 1
* B0.R06.[3:1] bp_close_code: 100
* B0.R05.[7:0] bp_open_code: 0x0
* B0.R04.[2:0] cal_bits: 000
* B0.R03.[2:0] startup_time: 011
* B0.R03.[6:4] settle_time:
* 80MHz channel: 110
* 40MHz channel: 101
* 20MHz channel: 100
*/
val = rf_rr(dev, MT_RF(0, 6));
val &= ~0xf;
val |= 0x09;
rf_wr(dev, MT_RF(0, 6), val);
val = rf_rr(dev, MT_RF(0, 5));
if (val != 0)
rf_wr(dev, MT_RF(0, 5), 0x0);
val = rf_rr(dev, MT_RF(0, 4));
val &= ~0x07;
rf_wr(dev, MT_RF(0, 4), val);
val = rf_rr(dev, MT_RF(0, 3));
val &= ~0x77;
if (channel == 1 || channel == 7 || channel == 9 || channel >= 13) {
val |= 0x63;
} else if (channel == 3 || channel == 4 || channel == 10) {
val |= 0x53;
} else if (channel == 2 || channel == 5 || channel == 6 ||
channel == 8 || channel == 11 || channel == 12) {
val |= 0x43;
} else {
WARN(1, "Unknown channel %u\n", channel);
return;
}
rf_wr(dev, MT_RF(0, 3), val);
/* TODO replace by mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7)); */
val = rf_rr(dev, MT_RF(0, 4));
val = ((val & ~(0x80)) | 0x80);
rf_wr(dev, MT_RF(0, 4), val);
msleep(2);
}
static void
mt76x0_mac_set_ctrlch(struct mt76x0_dev *dev, bool primary_upper)
{
mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M,
primary_upper);
}
static void
mt76x0_phy_set_band(struct mt76x0_dev *dev, enum nl80211_band band)
{
switch (band) {
case NL80211_BAND_2GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab);
rf_wr(dev, MT_RF(5, 0), 0x45);
rf_wr(dev, MT_RF(6, 0), 0x44);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002);
break;
case NL80211_BAND_5GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
rf_wr(dev, MT_RF(5, 0), 0x44);
rf_wr(dev, MT_RF(6, 0), 0x45);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102);
break;
default:
break;
}
}
#define EXT_PA_2G_5G 0x0
#define EXT_PA_5G_ONLY 0x1
#define EXT_PA_2G_ONLY 0x2
#define INT_PA_2G_5G 0x3
static void
mt76x0_phy_set_chan_rf_params(struct mt76x0_dev *dev, u8 channel, u16 rf_bw_band)
{
u16 rf_band = rf_bw_band & 0xff00;
u16 rf_bw = rf_bw_band & 0x00ff;
u32 mac_reg;
u8 rf_val;
int i;
bool bSDM = false;
const struct mt76x0_freq_item *freq_item;
for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) {
if (channel == mt76x0_sdm_channel[i]) {
bSDM = true;
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) {
if (channel == mt76x0_frequency_plan[i].channel) {
rf_band = mt76x0_frequency_plan[i].band;
if (bSDM)
freq_item = &(mt76x0_sdm_frequency_plan[i]);
else
freq_item = &(mt76x0_frequency_plan[i]);
rf_wr(dev, MT_RF(0, 37), freq_item->pllR37);
rf_wr(dev, MT_RF(0, 36), freq_item->pllR36);
rf_wr(dev, MT_RF(0, 35), freq_item->pllR35);
rf_wr(dev, MT_RF(0, 34), freq_item->pllR34);
rf_wr(dev, MT_RF(0, 33), freq_item->pllR33);
rf_val = rf_rr(dev, MT_RF(0, 32));
rf_val &= ~0xE0;
rf_val |= freq_item->pllR32_b7b5;
rf_wr(dev, MT_RF(0, 32), rf_val);
/* R32<4:0> pll_den: (Denomina - 8) */
rf_val = rf_rr(dev, MT_RF(0, 32));
rf_val &= ~0x1F;
rf_val |= freq_item->pllR32_b4b0;
rf_wr(dev, MT_RF(0, 32), rf_val);
/* R31<7:5> */
rf_val = rf_rr(dev, MT_RF(0, 31));
rf_val &= ~0xE0;
rf_val |= freq_item->pllR31_b7b5;
rf_wr(dev, MT_RF(0, 31), rf_val);
/* R31<4:0> pll_k(Nominator) */
rf_val = rf_rr(dev, MT_RF(0, 31));
rf_val &= ~0x1F;
rf_val |= freq_item->pllR31_b4b0;
rf_wr(dev, MT_RF(0, 31), rf_val);
/* R30<7> sdm_reset_n */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x80;
if (bSDM) {
rf_wr(dev, MT_RF(0, 30), rf_val);
rf_val |= 0x80;
rf_wr(dev, MT_RF(0, 30), rf_val);
} else {
rf_val |= freq_item->pllR30_b7;
rf_wr(dev, MT_RF(0, 30), rf_val);
}
/* R30<6:2> sdmmash_prbs,sin */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x7C;
rf_val |= freq_item->pllR30_b6b2;
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R30<1> sdm_bp */
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x02;
rf_val |= (freq_item->pllR30_b1 << 1);
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R30<0> R29<7:0> (hex) pll_n */
rf_val = freq_item->pll_n & 0x00FF;
rf_wr(dev, MT_RF(0, 29), rf_val);
rf_val = rf_rr(dev, MT_RF(0, 30));
rf_val &= ~0x1;
rf_val |= ((freq_item->pll_n >> 8) & 0x0001);
rf_wr(dev, MT_RF(0, 30), rf_val);
/* R28<7:6> isi_iso */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0xC0;
rf_val |= freq_item->pllR28_b7b6;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<5:4> pfd_dly */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x30;
rf_val |= freq_item->pllR28_b5b4;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<3:2> clksel option */
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x0C;
rf_val |= freq_item->pllR28_b3b2;
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */
rf_val = freq_item->pll_sdm_k & 0x000000FF;
rf_wr(dev, MT_RF(0, 26), rf_val);
rf_val = ((freq_item->pll_sdm_k >> 8) & 0x000000FF);
rf_wr(dev, MT_RF(0, 27), rf_val);
rf_val = rf_rr(dev, MT_RF(0, 28));
rf_val &= ~0x3;
rf_val |= ((freq_item->pll_sdm_k >> 16) & 0x0003);
rf_wr(dev, MT_RF(0, 28), rf_val);
/* R24<1:0> xo_div */
rf_val = rf_rr(dev, MT_RF(0, 24));
rf_val &= ~0x3;
rf_val |= freq_item->pllR24_b1b0;
rf_wr(dev, MT_RF(0, 24), rf_val);
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) {
rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
} else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) &&
(rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) {
rf_wr(dev, mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) {
rf_wr(dev, mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg &= ~0xC; /* Clear 0x518[3:2] */
mt76_wr(dev, MT_RF_MISC, mac_reg);
if (dev->ee->pa_type == INT_PA_2G_5G ||
(dev->ee->pa_type == EXT_PA_5G_ONLY && (rf_band & RF_G_BAND)) ||
(dev->ee->pa_type == EXT_PA_2G_ONLY && (rf_band & RF_A_BAND))) {
; /* Internal PA - nothing to do. */
} else {
/*
MT_RF_MISC (offset: 0x0518)
[2]1'b1: enable external A band PA, 1'b0: disable external A band PA
[3]1'b1: enable external G band PA, 1'b0: disable external G band PA
*/
if (rf_band & RF_A_BAND) {
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg |= 0x4;
mt76_wr(dev, MT_RF_MISC, mac_reg);
} else {
mac_reg = mt76_rr(dev, MT_RF_MISC);
mac_reg |= 0x8;
mt76_wr(dev, MT_RF_MISC, mac_reg);
}
/* External PA */
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++)
if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band)
rf_wr(dev, mt76x0_rf_ext_pa_tab[i].rf_bank_reg,
mt76x0_rf_ext_pa_tab[i].value);
}
if (rf_band & RF_G_BAND) {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400);
/* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x896400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
} else {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800);
/* Set Atten mode = 0 For Ext A band, Disable Tx Inc dcoc Cal. */
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x890400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
}
}
static void
mt76x0_phy_set_chan_bbp_params(struct mt76x0_dev *dev, u8 channel, u16 rf_bw_band)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
const struct mt76_reg_pair *pair = &item->reg_pair;
if ((rf_bw_band & item->bw_band) != rf_bw_band)
continue;
if (pair->reg == MT_BBP(AGC, 8)) {
u32 val = pair->value;
u8 gain = FIELD_GET(MT_BBP_AGC_GAIN, val);
if (channel > 14) {
if (channel < 100)
gain -= dev->ee->lna_gain_5ghz[0]*2;
else if (channel < 137)
gain -= dev->ee->lna_gain_5ghz[1]*2;
else
gain -= dev->ee->lna_gain_5ghz[2]*2;
} else {
gain -= dev->ee->lna_gain_2ghz*2;
}
val &= ~MT_BBP_AGC_GAIN;
val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain);
mt76_wr(dev, pair->reg, val);
} else {
mt76_wr(dev, pair->reg, pair->value);
}
}
}
#if 0
static void
mt76x0_extra_power_over_mac(struct mt76x0_dev *dev)
{
u32 val;
val = ((mt76_rr(dev, MT_TX_PWR_CFG_1) & 0x00003f00) >> 8);
val |= ((mt76_rr(dev, MT_TX_PWR_CFG_2) & 0x00003f00) << 8);
mt76_wr(dev, MT_TX_PWR_CFG_7, val);
/* TODO: fix VHT */
val = ((mt76_rr(dev, MT_TX_PWR_CFG_3) & 0x0000ff00) >> 8);
mt76_wr(dev, MT_TX_PWR_CFG_8, val);
val = ((mt76_rr(dev, MT_TX_PWR_CFG_4) & 0x0000ff00) >> 8);
mt76_wr(dev, MT_TX_PWR_CFG_9, val);
}
static void
mt76x0_phy_set_tx_power(struct mt76x0_dev *dev, u8 channel, u8 rf_bw_band)
{
u32 val;
int i;
int bw = (rf_bw_band & RF_BW_20) ? 0 : 1;
for (i = 0; i < 4; i++) {
if (channel <= 14)
val = dev->ee->tx_pwr_cfg_2g[i][bw];
else
val = dev->ee->tx_pwr_cfg_5g[i][bw];
mt76_wr(dev, MT_TX_PWR_CFG_0 + 4*i, val);
}
mt76x0_extra_power_over_mac(dev);
}
#endif
static void
mt76x0_bbp_set_bw(struct mt76x0_dev *dev, enum nl80211_chan_width width)
{
enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4};
int bw;
switch (width) {
default:
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bw = BW_20;
break;
case NL80211_CHAN_WIDTH_40:
bw = BW_40;
break;
case NL80211_CHAN_WIDTH_80:
bw = BW_80;
break;
case NL80211_CHAN_WIDTH_10:
bw = BW_10;
break;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
case NL80211_CHAN_WIDTH_5:
/* TODO error */
return ;
}
mt76x0_mcu_function_select(dev, BW_SETTING, bw);
}
static void
mt76x0_phy_set_chan_pwr(struct mt76x0_dev *dev, u8 channel)
{
static const int mt76x0_tx_pwr_ch_list[] = {
1,2,3,4,5,6,7,8,9,10,11,12,13,14,
36,38,40,44,46,48,52,54,56,60,62,64,
100,102,104,108,110,112,116,118,120,124,126,128,132,134,136,140,
149,151,153,157,159,161,165,167,169,171,173,
42,58,106,122,155
};
int i;
u32 val;
for (i = 0; i < ARRAY_SIZE(mt76x0_tx_pwr_ch_list); i++)
if (mt76x0_tx_pwr_ch_list[i] == channel)
break;
if (WARN_ON(i == ARRAY_SIZE(mt76x0_tx_pwr_ch_list)))
return;
val = mt76_rr(dev, MT_TX_ALC_CFG_0);
val &= ~0x3f3f;
val |= dev->ee->tx_pwr_per_chan[i];
val |= 0x2f2f << 16;
mt76_wr(dev, MT_TX_ALC_CFG_0, val);
}
static int
__mt76x0_phy_set_channel(struct mt76x0_dev *dev,
struct cfg80211_chan_def *chandef)
{
u32 ext_cca_chan[4] = {
[0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)),
[1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)),
[2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)),
[3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)),
};
bool scan = test_bit(MT76_SCANNING, &dev->mt76.state);
int ch_group_index, freq, freq1;
u8 channel;
u32 val;
u16 rf_bw_band;
freq = chandef->chan->center_freq;
freq1 = chandef->center_freq1;
channel = chandef->chan->hw_value;
rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_40:
if (freq1 > freq)
ch_group_index = 0;
else
ch_group_index = 1;
channel += 2 - ch_group_index * 4;
rf_bw_band |= RF_BW_40;
break;
case NL80211_CHAN_WIDTH_80:
ch_group_index = (freq - freq1 + 30) / 20;
if (WARN_ON(ch_group_index < 0 || ch_group_index > 3))
ch_group_index = 0;
channel += 6 - ch_group_index * 4;
rf_bw_band |= RF_BW_80;
break;
default:
ch_group_index = 0;
rf_bw_band |= RF_BW_20;
break;
}
mt76x0_bbp_set_bw(dev, chandef->width);
mt76x0_bbp_set_ctrlch(dev, chandef->width, ch_group_index);
mt76x0_mac_set_ctrlch(dev, ch_group_index & 1);
mt76_rmw(dev, MT_EXT_CCA_CFG,
(MT_EXT_CCA_CFG_CCA0 |
MT_EXT_CCA_CFG_CCA1 |
MT_EXT_CCA_CFG_CCA2 |
MT_EXT_CCA_CFG_CCA3 |
MT_EXT_CCA_CFG_CCA_MASK),
ext_cca_chan[ch_group_index]);
mt76x0_phy_set_band(dev, chandef->chan->band);
mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band);
/* set Japan Tx filter at channel 14 */
val = mt76_rr(dev, MT_BBP(CORE, 1));
if (channel == 14)
val |= 0x20;
else
val &= ~0x20;
mt76_wr(dev, MT_BBP(CORE, 1), val);
mt76x0_phy_set_chan_bbp_params(dev, channel, rf_bw_band);
/* Vendor driver don't do it */
/* mt76x0_phy_set_tx_power(dev, channel, rf_bw_band); */
mt76x0_vco_cal(dev, channel);
if (scan)
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1);
mt76x0_phy_set_chan_pwr(dev, channel);
dev->mt76.chandef = *chandef;
return 0;
}
int mt76x0_phy_set_channel(struct mt76x0_dev *dev,
struct cfg80211_chan_def *chandef)
{
int ret;
mutex_lock(&dev->hw_atomic_mutex);
ret = __mt76x0_phy_set_channel(dev, chandef);
mutex_unlock(&dev->hw_atomic_mutex);
return ret;
}
void mt76x0_phy_recalibrate_after_assoc(struct mt76x0_dev *dev)
{
u32 tx_alc, reg_val;
u8 channel = dev->mt76.chandef.chan->hw_value;
int is_5ghz = (dev->mt76.chandef.chan->band == NL80211_BAND_5GHZ) ? 1 : 0;
mt76x0_mcu_calibrate(dev, MCU_CAL_R, 0);
mt76x0_vco_cal(dev, channel);
tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0);
mt76_wr(dev, MT_TX_ALC_CFG_0, 0);
usleep_range(500, 700);
reg_val = mt76_rr(dev, MT_BBP(IBI, 9));
mt76_wr(dev, MT_BBP(IBI, 9), 0xffffff7e);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 0);
mt76x0_mcu_calibrate(dev, MCU_CAL_LC, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_LOFT, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_TX_GROUP_DELAY, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXIQ, is_5ghz);
mt76x0_mcu_calibrate(dev, MCU_CAL_RX_GROUP_DELAY, is_5ghz);
mt76_wr(dev, MT_BBP(IBI, 9), reg_val);
mt76_wr(dev, MT_TX_ALC_CFG_0, tx_alc);
msleep(100);
mt76x0_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1);
}
void mt76x0_agc_save(struct mt76x0_dev *dev)
{
/* Only one RX path */
dev->agc_save = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, 8)));
}
void mt76x0_agc_restore(struct mt76x0_dev *dev)
{
mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, dev->agc_save);
}
static void mt76x0_temp_sensor(struct mt76x0_dev *dev)
{
u8 rf_b7_73, rf_b0_66, rf_b0_67;
int cycle, temp;
u32 val;
s32 sval;
rf_b7_73 = rf_rr(dev, MT_RF(7, 73));
rf_b0_66 = rf_rr(dev, MT_RF(0, 66));
rf_b0_67 = rf_rr(dev, MT_RF(0, 73));
rf_wr(dev, MT_RF(7, 73), 0x02);
rf_wr(dev, MT_RF(0, 66), 0x23);
rf_wr(dev, MT_RF(0, 73), 0x01);
mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055);
for (cycle = 0; cycle < 2000; cycle++) {
val = mt76_rr(dev, MT_BBP(CORE, 34));
if (!(val & 0x10))
break;
udelay(3);
}
if (cycle >= 2000) {
val &= 0x10;
mt76_wr(dev, MT_BBP(CORE, 34), val);
goto done;
}
sval = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
if (!(sval & 0x80))
sval &= 0x7f; /* Positive */
else
sval |= 0xffffff00; /* Negative */
temp = (35 * (sval - dev->ee->temp_off))/ 10 + 25;
done:
rf_wr(dev, MT_RF(7, 73), rf_b7_73);
rf_wr(dev, MT_RF(0, 66), rf_b0_66);
rf_wr(dev, MT_RF(0, 73), rf_b0_67);
}
static void mt76x0_dynamic_vga_tuning(struct mt76x0_dev *dev)
{
u32 val, init_vga;
init_vga = (dev->mt76.chandef.chan->band == NL80211_BAND_5GHZ) ? 0x54 : 0x4E;
if (dev->avg_rssi > -60)
init_vga -= 0x20;
else if (dev->avg_rssi > -70)
init_vga -= 0x10;
val = mt76_rr(dev, MT_BBP(AGC, 8));
val &= 0xFFFF80FF;
val |= init_vga << 8;
mt76_wr(dev, MT_BBP(AGC,8), val);
}
static void mt76x0_phy_calibrate(struct work_struct *work)
{
struct mt76x0_dev *dev = container_of(work, struct mt76x0_dev,
cal_work.work);
mt76x0_dynamic_vga_tuning(dev);
mt76x0_temp_sensor(dev);
ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work,
MT_CALIBRATE_INTERVAL);
}
void mt76x0_phy_con_cal_onoff(struct mt76x0_dev *dev,
struct ieee80211_bss_conf *info)
{
/* Start/stop collecting beacon data */
spin_lock_bh(&dev->con_mon_lock);
ether_addr_copy(dev->ap_bssid, info->bssid);
dev->avg_rssi = 0;
dev->bcn_freq_off = MT_FREQ_OFFSET_INVALID;
spin_unlock_bh(&dev->con_mon_lock);
}
static void
mt76x0_set_rx_chains(struct mt76x0_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_BBP(AGC, 0));
val &= ~(BIT(3) | BIT(4));
if (dev->chainmask & BIT(1))
val |= BIT(3);
mt76_wr(dev, MT_BBP(AGC, 0), val);
mb();
val = mt76_rr(dev, MT_BBP(AGC, 0));
}
static void
mt76x0_set_tx_dac(struct mt76x0_dev *dev)
{
if (dev->chainmask & BIT(1))
mt76_set(dev, MT_BBP(TXBE, 5), 3);
else
mt76_clear(dev, MT_BBP(TXBE, 5), 3);
}
static void
mt76x0_rf_init(struct mt76x0_dev *dev)
{
int i;
u8 val;
RF_RANDOM_WRITE(dev, mt76x0_rf_central_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab);
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i];
if (item->bw_band == RF_BW_20)
rf_wr(dev, item->rf_bank_reg, item->value);
else if (((RF_G_BAND | RF_BW_20) & item->bw_band) == (RF_G_BAND | RF_BW_20))
rf_wr(dev, item->rf_bank_reg, item->value);
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) {
rf_wr(dev,
mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
/*
Frequency calibration
E1: B0.R22<6:0>: xo_cxo<6:0>
E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1>
*/
rf_wr(dev, MT_RF(0, 22), min_t(u8, dev->ee->rf_freq_off, 0xBF));
val = rf_rr(dev, MT_RF(0, 22));
/*
Reset the DAC (Set B0.R73<7>=1, then set B0.R73<7>=0, and then set B0.R73<7>) during power up.
*/
val = rf_rr(dev, MT_RF(0, 73));
val |= 0x80;
rf_wr(dev, MT_RF(0, 73), val);
val &= ~0x80;
rf_wr(dev, MT_RF(0, 73), val);
val |= 0x80;
rf_wr(dev, MT_RF(0, 73), val);
/*
vcocal_en (initiate VCO calibration (reset after completion)) - It should be at the end of RF configuration.
*/
rf_set(dev, MT_RF(0, 4), 0x80);
}
static void mt76x0_ant_select(struct mt76x0_dev *dev)
{
/* Single antenna mode. */
mt76_rmw(dev, MT_WLAN_FUN_CTRL, BIT(5), BIT(6));
mt76_clear(dev, MT_CMB_CTRL, BIT(14) | BIT(12));
mt76_clear(dev, MT_COEXCFG0, BIT(2));
mt76_rmw(dev, MT_COEXCFG3, BIT(5) | BIT(4) | BIT(3) | BIT(2), BIT(1));
}
void mt76x0_phy_init(struct mt76x0_dev *dev)
{
INIT_DELAYED_WORK(&dev->cal_work, mt76x0_phy_calibrate);
mt76x0_ant_select(dev);
mt76x0_rf_init(dev);
mt76x0_set_rx_chains(dev);
mt76x0_set_tx_dac(dev);
}