c05564c4d8
Android 13
241 lines
6.7 KiB
C
Executable file
241 lines
6.7 KiB
C
Executable file
#ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
|
|
#define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
|
|
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/percpu.h>
|
|
|
|
struct vmemmap_backing {
|
|
struct vmemmap_backing *list;
|
|
unsigned long phys;
|
|
unsigned long virt_addr;
|
|
};
|
|
extern struct vmemmap_backing *vmemmap_list;
|
|
|
|
/*
|
|
* Functions that deal with pagetables that could be at any level of
|
|
* the table need to be passed an "index_size" so they know how to
|
|
* handle allocation. For PTE pages (which are linked to a struct
|
|
* page for now, and drawn from the main get_free_pages() pool), the
|
|
* allocation size will be (2^index_size * sizeof(pointer)) and
|
|
* allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
|
|
*
|
|
* The maximum index size needs to be big enough to allow any
|
|
* pagetable sizes we need, but small enough to fit in the low bits of
|
|
* any page table pointer. In other words all pagetables, even tiny
|
|
* ones, must be aligned to allow at least enough low 0 bits to
|
|
* contain this value. This value is also used as a mask, so it must
|
|
* be one less than a power of two.
|
|
*/
|
|
#define MAX_PGTABLE_INDEX_SIZE 0xf
|
|
|
|
extern struct kmem_cache *pgtable_cache[];
|
|
#define PGT_CACHE(shift) ({ \
|
|
BUG_ON(!(shift)); \
|
|
pgtable_cache[(shift) - 1]; \
|
|
})
|
|
|
|
extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
|
|
extern pmd_t *pmd_fragment_alloc(struct mm_struct *, unsigned long);
|
|
extern void pte_fragment_free(unsigned long *, int);
|
|
extern void pmd_fragment_free(unsigned long *);
|
|
extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
|
|
#ifdef CONFIG_SMP
|
|
extern void __tlb_remove_table(void *_table);
|
|
#endif
|
|
|
|
static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP));
|
|
#else
|
|
struct page *page;
|
|
page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL),
|
|
4);
|
|
if (!page)
|
|
return NULL;
|
|
return (pgd_t *) page_address(page);
|
|
#endif
|
|
}
|
|
|
|
static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
free_page((unsigned long)pgd);
|
|
#else
|
|
free_pages((unsigned long)pgd, 4);
|
|
#endif
|
|
}
|
|
|
|
static inline pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (radix_enabled())
|
|
return radix__pgd_alloc(mm);
|
|
|
|
pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE),
|
|
pgtable_gfp_flags(mm, GFP_KERNEL));
|
|
if (unlikely(!pgd))
|
|
return pgd;
|
|
|
|
/*
|
|
* Don't scan the PGD for pointers, it contains references to PUDs but
|
|
* those references are not full pointers and so can't be recognised by
|
|
* kmemleak.
|
|
*/
|
|
kmemleak_no_scan(pgd);
|
|
|
|
/*
|
|
* With hugetlb, we don't clear the second half of the page table.
|
|
* If we share the same slab cache with the pmd or pud level table,
|
|
* we need to make sure we zero out the full table on alloc.
|
|
* With 4K we don't store slot in the second half. Hence we don't
|
|
* need to do this for 4k.
|
|
*/
|
|
#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_PPC_64K_PAGES) && \
|
|
(H_PGD_INDEX_SIZE == H_PUD_CACHE_INDEX)
|
|
memset(pgd, 0, PGD_TABLE_SIZE);
|
|
#endif
|
|
return pgd;
|
|
}
|
|
|
|
static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
if (radix_enabled())
|
|
return radix__pgd_free(mm, pgd);
|
|
kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
|
|
}
|
|
|
|
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
|
|
{
|
|
pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
|
|
}
|
|
|
|
static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pud_t *pud;
|
|
|
|
pud = kmem_cache_alloc(PGT_CACHE(PUD_CACHE_INDEX),
|
|
pgtable_gfp_flags(mm, GFP_KERNEL));
|
|
/*
|
|
* Tell kmemleak to ignore the PUD, that means don't scan it for
|
|
* pointers and don't consider it a leak. PUDs are typically only
|
|
* referred to by their PGD, but kmemleak is not able to recognise those
|
|
* as pointers, leading to false leak reports.
|
|
*/
|
|
kmemleak_ignore(pud);
|
|
|
|
return pud;
|
|
}
|
|
|
|
static inline void pud_free(struct mm_struct *mm, pud_t *pud)
|
|
{
|
|
kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), pud);
|
|
}
|
|
|
|
static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
|
|
{
|
|
pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
|
|
}
|
|
|
|
static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
/*
|
|
* By now all the pud entries should be none entries. So go
|
|
* ahead and flush the page walk cache
|
|
*/
|
|
flush_tlb_pgtable(tlb, address);
|
|
pgtable_free_tlb(tlb, pud, PUD_INDEX);
|
|
}
|
|
|
|
static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return pmd_fragment_alloc(mm, addr);
|
|
}
|
|
|
|
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
pmd_fragment_free((unsigned long *)pmd);
|
|
}
|
|
|
|
static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
/*
|
|
* By now all the pud entries should be none entries. So go
|
|
* ahead and flush the page walk cache
|
|
*/
|
|
flush_tlb_pgtable(tlb, address);
|
|
return pgtable_free_tlb(tlb, pmd, PMD_INDEX);
|
|
}
|
|
|
|
static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
|
|
pte_t *pte)
|
|
{
|
|
pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
|
|
}
|
|
|
|
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
|
|
pgtable_t pte_page)
|
|
{
|
|
pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
|
|
}
|
|
|
|
static inline pgtable_t pmd_pgtable(pmd_t pmd)
|
|
{
|
|
return (pgtable_t)pmd_page_vaddr(pmd);
|
|
}
|
|
|
|
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
return (pte_t *)pte_fragment_alloc(mm, address, 1);
|
|
}
|
|
|
|
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
return (pgtable_t)pte_fragment_alloc(mm, address, 0);
|
|
}
|
|
|
|
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
|
|
{
|
|
pte_fragment_free((unsigned long *)pte, 1);
|
|
}
|
|
|
|
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
|
|
{
|
|
pte_fragment_free((unsigned long *)ptepage, 0);
|
|
}
|
|
|
|
static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
|
|
unsigned long address)
|
|
{
|
|
/*
|
|
* By now all the pud entries should be none entries. So go
|
|
* ahead and flush the page walk cache
|
|
*/
|
|
flush_tlb_pgtable(tlb, address);
|
|
pgtable_free_tlb(tlb, table, PTE_INDEX);
|
|
}
|
|
|
|
#define check_pgt_cache() do { } while (0)
|
|
|
|
extern atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
|
|
static inline void update_page_count(int psize, long count)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PROC_FS))
|
|
atomic_long_add(count, &direct_pages_count[psize]);
|
|
}
|
|
|
|
#endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */
|