c05564c4d8
Android 13
662 lines
18 KiB
C
Executable file
662 lines
18 KiB
C
Executable file
/*
|
|
* Cell Broadband Engine OProfile Support
|
|
*
|
|
* (C) Copyright IBM Corporation 2006
|
|
*
|
|
* Author: Maynard Johnson <maynardj@us.ibm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
/* The purpose of this file is to handle SPU event task switching
|
|
* and to record SPU context information into the OProfile
|
|
* event buffer.
|
|
*
|
|
* Additionally, the spu_sync_buffer function is provided as a helper
|
|
* for recoding actual SPU program counter samples to the event buffer.
|
|
*/
|
|
#include <linux/dcookies.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/module.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/oprofile.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include "pr_util.h"
|
|
|
|
#define RELEASE_ALL 9999
|
|
|
|
static DEFINE_SPINLOCK(buffer_lock);
|
|
static DEFINE_SPINLOCK(cache_lock);
|
|
static int num_spu_nodes;
|
|
static int spu_prof_num_nodes;
|
|
|
|
struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
|
|
struct delayed_work spu_work;
|
|
static unsigned max_spu_buff;
|
|
|
|
static void spu_buff_add(unsigned long int value, int spu)
|
|
{
|
|
/* spu buff is a circular buffer. Add entries to the
|
|
* head. Head is the index to store the next value.
|
|
* The buffer is full when there is one available entry
|
|
* in the queue, i.e. head and tail can't be equal.
|
|
* That way we can tell the difference between the
|
|
* buffer being full versus empty.
|
|
*
|
|
* ASSUMPTION: the buffer_lock is held when this function
|
|
* is called to lock the buffer, head and tail.
|
|
*/
|
|
int full = 1;
|
|
|
|
if (spu_buff[spu].head >= spu_buff[spu].tail) {
|
|
if ((spu_buff[spu].head - spu_buff[spu].tail)
|
|
< (max_spu_buff - 1))
|
|
full = 0;
|
|
|
|
} else if (spu_buff[spu].tail > spu_buff[spu].head) {
|
|
if ((spu_buff[spu].tail - spu_buff[spu].head)
|
|
> 1)
|
|
full = 0;
|
|
}
|
|
|
|
if (!full) {
|
|
spu_buff[spu].buff[spu_buff[spu].head] = value;
|
|
spu_buff[spu].head++;
|
|
|
|
if (spu_buff[spu].head >= max_spu_buff)
|
|
spu_buff[spu].head = 0;
|
|
} else {
|
|
/* From the user's perspective make the SPU buffer
|
|
* size management/overflow look like we are using
|
|
* per cpu buffers. The user uses the same
|
|
* per cpu parameter to adjust the SPU buffer size.
|
|
* Increment the sample_lost_overflow to inform
|
|
* the user the buffer size needs to be increased.
|
|
*/
|
|
oprofile_cpu_buffer_inc_smpl_lost();
|
|
}
|
|
}
|
|
|
|
/* This function copies the per SPU buffers to the
|
|
* OProfile kernel buffer.
|
|
*/
|
|
static void sync_spu_buff(void)
|
|
{
|
|
int spu;
|
|
unsigned long flags;
|
|
int curr_head;
|
|
|
|
for (spu = 0; spu < num_spu_nodes; spu++) {
|
|
/* In case there was an issue and the buffer didn't
|
|
* get created skip it.
|
|
*/
|
|
if (spu_buff[spu].buff == NULL)
|
|
continue;
|
|
|
|
/* Hold the lock to make sure the head/tail
|
|
* doesn't change while spu_buff_add() is
|
|
* deciding if the buffer is full or not.
|
|
* Being a little paranoid.
|
|
*/
|
|
spin_lock_irqsave(&buffer_lock, flags);
|
|
curr_head = spu_buff[spu].head;
|
|
spin_unlock_irqrestore(&buffer_lock, flags);
|
|
|
|
/* Transfer the current contents to the kernel buffer.
|
|
* data can still be added to the head of the buffer.
|
|
*/
|
|
oprofile_put_buff(spu_buff[spu].buff,
|
|
spu_buff[spu].tail,
|
|
curr_head, max_spu_buff);
|
|
|
|
spin_lock_irqsave(&buffer_lock, flags);
|
|
spu_buff[spu].tail = curr_head;
|
|
spin_unlock_irqrestore(&buffer_lock, flags);
|
|
}
|
|
|
|
}
|
|
|
|
static void wq_sync_spu_buff(struct work_struct *work)
|
|
{
|
|
/* move data from spu buffers to kernel buffer */
|
|
sync_spu_buff();
|
|
|
|
/* only reschedule if profiling is not done */
|
|
if (spu_prof_running)
|
|
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
|
|
}
|
|
|
|
/* Container for caching information about an active SPU task. */
|
|
struct cached_info {
|
|
struct vma_to_fileoffset_map *map;
|
|
struct spu *the_spu; /* needed to access pointer to local_store */
|
|
struct kref cache_ref;
|
|
};
|
|
|
|
static struct cached_info *spu_info[MAX_NUMNODES * 8];
|
|
|
|
static void destroy_cached_info(struct kref *kref)
|
|
{
|
|
struct cached_info *info;
|
|
|
|
info = container_of(kref, struct cached_info, cache_ref);
|
|
vma_map_free(info->map);
|
|
kfree(info);
|
|
module_put(THIS_MODULE);
|
|
}
|
|
|
|
/* Return the cached_info for the passed SPU number.
|
|
* ATTENTION: Callers are responsible for obtaining the
|
|
* cache_lock if needed prior to invoking this function.
|
|
*/
|
|
static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
|
|
{
|
|
struct kref *ref;
|
|
struct cached_info *ret_info;
|
|
|
|
if (spu_num >= num_spu_nodes) {
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: Invalid index %d into spu info cache\n",
|
|
__func__, __LINE__, spu_num);
|
|
ret_info = NULL;
|
|
goto out;
|
|
}
|
|
if (!spu_info[spu_num] && the_spu) {
|
|
ref = spu_get_profile_private_kref(the_spu->ctx);
|
|
if (ref) {
|
|
spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
|
|
kref_get(&spu_info[spu_num]->cache_ref);
|
|
}
|
|
}
|
|
|
|
ret_info = spu_info[spu_num];
|
|
out:
|
|
return ret_info;
|
|
}
|
|
|
|
|
|
/* Looks for cached info for the passed spu. If not found, the
|
|
* cached info is created for the passed spu.
|
|
* Returns 0 for success; otherwise, -1 for error.
|
|
*/
|
|
static int
|
|
prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
|
|
{
|
|
unsigned long flags;
|
|
struct vma_to_fileoffset_map *new_map;
|
|
int retval = 0;
|
|
struct cached_info *info;
|
|
|
|
/* We won't bother getting cache_lock here since
|
|
* don't do anything with the cached_info that's returned.
|
|
*/
|
|
info = get_cached_info(spu, spu->number);
|
|
|
|
if (info) {
|
|
pr_debug("Found cached SPU info.\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Create cached_info and set spu_info[spu->number] to point to it.
|
|
* spu->number is a system-wide value, not a per-node value.
|
|
*/
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info) {
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: create vma_map failed\n",
|
|
__func__, __LINE__);
|
|
retval = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
new_map = create_vma_map(spu, objectId);
|
|
if (!new_map) {
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: create vma_map failed\n",
|
|
__func__, __LINE__);
|
|
retval = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
pr_debug("Created vma_map\n");
|
|
info->map = new_map;
|
|
info->the_spu = spu;
|
|
kref_init(&info->cache_ref);
|
|
spin_lock_irqsave(&cache_lock, flags);
|
|
spu_info[spu->number] = info;
|
|
/* Increment count before passing off ref to SPUFS. */
|
|
kref_get(&info->cache_ref);
|
|
|
|
/* We increment the module refcount here since SPUFS is
|
|
* responsible for the final destruction of the cached_info,
|
|
* and it must be able to access the destroy_cached_info()
|
|
* function defined in the OProfile module. We decrement
|
|
* the module refcount in destroy_cached_info.
|
|
*/
|
|
try_module_get(THIS_MODULE);
|
|
spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
|
|
destroy_cached_info);
|
|
spin_unlock_irqrestore(&cache_lock, flags);
|
|
goto out;
|
|
|
|
err_alloc:
|
|
kfree(info);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* NOTE: The caller is responsible for locking the
|
|
* cache_lock prior to calling this function.
|
|
*/
|
|
static int release_cached_info(int spu_index)
|
|
{
|
|
int index, end;
|
|
|
|
if (spu_index == RELEASE_ALL) {
|
|
end = num_spu_nodes;
|
|
index = 0;
|
|
} else {
|
|
if (spu_index >= num_spu_nodes) {
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: "
|
|
"Invalid index %d into spu info cache\n",
|
|
__func__, __LINE__, spu_index);
|
|
goto out;
|
|
}
|
|
end = spu_index + 1;
|
|
index = spu_index;
|
|
}
|
|
for (; index < end; index++) {
|
|
if (spu_info[index]) {
|
|
kref_put(&spu_info[index]->cache_ref,
|
|
destroy_cached_info);
|
|
spu_info[index] = NULL;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/* The source code for fast_get_dcookie was "borrowed"
|
|
* from drivers/oprofile/buffer_sync.c.
|
|
*/
|
|
|
|
/* Optimisation. We can manage without taking the dcookie sem
|
|
* because we cannot reach this code without at least one
|
|
* dcookie user still being registered (namely, the reader
|
|
* of the event buffer).
|
|
*/
|
|
static inline unsigned long fast_get_dcookie(const struct path *path)
|
|
{
|
|
unsigned long cookie;
|
|
|
|
if (path->dentry->d_flags & DCACHE_COOKIE)
|
|
return (unsigned long)path->dentry;
|
|
get_dcookie(path, &cookie);
|
|
return cookie;
|
|
}
|
|
|
|
/* Look up the dcookie for the task's mm->exe_file,
|
|
* which corresponds loosely to "application name". Also, determine
|
|
* the offset for the SPU ELF object. If computed offset is
|
|
* non-zero, it implies an embedded SPU object; otherwise, it's a
|
|
* separate SPU binary, in which case we retrieve it's dcookie.
|
|
* For the embedded case, we must determine if SPU ELF is embedded
|
|
* in the executable application or another file (i.e., shared lib).
|
|
* If embedded in a shared lib, we must get the dcookie and return
|
|
* that to the caller.
|
|
*/
|
|
static unsigned long
|
|
get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
|
|
unsigned long *spu_bin_dcookie,
|
|
unsigned long spu_ref)
|
|
{
|
|
unsigned long app_cookie = 0;
|
|
unsigned int my_offset = 0;
|
|
struct vm_area_struct *vma;
|
|
struct file *exe_file;
|
|
struct mm_struct *mm = spu->mm;
|
|
|
|
if (!mm)
|
|
goto out;
|
|
|
|
exe_file = get_mm_exe_file(mm);
|
|
if (exe_file) {
|
|
app_cookie = fast_get_dcookie(&exe_file->f_path);
|
|
pr_debug("got dcookie for %pD\n", exe_file);
|
|
fput(exe_file);
|
|
}
|
|
|
|
down_read(&mm->mmap_sem);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
|
|
continue;
|
|
my_offset = spu_ref - vma->vm_start;
|
|
if (!vma->vm_file)
|
|
goto fail_no_image_cookie;
|
|
|
|
pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
|
|
my_offset, spu_ref, vma->vm_file);
|
|
*offsetp = my_offset;
|
|
break;
|
|
}
|
|
|
|
*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
|
|
pr_debug("got dcookie for %pD\n", vma->vm_file);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
out:
|
|
return app_cookie;
|
|
|
|
fail_no_image_cookie:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: Cannot find dcookie for SPU binary\n",
|
|
__func__, __LINE__);
|
|
goto out;
|
|
}
|
|
|
|
|
|
|
|
/* This function finds or creates cached context information for the
|
|
* passed SPU and records SPU context information into the OProfile
|
|
* event buffer.
|
|
*/
|
|
static int process_context_switch(struct spu *spu, unsigned long objectId)
|
|
{
|
|
unsigned long flags;
|
|
int retval;
|
|
unsigned int offset = 0;
|
|
unsigned long spu_cookie = 0, app_dcookie;
|
|
|
|
retval = prepare_cached_spu_info(spu, objectId);
|
|
if (retval)
|
|
goto out;
|
|
|
|
/* Get dcookie first because a mutex_lock is taken in that
|
|
* code path, so interrupts must not be disabled.
|
|
*/
|
|
app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
|
|
if (!app_dcookie || !spu_cookie) {
|
|
retval = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/* Record context info in event buffer */
|
|
spin_lock_irqsave(&buffer_lock, flags);
|
|
spu_buff_add(ESCAPE_CODE, spu->number);
|
|
spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
|
|
spu_buff_add(spu->number, spu->number);
|
|
spu_buff_add(spu->pid, spu->number);
|
|
spu_buff_add(spu->tgid, spu->number);
|
|
spu_buff_add(app_dcookie, spu->number);
|
|
spu_buff_add(spu_cookie, spu->number);
|
|
spu_buff_add(offset, spu->number);
|
|
|
|
/* Set flag to indicate SPU PC data can now be written out. If
|
|
* the SPU program counter data is seen before an SPU context
|
|
* record is seen, the postprocessing will fail.
|
|
*/
|
|
spu_buff[spu->number].ctx_sw_seen = 1;
|
|
|
|
spin_unlock_irqrestore(&buffer_lock, flags);
|
|
smp_wmb(); /* insure spu event buffer updates are written */
|
|
/* don't want entries intermingled... */
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This function is invoked on either a bind_context or unbind_context.
|
|
* If called for an unbind_context, the val arg is 0; otherwise,
|
|
* it is the object-id value for the spu context.
|
|
* The data arg is of type 'struct spu *'.
|
|
*/
|
|
static int spu_active_notify(struct notifier_block *self, unsigned long val,
|
|
void *data)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
struct spu *the_spu = data;
|
|
|
|
pr_debug("SPU event notification arrived\n");
|
|
if (!val) {
|
|
spin_lock_irqsave(&cache_lock, flags);
|
|
retval = release_cached_info(the_spu->number);
|
|
spin_unlock_irqrestore(&cache_lock, flags);
|
|
} else {
|
|
retval = process_context_switch(the_spu, val);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
static struct notifier_block spu_active = {
|
|
.notifier_call = spu_active_notify,
|
|
};
|
|
|
|
static int number_of_online_nodes(void)
|
|
{
|
|
u32 cpu; u32 tmp;
|
|
int nodes = 0;
|
|
for_each_online_cpu(cpu) {
|
|
tmp = cbe_cpu_to_node(cpu) + 1;
|
|
if (tmp > nodes)
|
|
nodes++;
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
static int oprofile_spu_buff_create(void)
|
|
{
|
|
int spu;
|
|
|
|
max_spu_buff = oprofile_get_cpu_buffer_size();
|
|
|
|
for (spu = 0; spu < num_spu_nodes; spu++) {
|
|
/* create circular buffers to store the data in.
|
|
* use locks to manage accessing the buffers
|
|
*/
|
|
spu_buff[spu].head = 0;
|
|
spu_buff[spu].tail = 0;
|
|
|
|
/*
|
|
* Create a buffer for each SPU. Can't reliably
|
|
* create a single buffer for all spus due to not
|
|
* enough contiguous kernel memory.
|
|
*/
|
|
|
|
spu_buff[spu].buff = kzalloc((max_spu_buff
|
|
* sizeof(unsigned long)),
|
|
GFP_KERNEL);
|
|
|
|
if (!spu_buff[spu].buff) {
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: oprofile_spu_buff_create "
|
|
"failed to allocate spu buffer %d.\n",
|
|
__func__, __LINE__, spu);
|
|
|
|
/* release the spu buffers that have been allocated */
|
|
while (spu >= 0) {
|
|
kfree(spu_buff[spu].buff);
|
|
spu_buff[spu].buff = 0;
|
|
spu--;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The main purpose of this function is to synchronize
|
|
* OProfile with SPUFS by registering to be notified of
|
|
* SPU task switches.
|
|
*
|
|
* NOTE: When profiling SPUs, we must ensure that only
|
|
* spu_sync_start is invoked and not the generic sync_start
|
|
* in drivers/oprofile/oprof.c. A return value of
|
|
* SKIP_GENERIC_SYNC or SYNC_START_ERROR will
|
|
* accomplish this.
|
|
*/
|
|
int spu_sync_start(void)
|
|
{
|
|
int spu;
|
|
int ret = SKIP_GENERIC_SYNC;
|
|
int register_ret;
|
|
unsigned long flags = 0;
|
|
|
|
spu_prof_num_nodes = number_of_online_nodes();
|
|
num_spu_nodes = spu_prof_num_nodes * 8;
|
|
INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
|
|
|
|
/* create buffer for storing the SPU data to put in
|
|
* the kernel buffer.
|
|
*/
|
|
ret = oprofile_spu_buff_create();
|
|
if (ret)
|
|
goto out;
|
|
|
|
spin_lock_irqsave(&buffer_lock, flags);
|
|
for (spu = 0; spu < num_spu_nodes; spu++) {
|
|
spu_buff_add(ESCAPE_CODE, spu);
|
|
spu_buff_add(SPU_PROFILING_CODE, spu);
|
|
spu_buff_add(num_spu_nodes, spu);
|
|
}
|
|
spin_unlock_irqrestore(&buffer_lock, flags);
|
|
|
|
for (spu = 0; spu < num_spu_nodes; spu++) {
|
|
spu_buff[spu].ctx_sw_seen = 0;
|
|
spu_buff[spu].last_guard_val = 0;
|
|
}
|
|
|
|
/* Register for SPU events */
|
|
register_ret = spu_switch_event_register(&spu_active);
|
|
if (register_ret) {
|
|
ret = SYNC_START_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
pr_debug("spu_sync_start -- running.\n");
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* Record SPU program counter samples to the oprofile event buffer. */
|
|
void spu_sync_buffer(int spu_num, unsigned int *samples,
|
|
int num_samples)
|
|
{
|
|
unsigned long long file_offset;
|
|
unsigned long flags;
|
|
int i;
|
|
struct vma_to_fileoffset_map *map;
|
|
struct spu *the_spu;
|
|
unsigned long long spu_num_ll = spu_num;
|
|
unsigned long long spu_num_shifted = spu_num_ll << 32;
|
|
struct cached_info *c_info;
|
|
|
|
/* We need to obtain the cache_lock here because it's
|
|
* possible that after getting the cached_info, the SPU job
|
|
* corresponding to this cached_info may end, thus resulting
|
|
* in the destruction of the cached_info.
|
|
*/
|
|
spin_lock_irqsave(&cache_lock, flags);
|
|
c_info = get_cached_info(NULL, spu_num);
|
|
if (!c_info) {
|
|
/* This legitimately happens when the SPU task ends before all
|
|
* samples are recorded.
|
|
* No big deal -- so we just drop a few samples.
|
|
*/
|
|
pr_debug("SPU_PROF: No cached SPU contex "
|
|
"for SPU #%d. Dropping samples.\n", spu_num);
|
|
goto out;
|
|
}
|
|
|
|
map = c_info->map;
|
|
the_spu = c_info->the_spu;
|
|
spin_lock(&buffer_lock);
|
|
for (i = 0; i < num_samples; i++) {
|
|
unsigned int sample = *(samples+i);
|
|
int grd_val = 0;
|
|
file_offset = 0;
|
|
if (sample == 0)
|
|
continue;
|
|
file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
|
|
|
|
/* If overlays are used by this SPU application, the guard
|
|
* value is non-zero, indicating which overlay section is in
|
|
* use. We need to discard samples taken during the time
|
|
* period which an overlay occurs (i.e., guard value changes).
|
|
*/
|
|
if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
|
|
spu_buff[spu_num].last_guard_val = grd_val;
|
|
/* Drop the rest of the samples. */
|
|
break;
|
|
}
|
|
|
|
/* We must ensure that the SPU context switch has been written
|
|
* out before samples for the SPU. Otherwise, the SPU context
|
|
* information is not available and the postprocessing of the
|
|
* SPU PC will fail with no available anonymous map information.
|
|
*/
|
|
if (spu_buff[spu_num].ctx_sw_seen)
|
|
spu_buff_add((file_offset | spu_num_shifted),
|
|
spu_num);
|
|
}
|
|
spin_unlock(&buffer_lock);
|
|
out:
|
|
spin_unlock_irqrestore(&cache_lock, flags);
|
|
}
|
|
|
|
|
|
int spu_sync_stop(void)
|
|
{
|
|
unsigned long flags = 0;
|
|
int ret;
|
|
int k;
|
|
|
|
ret = spu_switch_event_unregister(&spu_active);
|
|
|
|
if (ret)
|
|
printk(KERN_ERR "SPU_PROF: "
|
|
"%s, line %d: spu_switch_event_unregister " \
|
|
"returned %d\n",
|
|
__func__, __LINE__, ret);
|
|
|
|
/* flush any remaining data in the per SPU buffers */
|
|
sync_spu_buff();
|
|
|
|
spin_lock_irqsave(&cache_lock, flags);
|
|
ret = release_cached_info(RELEASE_ALL);
|
|
spin_unlock_irqrestore(&cache_lock, flags);
|
|
|
|
/* remove scheduled work queue item rather then waiting
|
|
* for every queued entry to execute. Then flush pending
|
|
* system wide buffer to event buffer.
|
|
*/
|
|
cancel_delayed_work(&spu_work);
|
|
|
|
for (k = 0; k < num_spu_nodes; k++) {
|
|
spu_buff[k].ctx_sw_seen = 0;
|
|
|
|
/*
|
|
* spu_sys_buff will be null if there was a problem
|
|
* allocating the buffer. Only delete if it exists.
|
|
*/
|
|
kfree(spu_buff[k].buff);
|
|
spu_buff[k].buff = 0;
|
|
}
|
|
pr_debug("spu_sync_stop -- done.\n");
|
|
return ret;
|
|
}
|
|
|