c05564c4d8
Android 13
9812 lines
252 KiB
C
Executable file
9812 lines
252 KiB
C
Executable file
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* derived from drivers/kvm/kvm_main.c
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
* Copyright IBM Corporation, 2008
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Amit Shah <amit.shah@qumranet.com>
|
|
* Ben-Ami Yassour <benami@il.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "i8254.h"
|
|
#include "tss.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "pmu.h"
|
|
#include "hyperv.h"
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/export.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/pvclock_gtod.h>
|
|
#include <linux/kvm_irqfd.h>
|
|
#include <linux/irqbypass.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
#include <trace/events/kvm.h>
|
|
|
|
#include <asm/debugreg.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/mce.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <asm/fpu/internal.h> /* Ugh! */
|
|
#include <asm/pvclock.h>
|
|
#include <asm/div64.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/mshyperv.h>
|
|
#include <asm/hypervisor.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#define MAX_IO_MSRS 256
|
|
#define KVM_MAX_MCE_BANKS 32
|
|
u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
|
|
EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
|
|
|
|
#define emul_to_vcpu(ctxt) \
|
|
container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
|
|
|
|
/* EFER defaults:
|
|
* - enable syscall per default because its emulated by KVM
|
|
* - enable LME and LMA per default on 64 bit KVM
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
static
|
|
u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
|
|
#else
|
|
static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
|
|
#endif
|
|
|
|
static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
|
|
|
|
#define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
|
|
#define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
|
|
|
|
#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
|
|
KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
|
|
static void process_nmi(struct kvm_vcpu *vcpu);
|
|
static void process_smi(struct kvm_vcpu *vcpu);
|
|
static void enter_smm(struct kvm_vcpu *vcpu);
|
|
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
|
|
static void store_regs(struct kvm_vcpu *vcpu);
|
|
static int sync_regs(struct kvm_vcpu *vcpu);
|
|
|
|
struct kvm_x86_ops *kvm_x86_ops __read_mostly;
|
|
EXPORT_SYMBOL_GPL(kvm_x86_ops);
|
|
|
|
static bool __read_mostly ignore_msrs = 0;
|
|
module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
|
|
|
|
static bool __read_mostly report_ignored_msrs = true;
|
|
module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
|
|
|
|
unsigned int min_timer_period_us = 200;
|
|
module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
|
|
|
|
static bool __read_mostly kvmclock_periodic_sync = true;
|
|
module_param(kvmclock_periodic_sync, bool, S_IRUGO);
|
|
|
|
bool __read_mostly kvm_has_tsc_control;
|
|
EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
|
|
u32 __read_mostly kvm_max_guest_tsc_khz;
|
|
EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
|
|
u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
|
|
EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
|
|
u64 __read_mostly kvm_max_tsc_scaling_ratio;
|
|
EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
|
|
u64 __read_mostly kvm_default_tsc_scaling_ratio;
|
|
EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
|
|
|
|
/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
|
|
static u32 __read_mostly tsc_tolerance_ppm = 250;
|
|
module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
|
|
|
|
/* lapic timer advance (tscdeadline mode only) in nanoseconds */
|
|
unsigned int __read_mostly lapic_timer_advance_ns = 0;
|
|
module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
|
|
EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
|
|
|
|
static bool __read_mostly vector_hashing = true;
|
|
module_param(vector_hashing, bool, S_IRUGO);
|
|
|
|
bool __read_mostly enable_vmware_backdoor = false;
|
|
module_param(enable_vmware_backdoor, bool, S_IRUGO);
|
|
EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
|
|
|
|
static bool __read_mostly force_emulation_prefix = false;
|
|
module_param(force_emulation_prefix, bool, S_IRUGO);
|
|
|
|
#define KVM_NR_SHARED_MSRS 16
|
|
|
|
struct kvm_shared_msrs_global {
|
|
int nr;
|
|
u32 msrs[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
struct kvm_shared_msrs {
|
|
struct user_return_notifier urn;
|
|
bool registered;
|
|
struct kvm_shared_msr_values {
|
|
u64 host;
|
|
u64 curr;
|
|
} values[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
|
|
static struct kvm_shared_msrs __percpu *shared_msrs;
|
|
|
|
struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|
{ "pf_fixed", VCPU_STAT(pf_fixed) },
|
|
{ "pf_guest", VCPU_STAT(pf_guest) },
|
|
{ "tlb_flush", VCPU_STAT(tlb_flush) },
|
|
{ "invlpg", VCPU_STAT(invlpg) },
|
|
{ "exits", VCPU_STAT(exits) },
|
|
{ "io_exits", VCPU_STAT(io_exits) },
|
|
{ "mmio_exits", VCPU_STAT(mmio_exits) },
|
|
{ "signal_exits", VCPU_STAT(signal_exits) },
|
|
{ "irq_window", VCPU_STAT(irq_window_exits) },
|
|
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
|
|
{ "halt_exits", VCPU_STAT(halt_exits) },
|
|
{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
|
|
{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
|
|
{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
|
|
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
|
|
{ "hypercalls", VCPU_STAT(hypercalls) },
|
|
{ "request_irq", VCPU_STAT(request_irq_exits) },
|
|
{ "irq_exits", VCPU_STAT(irq_exits) },
|
|
{ "host_state_reload", VCPU_STAT(host_state_reload) },
|
|
{ "fpu_reload", VCPU_STAT(fpu_reload) },
|
|
{ "insn_emulation", VCPU_STAT(insn_emulation) },
|
|
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
|
|
{ "irq_injections", VCPU_STAT(irq_injections) },
|
|
{ "nmi_injections", VCPU_STAT(nmi_injections) },
|
|
{ "req_event", VCPU_STAT(req_event) },
|
|
{ "l1d_flush", VCPU_STAT(l1d_flush) },
|
|
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
|
|
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
|
|
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
|
|
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
|
|
{ "mmu_flooded", VM_STAT(mmu_flooded) },
|
|
{ "mmu_recycled", VM_STAT(mmu_recycled) },
|
|
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
|
|
{ "mmu_unsync", VM_STAT(mmu_unsync) },
|
|
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
|
|
{ "largepages", VM_STAT(lpages, .mode = 0444) },
|
|
{ "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
|
|
{ "max_mmu_page_hash_collisions",
|
|
VM_STAT(max_mmu_page_hash_collisions) },
|
|
{ NULL }
|
|
};
|
|
|
|
u64 __read_mostly host_xcr0;
|
|
|
|
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
|
|
|
|
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
}
|
|
|
|
static void kvm_on_user_return(struct user_return_notifier *urn)
|
|
{
|
|
unsigned slot;
|
|
struct kvm_shared_msrs *locals
|
|
= container_of(urn, struct kvm_shared_msrs, urn);
|
|
struct kvm_shared_msr_values *values;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Disabling irqs at this point since the following code could be
|
|
* interrupted and executed through kvm_arch_hardware_disable()
|
|
*/
|
|
local_irq_save(flags);
|
|
if (locals->registered) {
|
|
locals->registered = false;
|
|
user_return_notifier_unregister(urn);
|
|
}
|
|
local_irq_restore(flags);
|
|
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
|
|
values = &locals->values[slot];
|
|
if (values->host != values->curr) {
|
|
wrmsrl(shared_msrs_global.msrs[slot], values->host);
|
|
values->curr = values->host;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void shared_msr_update(unsigned slot, u32 msr)
|
|
{
|
|
u64 value;
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
|
|
/* only read, and nobody should modify it at this time,
|
|
* so don't need lock */
|
|
if (slot >= shared_msrs_global.nr) {
|
|
printk(KERN_ERR "kvm: invalid MSR slot!");
|
|
return;
|
|
}
|
|
rdmsrl_safe(msr, &value);
|
|
smsr->values[slot].host = value;
|
|
smsr->values[slot].curr = value;
|
|
}
|
|
|
|
void kvm_define_shared_msr(unsigned slot, u32 msr)
|
|
{
|
|
BUG_ON(slot >= KVM_NR_SHARED_MSRS);
|
|
shared_msrs_global.msrs[slot] = msr;
|
|
if (slot >= shared_msrs_global.nr)
|
|
shared_msrs_global.nr = slot + 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
|
|
|
|
static void kvm_shared_msr_cpu_online(void)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < shared_msrs_global.nr; ++i)
|
|
shared_msr_update(i, shared_msrs_global.msrs[i]);
|
|
}
|
|
|
|
int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
int err;
|
|
|
|
value = (value & mask) | (smsr->values[slot].host & ~mask);
|
|
if (value == smsr->values[slot].curr)
|
|
return 0;
|
|
err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
|
|
if (err)
|
|
return 1;
|
|
|
|
smsr->values[slot].curr = value;
|
|
if (!smsr->registered) {
|
|
smsr->urn.on_user_return = kvm_on_user_return;
|
|
user_return_notifier_register(&smsr->urn);
|
|
smsr->registered = true;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
|
|
|
|
static void drop_user_return_notifiers(void)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
|
|
|
|
if (smsr->registered)
|
|
kvm_on_user_return(&smsr->urn);
|
|
}
|
|
|
|
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.apic_base;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
|
|
|
|
enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_apic_mode(kvm_get_apic_base(vcpu));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
|
|
|
|
int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
|
|
enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
|
|
u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
|
|
(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
|
|
|
|
if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
|
|
return 1;
|
|
if (!msr_info->host_initiated) {
|
|
if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
|
|
return 1;
|
|
if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
|
|
return 1;
|
|
}
|
|
|
|
kvm_lapic_set_base(vcpu, msr_info->data);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
|
|
|
|
asmlinkage __visible void kvm_spurious_fault(void)
|
|
{
|
|
/* Fault while not rebooting. We want the trace. */
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_spurious_fault);
|
|
|
|
#define EXCPT_BENIGN 0
|
|
#define EXCPT_CONTRIBUTORY 1
|
|
#define EXCPT_PF 2
|
|
|
|
static int exception_class(int vector)
|
|
{
|
|
switch (vector) {
|
|
case PF_VECTOR:
|
|
return EXCPT_PF;
|
|
case DE_VECTOR:
|
|
case TS_VECTOR:
|
|
case NP_VECTOR:
|
|
case SS_VECTOR:
|
|
case GP_VECTOR:
|
|
return EXCPT_CONTRIBUTORY;
|
|
default:
|
|
break;
|
|
}
|
|
return EXCPT_BENIGN;
|
|
}
|
|
|
|
#define EXCPT_FAULT 0
|
|
#define EXCPT_TRAP 1
|
|
#define EXCPT_ABORT 2
|
|
#define EXCPT_INTERRUPT 3
|
|
|
|
static int exception_type(int vector)
|
|
{
|
|
unsigned int mask;
|
|
|
|
if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
|
|
return EXCPT_INTERRUPT;
|
|
|
|
mask = 1 << vector;
|
|
|
|
/* #DB is trap, as instruction watchpoints are handled elsewhere */
|
|
if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
|
|
return EXCPT_TRAP;
|
|
|
|
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
|
|
return EXCPT_ABORT;
|
|
|
|
/* Reserved exceptions will result in fault */
|
|
return EXCPT_FAULT;
|
|
}
|
|
|
|
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
|
|
unsigned nr, bool has_error, u32 error_code,
|
|
bool reinject)
|
|
{
|
|
u32 prev_nr;
|
|
int class1, class2;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
|
|
queue:
|
|
if (has_error && !is_protmode(vcpu))
|
|
has_error = false;
|
|
if (reinject) {
|
|
/*
|
|
* On vmentry, vcpu->arch.exception.pending is only
|
|
* true if an event injection was blocked by
|
|
* nested_run_pending. In that case, however,
|
|
* vcpu_enter_guest requests an immediate exit,
|
|
* and the guest shouldn't proceed far enough to
|
|
* need reinjection.
|
|
*/
|
|
WARN_ON_ONCE(vcpu->arch.exception.pending);
|
|
vcpu->arch.exception.injected = true;
|
|
} else {
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.injected = false;
|
|
}
|
|
vcpu->arch.exception.has_error_code = has_error;
|
|
vcpu->arch.exception.nr = nr;
|
|
vcpu->arch.exception.error_code = error_code;
|
|
return;
|
|
}
|
|
|
|
/* to check exception */
|
|
prev_nr = vcpu->arch.exception.nr;
|
|
if (prev_nr == DF_VECTOR) {
|
|
/* triple fault -> shutdown */
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return;
|
|
}
|
|
class1 = exception_class(prev_nr);
|
|
class2 = exception_class(nr);
|
|
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
|
|
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
|
|
/*
|
|
* Generate double fault per SDM Table 5-5. Set
|
|
* exception.pending = true so that the double fault
|
|
* can trigger a nested vmexit.
|
|
*/
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.injected = false;
|
|
vcpu->arch.exception.has_error_code = true;
|
|
vcpu->arch.exception.nr = DF_VECTOR;
|
|
vcpu->arch.exception.error_code = 0;
|
|
} else
|
|
/* replace previous exception with a new one in a hope
|
|
that instruction re-execution will regenerate lost
|
|
exception */
|
|
goto queue;
|
|
}
|
|
|
|
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception);
|
|
|
|
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
|
|
|
|
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
|
|
{
|
|
if (err)
|
|
kvm_inject_gp(vcpu, 0);
|
|
else
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
|
|
|
|
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
++vcpu->stat.pf_guest;
|
|
vcpu->arch.exception.nested_apf =
|
|
is_guest_mode(vcpu) && fault->async_page_fault;
|
|
if (vcpu->arch.exception.nested_apf)
|
|
vcpu->arch.apf.nested_apf_token = fault->address;
|
|
else
|
|
vcpu->arch.cr2 = fault->address;
|
|
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
|
|
|
|
static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
|
|
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
|
|
else
|
|
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
|
|
|
|
return fault->nested_page_fault;
|
|
}
|
|
|
|
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
atomic_inc(&vcpu->arch.nmi_queued);
|
|
kvm_make_request(KVM_REQ_NMI, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
|
|
|
|
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
|
|
|
|
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
|
|
|
|
/*
|
|
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
|
|
* a #GP and return false.
|
|
*/
|
|
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
|
|
{
|
|
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
|
|
return true;
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_require_cpl);
|
|
|
|
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
|
|
{
|
|
if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return true;
|
|
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_require_dr);
|
|
|
|
/*
|
|
* This function will be used to read from the physical memory of the currently
|
|
* running guest. The difference to kvm_vcpu_read_guest_page is that this function
|
|
* can read from guest physical or from the guest's guest physical memory.
|
|
*/
|
|
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gfn_t ngfn, void *data, int offset, int len,
|
|
u32 access)
|
|
{
|
|
struct x86_exception exception;
|
|
gfn_t real_gfn;
|
|
gpa_t ngpa;
|
|
|
|
ngpa = gfn_to_gpa(ngfn);
|
|
real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
|
|
if (real_gfn == UNMAPPED_GVA)
|
|
return -EFAULT;
|
|
|
|
real_gfn = gpa_to_gfn(real_gfn);
|
|
|
|
return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
|
|
|
|
static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
void *data, int offset, int len, u32 access)
|
|
{
|
|
return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
|
|
data, offset, len, access);
|
|
}
|
|
|
|
static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
|
|
rsvd_bits(1, 2);
|
|
}
|
|
|
|
/*
|
|
* Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
|
|
*/
|
|
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
|
|
{
|
|
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
|
|
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
|
|
int i;
|
|
int ret;
|
|
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
|
|
|
|
ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
|
|
offset * sizeof(u64), sizeof(pdpte),
|
|
PFERR_USER_MASK|PFERR_WRITE_MASK);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
|
|
if ((pdpte[i] & PT_PRESENT_MASK) &&
|
|
(pdpte[i] & pdptr_rsvd_bits(vcpu))) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail);
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_dirty);
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_pdptrs);
|
|
|
|
bool pdptrs_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
|
|
bool changed = true;
|
|
int offset;
|
|
gfn_t gfn;
|
|
int r;
|
|
|
|
if (!is_pae_paging(vcpu))
|
|
return false;
|
|
|
|
if (!test_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail))
|
|
return true;
|
|
|
|
gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
|
|
offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
|
|
r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
|
|
PFERR_USER_MASK | PFERR_WRITE_MASK);
|
|
if (r < 0)
|
|
goto out;
|
|
changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
|
|
out:
|
|
|
|
return changed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pdptrs_changed);
|
|
|
|
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
unsigned long old_cr0 = kvm_read_cr0(vcpu);
|
|
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
|
|
|
|
cr0 |= X86_CR0_ET;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (cr0 & 0xffffffff00000000UL)
|
|
return 1;
|
|
#endif
|
|
|
|
cr0 &= ~CR0_RESERVED_BITS;
|
|
|
|
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
|
|
return 1;
|
|
|
|
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
|
|
return 1;
|
|
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
#ifdef CONFIG_X86_64
|
|
if ((vcpu->arch.efer & EFER_LME)) {
|
|
int cs_db, cs_l;
|
|
|
|
if (!is_pae(vcpu))
|
|
return 1;
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
if (cs_l)
|
|
return 1;
|
|
} else
|
|
#endif
|
|
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
|
|
kvm_read_cr3(vcpu)))
|
|
return 1;
|
|
}
|
|
|
|
if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
|
|
return 1;
|
|
|
|
kvm_x86_ops->set_cr0(vcpu, cr0);
|
|
|
|
if ((cr0 ^ old_cr0) & X86_CR0_PG) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
}
|
|
|
|
if ((cr0 ^ old_cr0) & update_bits)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
|
|
kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
|
|
!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
|
|
kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr0);
|
|
|
|
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
|
|
{
|
|
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_lmsw);
|
|
|
|
void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
|
|
!vcpu->guest_xcr0_loaded) {
|
|
/* kvm_set_xcr() also depends on this */
|
|
if (vcpu->arch.xcr0 != host_xcr0)
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
|
|
vcpu->guest_xcr0_loaded = 1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
|
|
|
|
void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->guest_xcr0_loaded) {
|
|
if (vcpu->arch.xcr0 != host_xcr0)
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
|
|
vcpu->guest_xcr0_loaded = 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
|
|
|
|
static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
u64 xcr0 = xcr;
|
|
u64 old_xcr0 = vcpu->arch.xcr0;
|
|
u64 valid_bits;
|
|
|
|
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
|
|
if (index != XCR_XFEATURE_ENABLED_MASK)
|
|
return 1;
|
|
if (!(xcr0 & XFEATURE_MASK_FP))
|
|
return 1;
|
|
if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
|
|
return 1;
|
|
|
|
/*
|
|
* Do not allow the guest to set bits that we do not support
|
|
* saving. However, xcr0 bit 0 is always set, even if the
|
|
* emulated CPU does not support XSAVE (see fx_init).
|
|
*/
|
|
valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
|
|
if (xcr0 & ~valid_bits)
|
|
return 1;
|
|
|
|
if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
|
|
(!(xcr0 & XFEATURE_MASK_BNDCSR)))
|
|
return 1;
|
|
|
|
if (xcr0 & XFEATURE_MASK_AVX512) {
|
|
if (!(xcr0 & XFEATURE_MASK_YMM))
|
|
return 1;
|
|
if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
|
|
return 1;
|
|
}
|
|
vcpu->arch.xcr0 = xcr0;
|
|
|
|
if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
|
|
kvm_update_cpuid(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
|
|
__kvm_set_xcr(vcpu, index, xcr)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_xcr);
|
|
|
|
static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 reserved_bits = CR4_RESERVED_BITS;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_XSAVE))
|
|
reserved_bits |= X86_CR4_OSXSAVE;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_SMEP))
|
|
reserved_bits |= X86_CR4_SMEP;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_SMAP))
|
|
reserved_bits |= X86_CR4_SMAP;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_FSGSBASE))
|
|
reserved_bits |= X86_CR4_FSGSBASE;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_PKU))
|
|
reserved_bits |= X86_CR4_PKE;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_LA57) &&
|
|
!(cpuid_ecx(0x7) & bit(X86_FEATURE_LA57)))
|
|
reserved_bits |= X86_CR4_LA57;
|
|
|
|
if (!cpu_has(c, X86_FEATURE_UMIP) && !kvm_x86_ops->umip_emulated())
|
|
reserved_bits |= X86_CR4_UMIP;
|
|
|
|
return reserved_bits;
|
|
}
|
|
|
|
static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
if (cr4 & cr4_reserved_bits)
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
|
|
return -EINVAL;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long old_cr4 = kvm_read_cr4(vcpu);
|
|
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
|
|
X86_CR4_SMEP;
|
|
unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
|
|
|
|
if (kvm_valid_cr4(vcpu, cr4))
|
|
return 1;
|
|
|
|
if (is_long_mode(vcpu)) {
|
|
if (!(cr4 & X86_CR4_PAE))
|
|
return 1;
|
|
if ((cr4 ^ old_cr4) & X86_CR4_LA57)
|
|
return 1;
|
|
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
|
|
&& ((cr4 ^ old_cr4) & pdptr_bits)
|
|
&& !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
|
|
kvm_read_cr3(vcpu)))
|
|
return 1;
|
|
|
|
if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
|
|
return 1;
|
|
|
|
/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
|
|
if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
|
|
return 1;
|
|
}
|
|
|
|
if (kvm_x86_ops->set_cr4(vcpu, cr4))
|
|
return 1;
|
|
|
|
if (((cr4 ^ old_cr4) & mmu_role_bits) ||
|
|
(!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
|
|
kvm_update_cpuid(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr4);
|
|
|
|
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
bool skip_tlb_flush = false;
|
|
#ifdef CONFIG_X86_64
|
|
bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
|
|
|
|
if (pcid_enabled) {
|
|
skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
|
|
cr3 &= ~X86_CR3_PCID_NOFLUSH;
|
|
}
|
|
#endif
|
|
|
|
if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
|
|
if (!skip_tlb_flush) {
|
|
kvm_mmu_sync_roots(vcpu);
|
|
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (is_long_mode(vcpu) &&
|
|
(cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
|
|
return 1;
|
|
else if (is_pae_paging(vcpu) &&
|
|
!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
|
|
return 1;
|
|
|
|
kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
|
|
vcpu->arch.cr3 = cr3;
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr3);
|
|
|
|
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
|
|
{
|
|
if (cr8 & CR8_RESERVED_BITS)
|
|
return 1;
|
|
if (lapic_in_kernel(vcpu))
|
|
kvm_lapic_set_tpr(vcpu, cr8);
|
|
else
|
|
vcpu->arch.cr8 = cr8;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr8);
|
|
|
|
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (lapic_in_kernel(vcpu))
|
|
return kvm_lapic_get_cr8(vcpu);
|
|
else
|
|
return vcpu->arch.cr8;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cr8);
|
|
|
|
static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
|
|
for (i = 0; i < KVM_NR_DB_REGS; i++)
|
|
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
|
|
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
|
|
}
|
|
}
|
|
|
|
static void kvm_update_dr6(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
|
|
}
|
|
|
|
static void kvm_update_dr7(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long dr7;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
dr7 = vcpu->arch.guest_debug_dr7;
|
|
else
|
|
dr7 = vcpu->arch.dr7;
|
|
kvm_x86_ops->set_dr7(vcpu, dr7);
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
|
|
if (dr7 & DR7_BP_EN_MASK)
|
|
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
|
|
}
|
|
|
|
static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 fixed = DR6_FIXED_1;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
|
|
fixed |= DR6_RTM;
|
|
return fixed;
|
|
}
|
|
|
|
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
size_t size = ARRAY_SIZE(vcpu->arch.db);
|
|
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
vcpu->arch.db[array_index_nospec(dr, size)] = val;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
vcpu->arch.eff_db[dr] = val;
|
|
break;
|
|
case 4:
|
|
/* fall through */
|
|
case 6:
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
|
|
kvm_update_dr6(vcpu);
|
|
break;
|
|
case 5:
|
|
/* fall through */
|
|
default: /* 7 */
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
|
|
kvm_update_dr7(vcpu);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
if (__kvm_set_dr(vcpu, dr, val)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_dr);
|
|
|
|
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
|
|
{
|
|
size_t size = ARRAY_SIZE(vcpu->arch.db);
|
|
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
*val = vcpu->arch.db[array_index_nospec(dr, size)];
|
|
break;
|
|
case 4:
|
|
/* fall through */
|
|
case 6:
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
*val = vcpu->arch.dr6;
|
|
else
|
|
*val = kvm_x86_ops->get_dr6(vcpu);
|
|
break;
|
|
case 5:
|
|
/* fall through */
|
|
default: /* 7 */
|
|
*val = vcpu->arch.dr7;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_dr);
|
|
|
|
bool kvm_rdpmc(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
u64 data;
|
|
int err;
|
|
|
|
err = kvm_pmu_rdpmc(vcpu, ecx, &data);
|
|
if (err)
|
|
return err;
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_rdpmc);
|
|
|
|
/*
|
|
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
|
|
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
|
|
*
|
|
* This list is modified at module load time to reflect the
|
|
* capabilities of the host cpu. This capabilities test skips MSRs that are
|
|
* kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
|
|
* may depend on host virtualization features rather than host cpu features.
|
|
*/
|
|
|
|
static u32 msrs_to_save[] = {
|
|
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
|
|
MSR_STAR,
|
|
#ifdef CONFIG_X86_64
|
|
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
|
|
#endif
|
|
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
|
|
MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
|
|
MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
|
|
};
|
|
|
|
static unsigned num_msrs_to_save;
|
|
|
|
static u32 emulated_msrs[] = {
|
|
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
|
|
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
|
|
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
|
|
HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
|
|
HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
|
|
HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
|
|
HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
|
|
HV_X64_MSR_RESET,
|
|
HV_X64_MSR_VP_INDEX,
|
|
HV_X64_MSR_VP_RUNTIME,
|
|
HV_X64_MSR_SCONTROL,
|
|
HV_X64_MSR_STIMER0_CONFIG,
|
|
HV_X64_MSR_VP_ASSIST_PAGE,
|
|
HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
|
|
HV_X64_MSR_TSC_EMULATION_STATUS,
|
|
|
|
MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
|
|
MSR_KVM_PV_EOI_EN,
|
|
|
|
MSR_IA32_TSC_ADJUST,
|
|
MSR_IA32_TSCDEADLINE,
|
|
MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MCG_STATUS,
|
|
MSR_IA32_MCG_CTL,
|
|
MSR_IA32_MCG_EXT_CTL,
|
|
MSR_IA32_SMBASE,
|
|
MSR_SMI_COUNT,
|
|
MSR_PLATFORM_INFO,
|
|
MSR_MISC_FEATURES_ENABLES,
|
|
MSR_AMD64_VIRT_SPEC_CTRL,
|
|
};
|
|
|
|
static unsigned num_emulated_msrs;
|
|
|
|
/*
|
|
* List of msr numbers which are used to expose MSR-based features that
|
|
* can be used by a hypervisor to validate requested CPU features.
|
|
*/
|
|
static u32 msr_based_features[] = {
|
|
MSR_IA32_VMX_BASIC,
|
|
MSR_IA32_VMX_TRUE_PINBASED_CTLS,
|
|
MSR_IA32_VMX_PINBASED_CTLS,
|
|
MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
|
|
MSR_IA32_VMX_PROCBASED_CTLS,
|
|
MSR_IA32_VMX_TRUE_EXIT_CTLS,
|
|
MSR_IA32_VMX_EXIT_CTLS,
|
|
MSR_IA32_VMX_TRUE_ENTRY_CTLS,
|
|
MSR_IA32_VMX_ENTRY_CTLS,
|
|
MSR_IA32_VMX_MISC,
|
|
MSR_IA32_VMX_CR0_FIXED0,
|
|
MSR_IA32_VMX_CR0_FIXED1,
|
|
MSR_IA32_VMX_CR4_FIXED0,
|
|
MSR_IA32_VMX_CR4_FIXED1,
|
|
MSR_IA32_VMX_VMCS_ENUM,
|
|
MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
MSR_IA32_VMX_EPT_VPID_CAP,
|
|
MSR_IA32_VMX_VMFUNC,
|
|
|
|
MSR_F10H_DECFG,
|
|
MSR_IA32_UCODE_REV,
|
|
MSR_IA32_ARCH_CAPABILITIES,
|
|
};
|
|
|
|
static unsigned int num_msr_based_features;
|
|
|
|
u64 kvm_get_arch_capabilities(void)
|
|
{
|
|
u64 data;
|
|
|
|
rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
|
|
|
|
/*
|
|
* If nx_huge_pages is enabled, KVM's shadow paging will ensure that
|
|
* the nested hypervisor runs with NX huge pages. If it is not,
|
|
* L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
|
|
* L1 guests, so it need not worry about its own (L2) guests.
|
|
*/
|
|
data |= ARCH_CAP_PSCHANGE_MC_NO;
|
|
|
|
/*
|
|
* If we're doing cache flushes (either "always" or "cond")
|
|
* we will do one whenever the guest does a vmlaunch/vmresume.
|
|
* If an outer hypervisor is doing the cache flush for us
|
|
* (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
|
|
* capability to the guest too, and if EPT is disabled we're not
|
|
* vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
|
|
* require a nested hypervisor to do a flush of its own.
|
|
*/
|
|
if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
|
|
data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
|
|
|
|
if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
|
|
data |= ARCH_CAP_RDCL_NO;
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
data |= ARCH_CAP_SSB_NO;
|
|
if (!boot_cpu_has_bug(X86_BUG_MDS))
|
|
data |= ARCH_CAP_MDS_NO;
|
|
|
|
/*
|
|
* On TAA affected systems, export MDS_NO=0 when:
|
|
* - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
|
|
* - Updated microcode is present. This is detected by
|
|
* the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
|
|
* that VERW clears CPU buffers.
|
|
*
|
|
* When MDS_NO=0 is exported, guests deploy clear CPU buffer
|
|
* mitigation and don't complain:
|
|
*
|
|
* "Vulnerable: Clear CPU buffers attempted, no microcode"
|
|
*
|
|
* If TSX is disabled on the system, guests are also mitigated against
|
|
* TAA and clear CPU buffer mitigation is not required for guests.
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_RTM))
|
|
data &= ~ARCH_CAP_TAA_NO;
|
|
else if (!boot_cpu_has_bug(X86_BUG_TAA))
|
|
data |= ARCH_CAP_TAA_NO;
|
|
else if (data & ARCH_CAP_TSX_CTRL_MSR)
|
|
data &= ~ARCH_CAP_MDS_NO;
|
|
|
|
/* KVM does not emulate MSR_IA32_TSX_CTRL. */
|
|
data &= ~ARCH_CAP_TSX_CTRL_MSR;
|
|
return data;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
|
|
|
|
static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
|
|
{
|
|
switch (msr->index) {
|
|
case MSR_IA32_ARCH_CAPABILITIES:
|
|
msr->data = kvm_get_arch_capabilities();
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
rdmsrl_safe(msr->index, &msr->data);
|
|
break;
|
|
default:
|
|
if (kvm_x86_ops->get_msr_feature(msr))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
|
|
{
|
|
struct kvm_msr_entry msr;
|
|
int r;
|
|
|
|
msr.index = index;
|
|
r = kvm_get_msr_feature(&msr);
|
|
if (r)
|
|
return r;
|
|
|
|
*data = msr.data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
|
|
return false;
|
|
|
|
if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
if (efer & efer_reserved_bits)
|
|
return false;
|
|
|
|
return __kvm_valid_efer(vcpu, efer);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_valid_efer);
|
|
|
|
static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
u64 old_efer = vcpu->arch.efer;
|
|
u64 efer = msr_info->data;
|
|
|
|
if (efer & efer_reserved_bits)
|
|
return 1;
|
|
|
|
if (!msr_info->host_initiated) {
|
|
if (!__kvm_valid_efer(vcpu, efer))
|
|
return 1;
|
|
|
|
if (is_paging(vcpu) &&
|
|
(vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
|
|
return 1;
|
|
}
|
|
|
|
efer &= ~EFER_LMA;
|
|
efer |= vcpu->arch.efer & EFER_LMA;
|
|
|
|
kvm_x86_ops->set_efer(vcpu, efer);
|
|
|
|
/* Update reserved bits */
|
|
if ((efer ^ old_efer) & EFER_NX)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_enable_efer_bits(u64 mask)
|
|
{
|
|
efer_reserved_bits &= ~mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
switch (msr->index) {
|
|
case MSR_FS_BASE:
|
|
case MSR_GS_BASE:
|
|
case MSR_KERNEL_GS_BASE:
|
|
case MSR_CSTAR:
|
|
case MSR_LSTAR:
|
|
if (is_noncanonical_address(msr->data, vcpu))
|
|
return 1;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
/*
|
|
* IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
|
|
* non-canonical address is written on Intel but not on
|
|
* AMD (which ignores the top 32-bits, because it does
|
|
* not implement 64-bit SYSENTER).
|
|
*
|
|
* 64-bit code should hence be able to write a non-canonical
|
|
* value on AMD. Making the address canonical ensures that
|
|
* vmentry does not fail on Intel after writing a non-canonical
|
|
* value, and that something deterministic happens if the guest
|
|
* invokes 64-bit SYSENTER.
|
|
*/
|
|
msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
|
|
}
|
|
return kvm_x86_ops->set_msr(vcpu, msr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_msr);
|
|
|
|
/*
|
|
* Adapt set_msr() to msr_io()'s calling convention
|
|
*/
|
|
static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
|
|
{
|
|
struct msr_data msr;
|
|
int r;
|
|
|
|
msr.index = index;
|
|
msr.host_initiated = true;
|
|
r = kvm_get_msr(vcpu, &msr);
|
|
if (r)
|
|
return r;
|
|
|
|
*data = msr.data;
|
|
return 0;
|
|
}
|
|
|
|
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
|
|
{
|
|
struct msr_data msr;
|
|
|
|
msr.data = *data;
|
|
msr.index = index;
|
|
msr.host_initiated = true;
|
|
return kvm_set_msr(vcpu, &msr);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
struct pvclock_gtod_data {
|
|
seqcount_t seq;
|
|
|
|
struct { /* extract of a clocksource struct */
|
|
int vclock_mode;
|
|
u64 cycle_last;
|
|
u64 mask;
|
|
u32 mult;
|
|
u32 shift;
|
|
} clock;
|
|
|
|
u64 boot_ns;
|
|
u64 nsec_base;
|
|
u64 wall_time_sec;
|
|
};
|
|
|
|
static struct pvclock_gtod_data pvclock_gtod_data;
|
|
|
|
static void update_pvclock_gtod(struct timekeeper *tk)
|
|
{
|
|
struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
|
|
u64 boot_ns;
|
|
|
|
boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
|
|
|
|
write_seqcount_begin(&vdata->seq);
|
|
|
|
/* copy pvclock gtod data */
|
|
vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
|
|
vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
|
|
vdata->clock.mask = tk->tkr_mono.mask;
|
|
vdata->clock.mult = tk->tkr_mono.mult;
|
|
vdata->clock.shift = tk->tkr_mono.shift;
|
|
|
|
vdata->boot_ns = boot_ns;
|
|
vdata->nsec_base = tk->tkr_mono.xtime_nsec;
|
|
|
|
vdata->wall_time_sec = tk->xtime_sec;
|
|
|
|
write_seqcount_end(&vdata->seq);
|
|
}
|
|
#endif
|
|
|
|
void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Note: KVM_REQ_PENDING_TIMER is implicitly checked in
|
|
* vcpu_enter_guest. This function is only called from
|
|
* the physical CPU that is running vcpu.
|
|
*/
|
|
kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
|
|
}
|
|
|
|
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
|
|
{
|
|
int version;
|
|
int r;
|
|
struct pvclock_wall_clock wc;
|
|
struct timespec64 boot;
|
|
|
|
if (!wall_clock)
|
|
return;
|
|
|
|
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
|
|
if (r)
|
|
return;
|
|
|
|
if (version & 1)
|
|
++version; /* first time write, random junk */
|
|
|
|
++version;
|
|
|
|
if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
|
|
return;
|
|
|
|
/*
|
|
* The guest calculates current wall clock time by adding
|
|
* system time (updated by kvm_guest_time_update below) to the
|
|
* wall clock specified here. guest system time equals host
|
|
* system time for us, thus we must fill in host boot time here.
|
|
*/
|
|
getboottime64(&boot);
|
|
|
|
if (kvm->arch.kvmclock_offset) {
|
|
struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
|
|
boot = timespec64_sub(boot, ts);
|
|
}
|
|
wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
|
|
wc.nsec = boot.tv_nsec;
|
|
wc.version = version;
|
|
|
|
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
|
|
|
|
version++;
|
|
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
|
|
}
|
|
|
|
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
|
|
{
|
|
do_shl32_div32(dividend, divisor);
|
|
return dividend;
|
|
}
|
|
|
|
static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
|
|
s8 *pshift, u32 *pmultiplier)
|
|
{
|
|
uint64_t scaled64;
|
|
int32_t shift = 0;
|
|
uint64_t tps64;
|
|
uint32_t tps32;
|
|
|
|
tps64 = base_hz;
|
|
scaled64 = scaled_hz;
|
|
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
|
|
tps64 >>= 1;
|
|
shift--;
|
|
}
|
|
|
|
tps32 = (uint32_t)tps64;
|
|
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
|
|
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
|
|
scaled64 >>= 1;
|
|
else
|
|
tps32 <<= 1;
|
|
shift++;
|
|
}
|
|
|
|
*pshift = shift;
|
|
*pmultiplier = div_frac(scaled64, tps32);
|
|
|
|
pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
|
|
__func__, base_hz, scaled_hz, shift, *pmultiplier);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
|
|
static unsigned long max_tsc_khz;
|
|
|
|
static u32 adjust_tsc_khz(u32 khz, s32 ppm)
|
|
{
|
|
u64 v = (u64)khz * (1000000 + ppm);
|
|
do_div(v, 1000000);
|
|
return v;
|
|
}
|
|
|
|
static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
|
|
{
|
|
u64 ratio;
|
|
|
|
/* Guest TSC same frequency as host TSC? */
|
|
if (!scale) {
|
|
vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
|
|
return 0;
|
|
}
|
|
|
|
/* TSC scaling supported? */
|
|
if (!kvm_has_tsc_control) {
|
|
if (user_tsc_khz > tsc_khz) {
|
|
vcpu->arch.tsc_catchup = 1;
|
|
vcpu->arch.tsc_always_catchup = 1;
|
|
return 0;
|
|
} else {
|
|
pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* TSC scaling required - calculate ratio */
|
|
ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
|
|
user_tsc_khz, tsc_khz);
|
|
|
|
if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
|
|
pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
|
|
user_tsc_khz);
|
|
return -1;
|
|
}
|
|
|
|
vcpu->arch.tsc_scaling_ratio = ratio;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
|
|
{
|
|
u32 thresh_lo, thresh_hi;
|
|
int use_scaling = 0;
|
|
|
|
/* tsc_khz can be zero if TSC calibration fails */
|
|
if (user_tsc_khz == 0) {
|
|
/* set tsc_scaling_ratio to a safe value */
|
|
vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
|
|
return -1;
|
|
}
|
|
|
|
/* Compute a scale to convert nanoseconds in TSC cycles */
|
|
kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
|
|
&vcpu->arch.virtual_tsc_shift,
|
|
&vcpu->arch.virtual_tsc_mult);
|
|
vcpu->arch.virtual_tsc_khz = user_tsc_khz;
|
|
|
|
/*
|
|
* Compute the variation in TSC rate which is acceptable
|
|
* within the range of tolerance and decide if the
|
|
* rate being applied is within that bounds of the hardware
|
|
* rate. If so, no scaling or compensation need be done.
|
|
*/
|
|
thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
|
|
thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
|
|
if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
|
|
pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
|
|
use_scaling = 1;
|
|
}
|
|
return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
|
|
}
|
|
|
|
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
|
|
{
|
|
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
|
|
vcpu->arch.virtual_tsc_mult,
|
|
vcpu->arch.virtual_tsc_shift);
|
|
tsc += vcpu->arch.this_tsc_write;
|
|
return tsc;
|
|
}
|
|
|
|
static inline int gtod_is_based_on_tsc(int mode)
|
|
{
|
|
return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
|
|
}
|
|
|
|
static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
bool vcpus_matched;
|
|
struct kvm_arch *ka = &vcpu->kvm->arch;
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
|
|
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
|
|
atomic_read(&vcpu->kvm->online_vcpus));
|
|
|
|
/*
|
|
* Once the masterclock is enabled, always perform request in
|
|
* order to update it.
|
|
*
|
|
* In order to enable masterclock, the host clocksource must be TSC
|
|
* and the vcpus need to have matched TSCs. When that happens,
|
|
* perform request to enable masterclock.
|
|
*/
|
|
if (ka->use_master_clock ||
|
|
(gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
|
|
trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
|
|
atomic_read(&vcpu->kvm->online_vcpus),
|
|
ka->use_master_clock, gtod->clock.vclock_mode);
|
|
#endif
|
|
}
|
|
|
|
static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
|
|
{
|
|
u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
|
|
vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
|
|
}
|
|
|
|
/*
|
|
* Multiply tsc by a fixed point number represented by ratio.
|
|
*
|
|
* The most significant 64-N bits (mult) of ratio represent the
|
|
* integral part of the fixed point number; the remaining N bits
|
|
* (frac) represent the fractional part, ie. ratio represents a fixed
|
|
* point number (mult + frac * 2^(-N)).
|
|
*
|
|
* N equals to kvm_tsc_scaling_ratio_frac_bits.
|
|
*/
|
|
static inline u64 __scale_tsc(u64 ratio, u64 tsc)
|
|
{
|
|
return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
|
|
}
|
|
|
|
u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
|
|
{
|
|
u64 _tsc = tsc;
|
|
u64 ratio = vcpu->arch.tsc_scaling_ratio;
|
|
|
|
if (ratio != kvm_default_tsc_scaling_ratio)
|
|
_tsc = __scale_tsc(ratio, tsc);
|
|
|
|
return _tsc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_scale_tsc);
|
|
|
|
static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
|
|
{
|
|
u64 tsc;
|
|
|
|
tsc = kvm_scale_tsc(vcpu, rdtsc());
|
|
|
|
return target_tsc - tsc;
|
|
}
|
|
|
|
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
|
|
{
|
|
u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
|
|
|
|
return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
|
|
|
|
static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
|
|
{
|
|
vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
|
|
}
|
|
|
|
static inline bool kvm_check_tsc_unstable(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* TSC is marked unstable when we're running on Hyper-V,
|
|
* 'TSC page' clocksource is good.
|
|
*/
|
|
if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
|
|
return false;
|
|
#endif
|
|
return check_tsc_unstable();
|
|
}
|
|
|
|
void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u64 offset, ns, elapsed;
|
|
unsigned long flags;
|
|
bool matched;
|
|
bool already_matched;
|
|
u64 data = msr->data;
|
|
bool synchronizing = false;
|
|
|
|
raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
|
|
offset = kvm_compute_tsc_offset(vcpu, data);
|
|
ns = ktime_get_boot_ns();
|
|
elapsed = ns - kvm->arch.last_tsc_nsec;
|
|
|
|
if (vcpu->arch.virtual_tsc_khz) {
|
|
if (data == 0 && msr->host_initiated) {
|
|
/*
|
|
* detection of vcpu initialization -- need to sync
|
|
* with other vCPUs. This particularly helps to keep
|
|
* kvm_clock stable after CPU hotplug
|
|
*/
|
|
synchronizing = true;
|
|
} else {
|
|
u64 tsc_exp = kvm->arch.last_tsc_write +
|
|
nsec_to_cycles(vcpu, elapsed);
|
|
u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
|
|
/*
|
|
* Special case: TSC write with a small delta (1 second)
|
|
* of virtual cycle time against real time is
|
|
* interpreted as an attempt to synchronize the CPU.
|
|
*/
|
|
synchronizing = data < tsc_exp + tsc_hz &&
|
|
data + tsc_hz > tsc_exp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For a reliable TSC, we can match TSC offsets, and for an unstable
|
|
* TSC, we add elapsed time in this computation. We could let the
|
|
* compensation code attempt to catch up if we fall behind, but
|
|
* it's better to try to match offsets from the beginning.
|
|
*/
|
|
if (synchronizing &&
|
|
vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
|
|
if (!kvm_check_tsc_unstable()) {
|
|
offset = kvm->arch.cur_tsc_offset;
|
|
pr_debug("kvm: matched tsc offset for %llu\n", data);
|
|
} else {
|
|
u64 delta = nsec_to_cycles(vcpu, elapsed);
|
|
data += delta;
|
|
offset = kvm_compute_tsc_offset(vcpu, data);
|
|
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
|
|
}
|
|
matched = true;
|
|
already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
|
|
} else {
|
|
/*
|
|
* We split periods of matched TSC writes into generations.
|
|
* For each generation, we track the original measured
|
|
* nanosecond time, offset, and write, so if TSCs are in
|
|
* sync, we can match exact offset, and if not, we can match
|
|
* exact software computation in compute_guest_tsc()
|
|
*
|
|
* These values are tracked in kvm->arch.cur_xxx variables.
|
|
*/
|
|
kvm->arch.cur_tsc_generation++;
|
|
kvm->arch.cur_tsc_nsec = ns;
|
|
kvm->arch.cur_tsc_write = data;
|
|
kvm->arch.cur_tsc_offset = offset;
|
|
matched = false;
|
|
pr_debug("kvm: new tsc generation %llu, clock %llu\n",
|
|
kvm->arch.cur_tsc_generation, data);
|
|
}
|
|
|
|
/*
|
|
* We also track th most recent recorded KHZ, write and time to
|
|
* allow the matching interval to be extended at each write.
|
|
*/
|
|
kvm->arch.last_tsc_nsec = ns;
|
|
kvm->arch.last_tsc_write = data;
|
|
kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
|
|
|
|
vcpu->arch.last_guest_tsc = data;
|
|
|
|
/* Keep track of which generation this VCPU has synchronized to */
|
|
vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
|
|
vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
|
|
vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
|
|
|
|
if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
|
|
update_ia32_tsc_adjust_msr(vcpu, offset);
|
|
|
|
kvm_vcpu_write_tsc_offset(vcpu, offset);
|
|
raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
|
|
|
|
spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
|
|
if (!matched) {
|
|
kvm->arch.nr_vcpus_matched_tsc = 0;
|
|
} else if (!already_matched) {
|
|
kvm->arch.nr_vcpus_matched_tsc++;
|
|
}
|
|
|
|
kvm_track_tsc_matching(vcpu);
|
|
spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_write_tsc);
|
|
|
|
static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
|
|
s64 adjustment)
|
|
{
|
|
u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
|
|
kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
|
|
}
|
|
|
|
static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
|
|
{
|
|
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
|
|
WARN_ON(adjustment < 0);
|
|
adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
|
|
adjust_tsc_offset_guest(vcpu, adjustment);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static u64 read_tsc(void)
|
|
{
|
|
u64 ret = (u64)rdtsc_ordered();
|
|
u64 last = pvclock_gtod_data.clock.cycle_last;
|
|
|
|
if (likely(ret >= last))
|
|
return ret;
|
|
|
|
/*
|
|
* GCC likes to generate cmov here, but this branch is extremely
|
|
* predictable (it's just a function of time and the likely is
|
|
* very likely) and there's a data dependence, so force GCC
|
|
* to generate a branch instead. I don't barrier() because
|
|
* we don't actually need a barrier, and if this function
|
|
* ever gets inlined it will generate worse code.
|
|
*/
|
|
asm volatile ("");
|
|
return last;
|
|
}
|
|
|
|
static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
|
|
{
|
|
long v;
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
u64 tsc_pg_val;
|
|
|
|
switch (gtod->clock.vclock_mode) {
|
|
case VCLOCK_HVCLOCK:
|
|
tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
|
|
tsc_timestamp);
|
|
if (tsc_pg_val != U64_MAX) {
|
|
/* TSC page valid */
|
|
*mode = VCLOCK_HVCLOCK;
|
|
v = (tsc_pg_val - gtod->clock.cycle_last) &
|
|
gtod->clock.mask;
|
|
} else {
|
|
/* TSC page invalid */
|
|
*mode = VCLOCK_NONE;
|
|
}
|
|
break;
|
|
case VCLOCK_TSC:
|
|
*mode = VCLOCK_TSC;
|
|
*tsc_timestamp = read_tsc();
|
|
v = (*tsc_timestamp - gtod->clock.cycle_last) &
|
|
gtod->clock.mask;
|
|
break;
|
|
default:
|
|
*mode = VCLOCK_NONE;
|
|
}
|
|
|
|
if (*mode == VCLOCK_NONE)
|
|
*tsc_timestamp = v = 0;
|
|
|
|
return v * gtod->clock.mult;
|
|
}
|
|
|
|
static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
|
|
{
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
unsigned long seq;
|
|
int mode;
|
|
u64 ns;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(>od->seq);
|
|
ns = gtod->nsec_base;
|
|
ns += vgettsc(tsc_timestamp, &mode);
|
|
ns >>= gtod->clock.shift;
|
|
ns += gtod->boot_ns;
|
|
} while (unlikely(read_seqcount_retry(>od->seq, seq)));
|
|
*t = ns;
|
|
|
|
return mode;
|
|
}
|
|
|
|
static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
|
|
{
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
unsigned long seq;
|
|
int mode;
|
|
u64 ns;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(>od->seq);
|
|
ts->tv_sec = gtod->wall_time_sec;
|
|
ns = gtod->nsec_base;
|
|
ns += vgettsc(tsc_timestamp, &mode);
|
|
ns >>= gtod->clock.shift;
|
|
} while (unlikely(read_seqcount_retry(>od->seq, seq)));
|
|
|
|
ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
|
|
ts->tv_nsec = ns;
|
|
|
|
return mode;
|
|
}
|
|
|
|
/* returns true if host is using TSC based clocksource */
|
|
static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
|
|
{
|
|
/* checked again under seqlock below */
|
|
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
|
|
return false;
|
|
|
|
return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
|
|
tsc_timestamp));
|
|
}
|
|
|
|
/* returns true if host is using TSC based clocksource */
|
|
static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
|
|
u64 *tsc_timestamp)
|
|
{
|
|
/* checked again under seqlock below */
|
|
if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
|
|
return false;
|
|
|
|
return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*
|
|
* Assuming a stable TSC across physical CPUS, and a stable TSC
|
|
* across virtual CPUs, the following condition is possible.
|
|
* Each numbered line represents an event visible to both
|
|
* CPUs at the next numbered event.
|
|
*
|
|
* "timespecX" represents host monotonic time. "tscX" represents
|
|
* RDTSC value.
|
|
*
|
|
* VCPU0 on CPU0 | VCPU1 on CPU1
|
|
*
|
|
* 1. read timespec0,tsc0
|
|
* 2. | timespec1 = timespec0 + N
|
|
* | tsc1 = tsc0 + M
|
|
* 3. transition to guest | transition to guest
|
|
* 4. ret0 = timespec0 + (rdtsc - tsc0) |
|
|
* 5. | ret1 = timespec1 + (rdtsc - tsc1)
|
|
* | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
|
|
*
|
|
* Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
|
|
*
|
|
* - ret0 < ret1
|
|
* - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
|
|
* ...
|
|
* - 0 < N - M => M < N
|
|
*
|
|
* That is, when timespec0 != timespec1, M < N. Unfortunately that is not
|
|
* always the case (the difference between two distinct xtime instances
|
|
* might be smaller then the difference between corresponding TSC reads,
|
|
* when updating guest vcpus pvclock areas).
|
|
*
|
|
* To avoid that problem, do not allow visibility of distinct
|
|
* system_timestamp/tsc_timestamp values simultaneously: use a master
|
|
* copy of host monotonic time values. Update that master copy
|
|
* in lockstep.
|
|
*
|
|
* Rely on synchronization of host TSCs and guest TSCs for monotonicity.
|
|
*
|
|
*/
|
|
|
|
static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
int vclock_mode;
|
|
bool host_tsc_clocksource, vcpus_matched;
|
|
|
|
vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
|
|
atomic_read(&kvm->online_vcpus));
|
|
|
|
/*
|
|
* If the host uses TSC clock, then passthrough TSC as stable
|
|
* to the guest.
|
|
*/
|
|
host_tsc_clocksource = kvm_get_time_and_clockread(
|
|
&ka->master_kernel_ns,
|
|
&ka->master_cycle_now);
|
|
|
|
ka->use_master_clock = host_tsc_clocksource && vcpus_matched
|
|
&& !ka->backwards_tsc_observed
|
|
&& !ka->boot_vcpu_runs_old_kvmclock;
|
|
|
|
if (ka->use_master_clock)
|
|
atomic_set(&kvm_guest_has_master_clock, 1);
|
|
|
|
vclock_mode = pvclock_gtod_data.clock.vclock_mode;
|
|
trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
|
|
vcpus_matched);
|
|
#endif
|
|
}
|
|
|
|
void kvm_make_mclock_inprogress_request(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
|
|
}
|
|
|
|
static void kvm_gen_update_masterclock(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
kvm_make_mclock_inprogress_request(kvm);
|
|
/* no guest entries from this point */
|
|
pvclock_update_vm_gtod_copy(kvm);
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
|
|
/* guest entries allowed */
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
|
|
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
#endif
|
|
}
|
|
|
|
u64 get_kvmclock_ns(struct kvm *kvm)
|
|
{
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
struct pvclock_vcpu_time_info hv_clock;
|
|
u64 ret;
|
|
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
if (!ka->use_master_clock) {
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
return ktime_get_boot_ns() + ka->kvmclock_offset;
|
|
}
|
|
|
|
hv_clock.tsc_timestamp = ka->master_cycle_now;
|
|
hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
|
|
/* both __this_cpu_read() and rdtsc() should be on the same cpu */
|
|
get_cpu();
|
|
|
|
if (__this_cpu_read(cpu_tsc_khz)) {
|
|
kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
|
|
&hv_clock.tsc_shift,
|
|
&hv_clock.tsc_to_system_mul);
|
|
ret = __pvclock_read_cycles(&hv_clock, rdtsc());
|
|
} else
|
|
ret = ktime_get_boot_ns() + ka->kvmclock_offset;
|
|
|
|
put_cpu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
|
|
{
|
|
struct kvm_vcpu_arch *vcpu = &v->arch;
|
|
struct pvclock_vcpu_time_info guest_hv_clock;
|
|
|
|
if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&guest_hv_clock, sizeof(guest_hv_clock))))
|
|
return;
|
|
|
|
/* This VCPU is paused, but it's legal for a guest to read another
|
|
* VCPU's kvmclock, so we really have to follow the specification where
|
|
* it says that version is odd if data is being modified, and even after
|
|
* it is consistent.
|
|
*
|
|
* Version field updates must be kept separate. This is because
|
|
* kvm_write_guest_cached might use a "rep movs" instruction, and
|
|
* writes within a string instruction are weakly ordered. So there
|
|
* are three writes overall.
|
|
*
|
|
* As a small optimization, only write the version field in the first
|
|
* and third write. The vcpu->pv_time cache is still valid, because the
|
|
* version field is the first in the struct.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
|
|
|
|
if (guest_hv_clock.version & 1)
|
|
++guest_hv_clock.version; /* first time write, random junk */
|
|
|
|
vcpu->hv_clock.version = guest_hv_clock.version + 1;
|
|
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&vcpu->hv_clock,
|
|
sizeof(vcpu->hv_clock.version));
|
|
|
|
smp_wmb();
|
|
|
|
/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
|
|
vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
|
|
|
|
if (vcpu->pvclock_set_guest_stopped_request) {
|
|
vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
|
|
vcpu->pvclock_set_guest_stopped_request = false;
|
|
}
|
|
|
|
trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
|
|
|
|
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&vcpu->hv_clock,
|
|
sizeof(vcpu->hv_clock));
|
|
|
|
smp_wmb();
|
|
|
|
vcpu->hv_clock.version++;
|
|
kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
|
|
&vcpu->hv_clock,
|
|
sizeof(vcpu->hv_clock.version));
|
|
}
|
|
|
|
static int kvm_guest_time_update(struct kvm_vcpu *v)
|
|
{
|
|
unsigned long flags, tgt_tsc_khz;
|
|
struct kvm_vcpu_arch *vcpu = &v->arch;
|
|
struct kvm_arch *ka = &v->kvm->arch;
|
|
s64 kernel_ns;
|
|
u64 tsc_timestamp, host_tsc;
|
|
u8 pvclock_flags;
|
|
bool use_master_clock;
|
|
|
|
kernel_ns = 0;
|
|
host_tsc = 0;
|
|
|
|
/*
|
|
* If the host uses TSC clock, then passthrough TSC as stable
|
|
* to the guest.
|
|
*/
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
use_master_clock = ka->use_master_clock;
|
|
if (use_master_clock) {
|
|
host_tsc = ka->master_cycle_now;
|
|
kernel_ns = ka->master_kernel_ns;
|
|
}
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
|
|
/* Keep irq disabled to prevent changes to the clock */
|
|
local_irq_save(flags);
|
|
tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
|
|
if (unlikely(tgt_tsc_khz == 0)) {
|
|
local_irq_restore(flags);
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
|
|
return 1;
|
|
}
|
|
if (!use_master_clock) {
|
|
host_tsc = rdtsc();
|
|
kernel_ns = ktime_get_boot_ns();
|
|
}
|
|
|
|
tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
|
|
|
|
/*
|
|
* We may have to catch up the TSC to match elapsed wall clock
|
|
* time for two reasons, even if kvmclock is used.
|
|
* 1) CPU could have been running below the maximum TSC rate
|
|
* 2) Broken TSC compensation resets the base at each VCPU
|
|
* entry to avoid unknown leaps of TSC even when running
|
|
* again on the same CPU. This may cause apparent elapsed
|
|
* time to disappear, and the guest to stand still or run
|
|
* very slowly.
|
|
*/
|
|
if (vcpu->tsc_catchup) {
|
|
u64 tsc = compute_guest_tsc(v, kernel_ns);
|
|
if (tsc > tsc_timestamp) {
|
|
adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
|
|
tsc_timestamp = tsc;
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/* With all the info we got, fill in the values */
|
|
|
|
if (kvm_has_tsc_control)
|
|
tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
|
|
|
|
if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
|
|
kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
|
|
&vcpu->hv_clock.tsc_shift,
|
|
&vcpu->hv_clock.tsc_to_system_mul);
|
|
vcpu->hw_tsc_khz = tgt_tsc_khz;
|
|
}
|
|
|
|
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
|
|
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
|
|
vcpu->last_guest_tsc = tsc_timestamp;
|
|
|
|
/* If the host uses TSC clocksource, then it is stable */
|
|
pvclock_flags = 0;
|
|
if (use_master_clock)
|
|
pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
|
|
|
|
vcpu->hv_clock.flags = pvclock_flags;
|
|
|
|
if (vcpu->pv_time_enabled)
|
|
kvm_setup_pvclock_page(v);
|
|
if (v == kvm_get_vcpu(v->kvm, 0))
|
|
kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* kvmclock updates which are isolated to a given vcpu, such as
|
|
* vcpu->cpu migration, should not allow system_timestamp from
|
|
* the rest of the vcpus to remain static. Otherwise ntp frequency
|
|
* correction applies to one vcpu's system_timestamp but not
|
|
* the others.
|
|
*
|
|
* So in those cases, request a kvmclock update for all vcpus.
|
|
* We need to rate-limit these requests though, as they can
|
|
* considerably slow guests that have a large number of vcpus.
|
|
* The time for a remote vcpu to update its kvmclock is bound
|
|
* by the delay we use to rate-limit the updates.
|
|
*/
|
|
|
|
#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
|
|
|
|
static void kvmclock_update_fn(struct work_struct *work)
|
|
{
|
|
int i;
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
|
|
kvmclock_update_work);
|
|
struct kvm *kvm = container_of(ka, struct kvm, arch);
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
|
|
{
|
|
struct kvm *kvm = v->kvm;
|
|
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
|
|
schedule_delayed_work(&kvm->arch.kvmclock_update_work,
|
|
KVMCLOCK_UPDATE_DELAY);
|
|
}
|
|
|
|
#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
|
|
|
|
static void kvmclock_sync_fn(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
|
|
kvmclock_sync_work);
|
|
struct kvm *kvm = container_of(ka, struct kvm, arch);
|
|
|
|
if (!kvmclock_periodic_sync)
|
|
return;
|
|
|
|
schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
|
|
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
|
|
KVMCLOCK_SYNC_PERIOD);
|
|
}
|
|
|
|
static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
u32 msr = msr_info->index;
|
|
u64 data = msr_info->data;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_MCG_STATUS:
|
|
vcpu->arch.mcg_status = data;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P) &&
|
|
(data || !msr_info->host_initiated))
|
|
return 1;
|
|
if (data != 0 && data != ~(u64)0)
|
|
return 1;
|
|
vcpu->arch.mcg_ctl = data;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MCx_CTL(bank_num)) {
|
|
u32 offset = array_index_nospec(
|
|
msr - MSR_IA32_MC0_CTL,
|
|
MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
|
|
|
|
/* only 0 or all 1s can be written to IA32_MCi_CTL
|
|
* some Linux kernels though clear bit 10 in bank 4 to
|
|
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
|
|
* this to avoid an uncatched #GP in the guest
|
|
*/
|
|
if ((offset & 0x3) == 0 &&
|
|
data != 0 && (data | (1 << 10)) != ~(u64)0)
|
|
return -1;
|
|
if (!msr_info->host_initiated &&
|
|
(offset & 0x3) == 1 && data != 0)
|
|
return -1;
|
|
vcpu->arch.mce_banks[offset] = data;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int lm = is_long_mode(vcpu);
|
|
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
|
|
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
|
|
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
|
|
: kvm->arch.xen_hvm_config.blob_size_32;
|
|
u32 page_num = data & ~PAGE_MASK;
|
|
u64 page_addr = data & PAGE_MASK;
|
|
u8 *page;
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (page_num >= blob_size)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
|
|
if (IS_ERR(page)) {
|
|
r = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
|
|
goto out_free;
|
|
r = 0;
|
|
out_free:
|
|
kfree(page);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
gpa_t gpa = data & ~0x3f;
|
|
|
|
/* Bits 3:5 are reserved, Should be zero */
|
|
if (data & 0x38)
|
|
return 1;
|
|
|
|
vcpu->arch.apf.msr_val = data;
|
|
|
|
if (!(data & KVM_ASYNC_PF_ENABLED)) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
|
|
sizeof(u32)))
|
|
return 1;
|
|
|
|
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
|
|
vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
|
|
kvm_async_pf_wakeup_all(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static void kvmclock_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.pv_time_enabled = false;
|
|
}
|
|
|
|
static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
|
|
{
|
|
++vcpu->stat.tlb_flush;
|
|
kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
|
|
}
|
|
|
|
static void record_steal_time(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_host_map map;
|
|
struct kvm_steal_time *st;
|
|
|
|
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
|
|
return;
|
|
|
|
/* -EAGAIN is returned in atomic context so we can just return. */
|
|
if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
|
|
&map, &vcpu->arch.st.cache, false))
|
|
return;
|
|
|
|
st = map.hva +
|
|
offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
|
|
|
|
/*
|
|
* Doing a TLB flush here, on the guest's behalf, can avoid
|
|
* expensive IPIs.
|
|
*/
|
|
if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
|
|
kvm_vcpu_flush_tlb(vcpu, false);
|
|
|
|
vcpu->arch.st.preempted = 0;
|
|
|
|
if (st->version & 1)
|
|
st->version += 1; /* first time write, random junk */
|
|
|
|
st->version += 1;
|
|
|
|
smp_wmb();
|
|
|
|
st->steal += current->sched_info.run_delay -
|
|
vcpu->arch.st.last_steal;
|
|
vcpu->arch.st.last_steal = current->sched_info.run_delay;
|
|
|
|
smp_wmb();
|
|
|
|
st->version += 1;
|
|
|
|
kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
|
|
}
|
|
|
|
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
bool pr = false;
|
|
u32 msr = msr_info->index;
|
|
u64 data = msr_info->data;
|
|
|
|
switch (msr) {
|
|
case MSR_AMD64_NB_CFG:
|
|
case MSR_IA32_UCODE_WRITE:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_AMD64_PATCH_LOADER:
|
|
case MSR_AMD64_BU_CFG2:
|
|
case MSR_AMD64_DC_CFG:
|
|
case MSR_F15H_EX_CFG:
|
|
break;
|
|
|
|
case MSR_IA32_UCODE_REV:
|
|
if (msr_info->host_initiated)
|
|
vcpu->arch.microcode_version = data;
|
|
break;
|
|
case MSR_IA32_ARCH_CAPABILITIES:
|
|
if (!msr_info->host_initiated)
|
|
return 1;
|
|
vcpu->arch.arch_capabilities = data;
|
|
break;
|
|
case MSR_EFER:
|
|
return set_efer(vcpu, msr_info);
|
|
case MSR_K7_HWCR:
|
|
data &= ~(u64)0x40; /* ignore flush filter disable */
|
|
data &= ~(u64)0x100; /* ignore ignne emulation enable */
|
|
data &= ~(u64)0x8; /* ignore TLB cache disable */
|
|
data &= ~(u64)0x40000; /* ignore Mc status write enable */
|
|
if (data != 0) {
|
|
vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
|
|
data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
if (data != 0) {
|
|
vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
|
|
"0x%llx\n", data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!data) {
|
|
/* We support the non-activated case already */
|
|
break;
|
|
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
|
|
/* Values other than LBR and BTF are vendor-specific,
|
|
thus reserved and should throw a #GP */
|
|
return 1;
|
|
}
|
|
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
case 0x200 ... 0x2ff:
|
|
return kvm_mtrr_set_msr(vcpu, msr, data);
|
|
case MSR_IA32_APICBASE:
|
|
return kvm_set_apic_base(vcpu, msr_info);
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
|
|
return kvm_x2apic_msr_write(vcpu, msr, data);
|
|
case MSR_IA32_TSCDEADLINE:
|
|
kvm_set_lapic_tscdeadline_msr(vcpu, data);
|
|
break;
|
|
case MSR_IA32_TSC_ADJUST:
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
|
|
if (!msr_info->host_initiated) {
|
|
s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
|
|
adjust_tsc_offset_guest(vcpu, adj);
|
|
}
|
|
vcpu->arch.ia32_tsc_adjust_msr = data;
|
|
}
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
vcpu->arch.ia32_misc_enable_msr = data;
|
|
break;
|
|
case MSR_IA32_SMBASE:
|
|
if (!msr_info->host_initiated)
|
|
return 1;
|
|
vcpu->arch.smbase = data;
|
|
break;
|
|
case MSR_IA32_TSC:
|
|
kvm_write_tsc(vcpu, msr_info);
|
|
break;
|
|
case MSR_SMI_COUNT:
|
|
if (!msr_info->host_initiated)
|
|
return 1;
|
|
vcpu->arch.smi_count = data;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
case MSR_KVM_WALL_CLOCK:
|
|
vcpu->kvm->arch.wall_clock = data;
|
|
kvm_write_wall_clock(vcpu->kvm, data);
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
case MSR_KVM_SYSTEM_TIME: {
|
|
struct kvm_arch *ka = &vcpu->kvm->arch;
|
|
|
|
kvmclock_reset(vcpu);
|
|
|
|
if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
|
|
bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
|
|
|
|
if (ka->boot_vcpu_runs_old_kvmclock != tmp)
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
|
|
ka->boot_vcpu_runs_old_kvmclock = tmp;
|
|
}
|
|
|
|
vcpu->arch.time = data;
|
|
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
|
|
|
|
/* we verify if the enable bit is set... */
|
|
if (!(data & 1))
|
|
break;
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
|
|
&vcpu->arch.pv_time, data & ~1ULL,
|
|
sizeof(struct pvclock_vcpu_time_info)))
|
|
vcpu->arch.pv_time_enabled = false;
|
|
else
|
|
vcpu->arch.pv_time_enabled = true;
|
|
|
|
break;
|
|
}
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
if (kvm_pv_enable_async_pf(vcpu, data))
|
|
return 1;
|
|
break;
|
|
case MSR_KVM_STEAL_TIME:
|
|
|
|
if (unlikely(!sched_info_on()))
|
|
return 1;
|
|
|
|
if (data & KVM_STEAL_RESERVED_MASK)
|
|
return 1;
|
|
|
|
vcpu->arch.st.msr_val = data;
|
|
|
|
if (!(data & KVM_MSR_ENABLED))
|
|
break;
|
|
|
|
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
|
|
|
|
break;
|
|
case MSR_KVM_PV_EOI_EN:
|
|
if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
|
|
return 1;
|
|
break;
|
|
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
|
|
return set_msr_mce(vcpu, msr_info);
|
|
|
|
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
|
|
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
|
|
pr = true; /* fall through */
|
|
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
|
|
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
|
|
if (kvm_pmu_is_valid_msr(vcpu, msr))
|
|
return kvm_pmu_set_msr(vcpu, msr_info);
|
|
|
|
if (pr || data != 0)
|
|
vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Ignore all writes to this no longer documented MSR.
|
|
* Writes are only relevant for old K7 processors,
|
|
* all pre-dating SVM, but a recommended workaround from
|
|
* AMD for these chips. It is possible to specify the
|
|
* affected processor models on the command line, hence
|
|
* the need to ignore the workaround.
|
|
*/
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
return kvm_hv_set_msr_common(vcpu, msr, data,
|
|
msr_info->host_initiated);
|
|
case MSR_IA32_BBL_CR_CTL3:
|
|
/* Drop writes to this legacy MSR -- see rdmsr
|
|
* counterpart for further detail.
|
|
*/
|
|
if (report_ignored_msrs)
|
|
vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
|
|
msr, data);
|
|
break;
|
|
case MSR_AMD64_OSVW_ID_LENGTH:
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
|
|
return 1;
|
|
vcpu->arch.osvw.length = data;
|
|
break;
|
|
case MSR_AMD64_OSVW_STATUS:
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
|
|
return 1;
|
|
vcpu->arch.osvw.status = data;
|
|
break;
|
|
case MSR_PLATFORM_INFO:
|
|
if (!msr_info->host_initiated ||
|
|
(!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
|
|
cpuid_fault_enabled(vcpu)))
|
|
return 1;
|
|
vcpu->arch.msr_platform_info = data;
|
|
break;
|
|
case MSR_MISC_FEATURES_ENABLES:
|
|
if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
|
|
(data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
|
|
!supports_cpuid_fault(vcpu)))
|
|
return 1;
|
|
vcpu->arch.msr_misc_features_enables = data;
|
|
break;
|
|
default:
|
|
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
|
|
return xen_hvm_config(vcpu, data);
|
|
if (kvm_pmu_is_valid_msr(vcpu, msr))
|
|
return kvm_pmu_set_msr(vcpu, msr_info);
|
|
if (!ignore_msrs) {
|
|
vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
|
|
msr, data);
|
|
return 1;
|
|
} else {
|
|
if (report_ignored_msrs)
|
|
vcpu_unimpl(vcpu,
|
|
"ignored wrmsr: 0x%x data 0x%llx\n",
|
|
msr, data);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
|
|
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
return kvm_x86_ops->get_msr(vcpu, msr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_msr);
|
|
|
|
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
|
|
{
|
|
u64 data;
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
data = 0;
|
|
break;
|
|
case MSR_IA32_MCG_CAP:
|
|
data = vcpu->arch.mcg_cap;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P) && !host)
|
|
return 1;
|
|
data = vcpu->arch.mcg_ctl;
|
|
break;
|
|
case MSR_IA32_MCG_STATUS:
|
|
data = vcpu->arch.mcg_status;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MCx_CTL(bank_num)) {
|
|
u32 offset = array_index_nospec(
|
|
msr - MSR_IA32_MC0_CTL,
|
|
MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
|
|
|
|
data = vcpu->arch.mce_banks[offset];
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
switch (msr_info->index) {
|
|
case MSR_IA32_PLATFORM_ID:
|
|
case MSR_IA32_EBL_CR_POWERON:
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
case MSR_IA32_LASTINTTOIP:
|
|
case MSR_K8_SYSCFG:
|
|
case MSR_K8_TSEG_ADDR:
|
|
case MSR_K8_TSEG_MASK:
|
|
case MSR_K7_HWCR:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_K8_INT_PENDING_MSG:
|
|
case MSR_AMD64_NB_CFG:
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
case MSR_AMD64_BU_CFG2:
|
|
case MSR_IA32_PERF_CTL:
|
|
case MSR_AMD64_DC_CFG:
|
|
case MSR_F15H_EX_CFG:
|
|
msr_info->data = 0;
|
|
break;
|
|
case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
|
|
case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
|
|
case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
|
|
case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
|
|
case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
|
|
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
|
|
return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
|
|
msr_info->data = 0;
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
msr_info->data = vcpu->arch.microcode_version;
|
|
break;
|
|
case MSR_IA32_ARCH_CAPABILITIES:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
|
|
return 1;
|
|
msr_info->data = vcpu->arch.arch_capabilities;
|
|
break;
|
|
case MSR_IA32_TSC:
|
|
msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
|
|
break;
|
|
case MSR_MTRRcap:
|
|
case 0x200 ... 0x2ff:
|
|
return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
|
|
case 0xcd: /* fsb frequency */
|
|
msr_info->data = 3;
|
|
break;
|
|
/*
|
|
* MSR_EBC_FREQUENCY_ID
|
|
* Conservative value valid for even the basic CPU models.
|
|
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
|
|
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
|
|
* and 266MHz for model 3, or 4. Set Core Clock
|
|
* Frequency to System Bus Frequency Ratio to 1 (bits
|
|
* 31:24) even though these are only valid for CPU
|
|
* models > 2, however guests may end up dividing or
|
|
* multiplying by zero otherwise.
|
|
*/
|
|
case MSR_EBC_FREQUENCY_ID:
|
|
msr_info->data = 1 << 24;
|
|
break;
|
|
case MSR_IA32_APICBASE:
|
|
msr_info->data = kvm_get_apic_base(vcpu);
|
|
break;
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
|
|
return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
|
|
break;
|
|
case MSR_IA32_TSCDEADLINE:
|
|
msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
|
|
break;
|
|
case MSR_IA32_TSC_ADJUST:
|
|
msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
msr_info->data = vcpu->arch.ia32_misc_enable_msr;
|
|
break;
|
|
case MSR_IA32_SMBASE:
|
|
if (!msr_info->host_initiated)
|
|
return 1;
|
|
msr_info->data = vcpu->arch.smbase;
|
|
break;
|
|
case MSR_SMI_COUNT:
|
|
msr_info->data = vcpu->arch.smi_count;
|
|
break;
|
|
case MSR_IA32_PERF_STATUS:
|
|
/* TSC increment by tick */
|
|
msr_info->data = 1000ULL;
|
|
/* CPU multiplier */
|
|
msr_info->data |= (((uint64_t)4ULL) << 40);
|
|
break;
|
|
case MSR_EFER:
|
|
msr_info->data = vcpu->arch.efer;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK:
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
msr_info->data = vcpu->kvm->arch.wall_clock;
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME:
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
msr_info->data = vcpu->arch.time;
|
|
break;
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
msr_info->data = vcpu->arch.apf.msr_val;
|
|
break;
|
|
case MSR_KVM_STEAL_TIME:
|
|
msr_info->data = vcpu->arch.st.msr_val;
|
|
break;
|
|
case MSR_KVM_PV_EOI_EN:
|
|
msr_info->data = vcpu->arch.pv_eoi.msr_val;
|
|
break;
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
case MSR_IA32_MCG_CAP:
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
|
|
return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
|
|
msr_info->host_initiated);
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Provide expected ramp-up count for K7. All other
|
|
* are set to zero, indicating minimum divisors for
|
|
* every field.
|
|
*
|
|
* This prevents guest kernels on AMD host with CPU
|
|
* type 6, model 8 and higher from exploding due to
|
|
* the rdmsr failing.
|
|
*/
|
|
msr_info->data = 0x20000000;
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
|
|
case HV_X64_MSR_CRASH_CTL:
|
|
case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
|
|
case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_CONTROL:
|
|
case HV_X64_MSR_TSC_EMULATION_STATUS:
|
|
return kvm_hv_get_msr_common(vcpu,
|
|
msr_info->index, &msr_info->data,
|
|
msr_info->host_initiated);
|
|
break;
|
|
case MSR_IA32_BBL_CR_CTL3:
|
|
/* This legacy MSR exists but isn't fully documented in current
|
|
* silicon. It is however accessed by winxp in very narrow
|
|
* scenarios where it sets bit #19, itself documented as
|
|
* a "reserved" bit. Best effort attempt to source coherent
|
|
* read data here should the balance of the register be
|
|
* interpreted by the guest:
|
|
*
|
|
* L2 cache control register 3: 64GB range, 256KB size,
|
|
* enabled, latency 0x1, configured
|
|
*/
|
|
msr_info->data = 0xbe702111;
|
|
break;
|
|
case MSR_AMD64_OSVW_ID_LENGTH:
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
|
|
return 1;
|
|
msr_info->data = vcpu->arch.osvw.length;
|
|
break;
|
|
case MSR_AMD64_OSVW_STATUS:
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
|
|
return 1;
|
|
msr_info->data = vcpu->arch.osvw.status;
|
|
break;
|
|
case MSR_PLATFORM_INFO:
|
|
if (!msr_info->host_initiated &&
|
|
!vcpu->kvm->arch.guest_can_read_msr_platform_info)
|
|
return 1;
|
|
msr_info->data = vcpu->arch.msr_platform_info;
|
|
break;
|
|
case MSR_MISC_FEATURES_ENABLES:
|
|
msr_info->data = vcpu->arch.msr_misc_features_enables;
|
|
break;
|
|
default:
|
|
if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
|
|
return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
|
|
if (!ignore_msrs) {
|
|
vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
|
|
msr_info->index);
|
|
return 1;
|
|
} else {
|
|
if (report_ignored_msrs)
|
|
vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
|
|
msr_info->index);
|
|
msr_info->data = 0;
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. All parameters are kernel addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
|
|
struct kvm_msr_entry *entries,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data))
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < msrs->nmsrs; ++i)
|
|
if (do_msr(vcpu, entries[i].index, &entries[i].data))
|
|
break;
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. Parameters are user addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data),
|
|
int writeback)
|
|
{
|
|
struct kvm_msrs msrs;
|
|
struct kvm_msr_entry *entries;
|
|
int r, n;
|
|
unsigned size;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
|
|
goto out;
|
|
|
|
r = -E2BIG;
|
|
if (msrs.nmsrs >= MAX_IO_MSRS)
|
|
goto out;
|
|
|
|
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
|
|
entries = memdup_user(user_msrs->entries, size);
|
|
if (IS_ERR(entries)) {
|
|
r = PTR_ERR(entries);
|
|
goto out;
|
|
}
|
|
|
|
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
|
|
if (r < 0)
|
|
goto out_free;
|
|
|
|
r = -EFAULT;
|
|
if (writeback && copy_to_user(user_msrs->entries, entries, size))
|
|
goto out_free;
|
|
|
|
r = n;
|
|
|
|
out_free:
|
|
kfree(entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static inline bool kvm_can_mwait_in_guest(void)
|
|
{
|
|
return boot_cpu_has(X86_FEATURE_MWAIT) &&
|
|
!boot_cpu_has_bug(X86_BUG_MONITOR) &&
|
|
boot_cpu_has(X86_FEATURE_ARAT);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
case KVM_CAP_HLT:
|
|
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
|
|
case KVM_CAP_SET_TSS_ADDR:
|
|
case KVM_CAP_EXT_CPUID:
|
|
case KVM_CAP_EXT_EMUL_CPUID:
|
|
case KVM_CAP_CLOCKSOURCE:
|
|
case KVM_CAP_PIT:
|
|
case KVM_CAP_NOP_IO_DELAY:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_USER_NMI:
|
|
case KVM_CAP_REINJECT_CONTROL:
|
|
case KVM_CAP_IRQ_INJECT_STATUS:
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_IOEVENTFD_NO_LENGTH:
|
|
case KVM_CAP_PIT2:
|
|
case KVM_CAP_PIT_STATE2:
|
|
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
|
|
case KVM_CAP_XEN_HVM:
|
|
case KVM_CAP_VCPU_EVENTS:
|
|
case KVM_CAP_HYPERV:
|
|
case KVM_CAP_HYPERV_VAPIC:
|
|
case KVM_CAP_HYPERV_SPIN:
|
|
case KVM_CAP_HYPERV_SYNIC:
|
|
case KVM_CAP_HYPERV_SYNIC2:
|
|
case KVM_CAP_HYPERV_VP_INDEX:
|
|
case KVM_CAP_HYPERV_EVENTFD:
|
|
case KVM_CAP_HYPERV_TLBFLUSH:
|
|
case KVM_CAP_PCI_SEGMENT:
|
|
case KVM_CAP_DEBUGREGS:
|
|
case KVM_CAP_X86_ROBUST_SINGLESTEP:
|
|
case KVM_CAP_XSAVE:
|
|
case KVM_CAP_ASYNC_PF:
|
|
case KVM_CAP_GET_TSC_KHZ:
|
|
case KVM_CAP_KVMCLOCK_CTRL:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_HYPERV_TIME:
|
|
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
|
|
case KVM_CAP_TSC_DEADLINE_TIMER:
|
|
case KVM_CAP_ENABLE_CAP_VM:
|
|
case KVM_CAP_DISABLE_QUIRKS:
|
|
case KVM_CAP_SET_BOOT_CPU_ID:
|
|
case KVM_CAP_SPLIT_IRQCHIP:
|
|
case KVM_CAP_IMMEDIATE_EXIT:
|
|
case KVM_CAP_GET_MSR_FEATURES:
|
|
case KVM_CAP_MSR_PLATFORM_INFO:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_SYNC_REGS:
|
|
r = KVM_SYNC_X86_VALID_FIELDS;
|
|
break;
|
|
case KVM_CAP_ADJUST_CLOCK:
|
|
r = KVM_CLOCK_TSC_STABLE;
|
|
break;
|
|
case KVM_CAP_X86_DISABLE_EXITS:
|
|
r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
|
|
if(kvm_can_mwait_in_guest())
|
|
r |= KVM_X86_DISABLE_EXITS_MWAIT;
|
|
break;
|
|
case KVM_CAP_X86_SMM:
|
|
/* SMBASE is usually relocated above 1M on modern chipsets,
|
|
* and SMM handlers might indeed rely on 4G segment limits,
|
|
* so do not report SMM to be available if real mode is
|
|
* emulated via vm86 mode. Still, do not go to great lengths
|
|
* to avoid userspace's usage of the feature, because it is a
|
|
* fringe case that is not enabled except via specific settings
|
|
* of the module parameters.
|
|
*/
|
|
r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
|
|
break;
|
|
case KVM_CAP_VAPIC:
|
|
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = KVM_SOFT_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_MAX_VCPU_ID:
|
|
r = KVM_MAX_VCPU_ID;
|
|
break;
|
|
case KVM_CAP_NR_MEMSLOTS:
|
|
r = KVM_USER_MEM_SLOTS;
|
|
break;
|
|
case KVM_CAP_PV_MMU: /* obsolete */
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_MCE:
|
|
r = KVM_MAX_MCE_BANKS;
|
|
break;
|
|
case KVM_CAP_XCRS:
|
|
r = boot_cpu_has(X86_FEATURE_XSAVE);
|
|
break;
|
|
case KVM_CAP_TSC_CONTROL:
|
|
r = kvm_has_tsc_control;
|
|
break;
|
|
case KVM_CAP_X2APIC_API:
|
|
r = KVM_X2APIC_API_VALID_FLAGS;
|
|
break;
|
|
case KVM_CAP_NESTED_STATE:
|
|
r = kvm_x86_ops->get_nested_state ?
|
|
kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return r;
|
|
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_MSR_INDEX_LIST: {
|
|
struct kvm_msr_list __user *user_msr_list = argp;
|
|
struct kvm_msr_list msr_list;
|
|
unsigned n;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
|
|
goto out;
|
|
n = msr_list.nmsrs;
|
|
msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
|
|
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
|
|
goto out;
|
|
r = -E2BIG;
|
|
if (n < msr_list.nmsrs)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
|
|
num_msrs_to_save * sizeof(u32)))
|
|
goto out;
|
|
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
|
|
&emulated_msrs,
|
|
num_emulated_msrs * sizeof(u32)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_SUPPORTED_CPUID:
|
|
case KVM_GET_EMULATED_CPUID: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
|
|
r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
|
|
ioctl);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &kvm_mce_cap_supported,
|
|
sizeof(kvm_mce_cap_supported)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
case KVM_GET_MSR_FEATURE_INDEX_LIST: {
|
|
struct kvm_msr_list __user *user_msr_list = argp;
|
|
struct kvm_msr_list msr_list;
|
|
unsigned int n;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
|
|
goto out;
|
|
n = msr_list.nmsrs;
|
|
msr_list.nmsrs = num_msr_based_features;
|
|
if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
|
|
goto out;
|
|
r = -E2BIG;
|
|
if (n < msr_list.nmsrs)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(user_msr_list->indices, &msr_based_features,
|
|
num_msr_based_features * sizeof(u32)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_MSRS:
|
|
r = msr_io(NULL, argp, do_get_msr_feature, 1);
|
|
break;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void wbinvd_ipi(void *garbage)
|
|
{
|
|
wbinvd();
|
|
}
|
|
|
|
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_arch_has_noncoherent_dma(vcpu->kvm);
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
/* Address WBINVD may be executed by guest */
|
|
if (need_emulate_wbinvd(vcpu)) {
|
|
if (kvm_x86_ops->has_wbinvd_exit())
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
|
|
smp_call_function_single(vcpu->cpu,
|
|
wbinvd_ipi, NULL, 1);
|
|
}
|
|
|
|
kvm_x86_ops->vcpu_load(vcpu, cpu);
|
|
|
|
/* Apply any externally detected TSC adjustments (due to suspend) */
|
|
if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
|
|
adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
|
|
vcpu->arch.tsc_offset_adjustment = 0;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
}
|
|
|
|
if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
|
|
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
|
|
rdtsc() - vcpu->arch.last_host_tsc;
|
|
if (tsc_delta < 0)
|
|
mark_tsc_unstable("KVM discovered backwards TSC");
|
|
|
|
if (kvm_check_tsc_unstable()) {
|
|
u64 offset = kvm_compute_tsc_offset(vcpu,
|
|
vcpu->arch.last_guest_tsc);
|
|
kvm_vcpu_write_tsc_offset(vcpu, offset);
|
|
vcpu->arch.tsc_catchup = 1;
|
|
}
|
|
|
|
if (kvm_lapic_hv_timer_in_use(vcpu))
|
|
kvm_lapic_restart_hv_timer(vcpu);
|
|
|
|
/*
|
|
* On a host with synchronized TSC, there is no need to update
|
|
* kvmclock on vcpu->cpu migration
|
|
*/
|
|
if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
|
|
kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
|
|
if (vcpu->cpu != cpu)
|
|
kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
|
|
vcpu->cpu = cpu;
|
|
}
|
|
|
|
kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
|
|
}
|
|
|
|
static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_host_map map;
|
|
struct kvm_steal_time *st;
|
|
|
|
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
|
|
return;
|
|
|
|
if (vcpu->arch.st.preempted)
|
|
return;
|
|
|
|
if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
|
|
&vcpu->arch.st.cache, true))
|
|
return;
|
|
|
|
st = map.hva +
|
|
offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
|
|
|
|
st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
|
|
|
|
kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
int idx;
|
|
|
|
if (vcpu->preempted)
|
|
vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
|
|
|
|
/*
|
|
* Disable page faults because we're in atomic context here.
|
|
* kvm_write_guest_offset_cached() would call might_fault()
|
|
* that relies on pagefault_disable() to tell if there's a
|
|
* bug. NOTE: the write to guest memory may not go through if
|
|
* during postcopy live migration or if there's heavy guest
|
|
* paging.
|
|
*/
|
|
pagefault_disable();
|
|
/*
|
|
* kvm_memslots() will be called by
|
|
* kvm_write_guest_offset_cached() so take the srcu lock.
|
|
*/
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
kvm_steal_time_set_preempted(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
pagefault_enable();
|
|
kvm_x86_ops->vcpu_put(vcpu);
|
|
vcpu->arch.last_host_tsc = rdtsc();
|
|
/*
|
|
* If userspace has set any breakpoints or watchpoints, dr6 is restored
|
|
* on every vmexit, but if not, we might have a stale dr6 from the
|
|
* guest. do_debug expects dr6 to be cleared after it runs, do the same.
|
|
*/
|
|
set_debugreg(0, 6);
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
if (vcpu->arch.apicv_active)
|
|
kvm_x86_ops->sync_pir_to_irr(vcpu);
|
|
|
|
return kvm_apic_get_state(vcpu, s);
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_apic_set_state(vcpu, s);
|
|
if (r)
|
|
return r;
|
|
update_cr8_intercept(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* We can accept userspace's request for interrupt injection
|
|
* as long as we have a place to store the interrupt number.
|
|
* The actual injection will happen when the CPU is able to
|
|
* deliver the interrupt.
|
|
*/
|
|
if (kvm_cpu_has_extint(vcpu))
|
|
return false;
|
|
|
|
/* Acknowledging ExtINT does not happen if LINT0 is masked. */
|
|
return (!lapic_in_kernel(vcpu) ||
|
|
kvm_apic_accept_pic_intr(vcpu));
|
|
}
|
|
|
|
static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_arch_interrupt_allowed(vcpu) &&
|
|
kvm_cpu_accept_dm_intr(vcpu);
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
|
|
struct kvm_interrupt *irq)
|
|
{
|
|
if (irq->irq >= KVM_NR_INTERRUPTS)
|
|
return -EINVAL;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm)) {
|
|
kvm_queue_interrupt(vcpu, irq->irq, false);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* With in-kernel LAPIC, we only use this to inject EXTINT, so
|
|
* fail for in-kernel 8259.
|
|
*/
|
|
if (pic_in_kernel(vcpu->kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu->arch.pending_external_vector != -1)
|
|
return -EEXIST;
|
|
|
|
vcpu->arch.pending_external_vector = irq->irq;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_nmi(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_make_request(KVM_REQ_SMI, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
|
|
struct kvm_tpr_access_ctl *tac)
|
|
{
|
|
if (tac->flags)
|
|
return -EINVAL;
|
|
vcpu->arch.tpr_access_reporting = !!tac->enabled;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
|
|
u64 mcg_cap)
|
|
{
|
|
int r;
|
|
unsigned bank_num = mcg_cap & 0xff, bank;
|
|
|
|
r = -EINVAL;
|
|
if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
|
|
goto out;
|
|
if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
|
|
goto out;
|
|
r = 0;
|
|
vcpu->arch.mcg_cap = mcg_cap;
|
|
/* Init IA32_MCG_CTL to all 1s */
|
|
if (mcg_cap & MCG_CTL_P)
|
|
vcpu->arch.mcg_ctl = ~(u64)0;
|
|
/* Init IA32_MCi_CTL to all 1s */
|
|
for (bank = 0; bank < bank_num; bank++)
|
|
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
|
|
|
|
if (kvm_x86_ops->setup_mce)
|
|
kvm_x86_ops->setup_mce(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
|
|
struct kvm_x86_mce *mce)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
u64 *banks = vcpu->arch.mce_banks;
|
|
|
|
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
|
|
return -EINVAL;
|
|
/*
|
|
* if IA32_MCG_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
|
|
vcpu->arch.mcg_ctl != ~(u64)0)
|
|
return 0;
|
|
banks += 4 * mce->bank;
|
|
/*
|
|
* if IA32_MCi_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled for the bank
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
|
|
return 0;
|
|
if (mce->status & MCI_STATUS_UC) {
|
|
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
|
|
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return 0;
|
|
}
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
vcpu->arch.mcg_status = mce->mcg_status;
|
|
banks[1] = mce->status;
|
|
kvm_queue_exception(vcpu, MC_VECTOR);
|
|
} else if (!(banks[1] & MCI_STATUS_VAL)
|
|
|| !(banks[1] & MCI_STATUS_UC)) {
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
banks[1] = mce->status;
|
|
} else
|
|
banks[1] |= MCI_STATUS_OVER;
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
process_nmi(vcpu);
|
|
|
|
if (kvm_check_request(KVM_REQ_SMI, vcpu))
|
|
process_smi(vcpu);
|
|
|
|
/*
|
|
* FIXME: pass injected and pending separately. This is only
|
|
* needed for nested virtualization, whose state cannot be
|
|
* migrated yet. For now we can combine them.
|
|
*/
|
|
events->exception.injected =
|
|
(vcpu->arch.exception.pending ||
|
|
vcpu->arch.exception.injected) &&
|
|
!kvm_exception_is_soft(vcpu->arch.exception.nr);
|
|
events->exception.nr = vcpu->arch.exception.nr;
|
|
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
|
|
events->exception.pad = 0;
|
|
events->exception.error_code = vcpu->arch.exception.error_code;
|
|
|
|
events->interrupt.injected =
|
|
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
|
|
events->interrupt.nr = vcpu->arch.interrupt.nr;
|
|
events->interrupt.soft = 0;
|
|
events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
|
|
|
|
events->nmi.injected = vcpu->arch.nmi_injected;
|
|
events->nmi.pending = vcpu->arch.nmi_pending != 0;
|
|
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
|
|
events->nmi.pad = 0;
|
|
|
|
events->sipi_vector = 0; /* never valid when reporting to user space */
|
|
|
|
events->smi.smm = is_smm(vcpu);
|
|
events->smi.pending = vcpu->arch.smi_pending;
|
|
events->smi.smm_inside_nmi =
|
|
!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
|
|
events->smi.latched_init = kvm_lapic_latched_init(vcpu);
|
|
|
|
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SHADOW
|
|
| KVM_VCPUEVENT_VALID_SMM);
|
|
memset(&events->reserved, 0, sizeof(events->reserved));
|
|
}
|
|
|
|
static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
|
|
| KVM_VCPUEVENT_VALID_SHADOW
|
|
| KVM_VCPUEVENT_VALID_SMM))
|
|
return -EINVAL;
|
|
|
|
if (events->exception.injected &&
|
|
(events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
|
|
is_guest_mode(vcpu)))
|
|
return -EINVAL;
|
|
|
|
/* INITs are latched while in SMM */
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
|
|
(events->smi.smm || events->smi.pending) &&
|
|
vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
|
|
return -EINVAL;
|
|
|
|
process_nmi(vcpu);
|
|
vcpu->arch.exception.injected = false;
|
|
vcpu->arch.exception.pending = events->exception.injected;
|
|
vcpu->arch.exception.nr = events->exception.nr;
|
|
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
|
|
vcpu->arch.exception.error_code = events->exception.error_code;
|
|
|
|
vcpu->arch.interrupt.injected = events->interrupt.injected;
|
|
vcpu->arch.interrupt.nr = events->interrupt.nr;
|
|
vcpu->arch.interrupt.soft = events->interrupt.soft;
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu,
|
|
events->interrupt.shadow);
|
|
|
|
vcpu->arch.nmi_injected = events->nmi.injected;
|
|
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
|
|
vcpu->arch.nmi_pending = events->nmi.pending;
|
|
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
|
|
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
|
|
lapic_in_kernel(vcpu))
|
|
vcpu->arch.apic->sipi_vector = events->sipi_vector;
|
|
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
|
|
u32 hflags = vcpu->arch.hflags;
|
|
if (events->smi.smm)
|
|
hflags |= HF_SMM_MASK;
|
|
else
|
|
hflags &= ~HF_SMM_MASK;
|
|
kvm_set_hflags(vcpu, hflags);
|
|
|
|
vcpu->arch.smi_pending = events->smi.pending;
|
|
|
|
if (events->smi.smm) {
|
|
if (events->smi.smm_inside_nmi)
|
|
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
|
|
else
|
|
vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
|
|
if (lapic_in_kernel(vcpu)) {
|
|
if (events->smi.latched_init)
|
|
set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
|
|
else
|
|
clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
|
|
}
|
|
}
|
|
}
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
unsigned long val;
|
|
|
|
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
|
|
kvm_get_dr(vcpu, 6, &val);
|
|
dbgregs->dr6 = val;
|
|
dbgregs->dr7 = vcpu->arch.dr7;
|
|
dbgregs->flags = 0;
|
|
memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
if (dbgregs->flags)
|
|
return -EINVAL;
|
|
|
|
if (dbgregs->dr6 & ~0xffffffffull)
|
|
return -EINVAL;
|
|
if (dbgregs->dr7 & ~0xffffffffull)
|
|
return -EINVAL;
|
|
|
|
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
|
|
kvm_update_dr0123(vcpu);
|
|
vcpu->arch.dr6 = dbgregs->dr6;
|
|
kvm_update_dr6(vcpu);
|
|
vcpu->arch.dr7 = dbgregs->dr7;
|
|
kvm_update_dr7(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
|
|
|
|
static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
|
|
u64 xstate_bv = xsave->header.xfeatures;
|
|
u64 valid;
|
|
|
|
/*
|
|
* Copy legacy XSAVE area, to avoid complications with CPUID
|
|
* leaves 0 and 1 in the loop below.
|
|
*/
|
|
memcpy(dest, xsave, XSAVE_HDR_OFFSET);
|
|
|
|
/* Set XSTATE_BV */
|
|
xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
|
|
*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
|
|
|
|
/*
|
|
* Copy each region from the possibly compacted offset to the
|
|
* non-compacted offset.
|
|
*/
|
|
valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
|
|
while (valid) {
|
|
u64 feature = valid & -valid;
|
|
int index = fls64(feature) - 1;
|
|
void *src = get_xsave_addr(xsave, feature);
|
|
|
|
if (src) {
|
|
u32 size, offset, ecx, edx;
|
|
cpuid_count(XSTATE_CPUID, index,
|
|
&size, &offset, &ecx, &edx);
|
|
if (feature == XFEATURE_MASK_PKRU)
|
|
memcpy(dest + offset, &vcpu->arch.pkru,
|
|
sizeof(vcpu->arch.pkru));
|
|
else
|
|
memcpy(dest + offset, src, size);
|
|
|
|
}
|
|
|
|
valid -= feature;
|
|
}
|
|
}
|
|
|
|
static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
|
|
{
|
|
struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
|
|
u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
|
|
u64 valid;
|
|
|
|
/*
|
|
* Copy legacy XSAVE area, to avoid complications with CPUID
|
|
* leaves 0 and 1 in the loop below.
|
|
*/
|
|
memcpy(xsave, src, XSAVE_HDR_OFFSET);
|
|
|
|
/* Set XSTATE_BV and possibly XCOMP_BV. */
|
|
xsave->header.xfeatures = xstate_bv;
|
|
if (boot_cpu_has(X86_FEATURE_XSAVES))
|
|
xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
|
|
|
|
/*
|
|
* Copy each region from the non-compacted offset to the
|
|
* possibly compacted offset.
|
|
*/
|
|
valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
|
|
while (valid) {
|
|
u64 feature = valid & -valid;
|
|
int index = fls64(feature) - 1;
|
|
void *dest = get_xsave_addr(xsave, feature);
|
|
|
|
if (dest) {
|
|
u32 size, offset, ecx, edx;
|
|
cpuid_count(XSTATE_CPUID, index,
|
|
&size, &offset, &ecx, &edx);
|
|
if (feature == XFEATURE_MASK_PKRU)
|
|
memcpy(&vcpu->arch.pkru, src + offset,
|
|
sizeof(vcpu->arch.pkru));
|
|
else
|
|
memcpy(dest, src + offset, size);
|
|
}
|
|
|
|
valid -= feature;
|
|
}
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
|
|
memset(guest_xsave, 0, sizeof(struct kvm_xsave));
|
|
fill_xsave((u8 *) guest_xsave->region, vcpu);
|
|
} else {
|
|
memcpy(guest_xsave->region,
|
|
&vcpu->arch.guest_fpu.state.fxsave,
|
|
sizeof(struct fxregs_state));
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
|
|
XFEATURE_MASK_FPSSE;
|
|
}
|
|
}
|
|
|
|
#define XSAVE_MXCSR_OFFSET 24
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
u64 xstate_bv =
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
|
|
u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE)) {
|
|
/*
|
|
* Here we allow setting states that are not present in
|
|
* CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
|
|
* with old userspace.
|
|
*/
|
|
if (xstate_bv & ~kvm_supported_xcr0() ||
|
|
mxcsr & ~mxcsr_feature_mask)
|
|
return -EINVAL;
|
|
load_xsave(vcpu, (u8 *)guest_xsave->region);
|
|
} else {
|
|
if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
|
|
mxcsr & ~mxcsr_feature_mask)
|
|
return -EINVAL;
|
|
memcpy(&vcpu->arch.guest_fpu.state.fxsave,
|
|
guest_xsave->region, sizeof(struct fxregs_state));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
|
|
guest_xcrs->nr_xcrs = 0;
|
|
return;
|
|
}
|
|
|
|
guest_xcrs->nr_xcrs = 1;
|
|
guest_xcrs->flags = 0;
|
|
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
|
|
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
int i, r = 0;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_XSAVE))
|
|
return -EINVAL;
|
|
|
|
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
|
|
/* Only support XCR0 currently */
|
|
if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
|
|
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
|
|
guest_xcrs->xcrs[i].value);
|
|
break;
|
|
}
|
|
if (r)
|
|
r = -EINVAL;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* kvm_set_guest_paused() indicates to the guest kernel that it has been
|
|
* stopped by the hypervisor. This function will be called from the host only.
|
|
* EINVAL is returned when the host attempts to set the flag for a guest that
|
|
* does not support pv clocks.
|
|
*/
|
|
static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!vcpu->arch.pv_time_enabled)
|
|
return -EINVAL;
|
|
vcpu->arch.pvclock_set_guest_stopped_request = true;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
case KVM_CAP_HYPERV_SYNIC2:
|
|
if (cap->args[0])
|
|
return -EINVAL;
|
|
case KVM_CAP_HYPERV_SYNIC:
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
return kvm_hv_activate_synic(vcpu, cap->cap ==
|
|
KVM_CAP_HYPERV_SYNIC2);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
union {
|
|
struct kvm_lapic_state *lapic;
|
|
struct kvm_xsave *xsave;
|
|
struct kvm_xcrs *xcrs;
|
|
void *buffer;
|
|
} u;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
u.buffer = NULL;
|
|
switch (ioctl) {
|
|
case KVM_GET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!lapic_in_kernel(vcpu))
|
|
goto out;
|
|
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
|
|
|
|
r = -ENOMEM;
|
|
if (!u.lapic)
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!lapic_in_kernel(vcpu))
|
|
goto out;
|
|
u.lapic = memdup_user(argp, sizeof(*u.lapic));
|
|
if (IS_ERR(u.lapic)) {
|
|
r = PTR_ERR(u.lapic);
|
|
goto out_nofree;
|
|
}
|
|
|
|
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
|
|
break;
|
|
}
|
|
case KVM_INTERRUPT: {
|
|
struct kvm_interrupt irq;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq, argp, sizeof irq))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
|
|
break;
|
|
}
|
|
case KVM_NMI: {
|
|
r = kvm_vcpu_ioctl_nmi(vcpu);
|
|
break;
|
|
}
|
|
case KVM_SMI: {
|
|
r = kvm_vcpu_ioctl_smi(vcpu);
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID: {
|
|
struct kvm_cpuid __user *cpuid_arg = argp;
|
|
struct kvm_cpuid cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
break;
|
|
}
|
|
case KVM_GET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_MSRS: {
|
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = msr_io(vcpu, argp, do_get_msr, 1);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
break;
|
|
}
|
|
case KVM_SET_MSRS: {
|
|
int idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = msr_io(vcpu, argp, do_set_msr, 0);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
break;
|
|
}
|
|
case KVM_TPR_ACCESS_REPORTING: {
|
|
struct kvm_tpr_access_ctl tac;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tac, argp, sizeof tac))
|
|
goto out;
|
|
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tac, sizeof tac))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
};
|
|
case KVM_SET_VAPIC_ADDR: {
|
|
struct kvm_vapic_addr va;
|
|
int idx;
|
|
|
|
r = -EINVAL;
|
|
if (!lapic_in_kernel(vcpu))
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&va, argp, sizeof va))
|
|
goto out;
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
break;
|
|
}
|
|
case KVM_X86_SETUP_MCE: {
|
|
u64 mcg_cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
|
|
break;
|
|
}
|
|
case KVM_X86_SET_MCE: {
|
|
struct kvm_x86_mce mce;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mce, argp, sizeof mce))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
|
|
break;
|
|
}
|
|
case KVM_GET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &dbgregs,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbgregs, argp,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
|
|
break;
|
|
}
|
|
case KVM_GET_XSAVE: {
|
|
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xsave)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XSAVE: {
|
|
u.xsave = memdup_user(argp, sizeof(*u.xsave));
|
|
if (IS_ERR(u.xsave)) {
|
|
r = PTR_ERR(u.xsave);
|
|
goto out_nofree;
|
|
}
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
|
|
break;
|
|
}
|
|
case KVM_GET_XCRS: {
|
|
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xcrs)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xcrs,
|
|
sizeof(struct kvm_xcrs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XCRS: {
|
|
u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
|
|
if (IS_ERR(u.xcrs)) {
|
|
r = PTR_ERR(u.xcrs);
|
|
goto out_nofree;
|
|
}
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
|
|
break;
|
|
}
|
|
case KVM_SET_TSC_KHZ: {
|
|
u32 user_tsc_khz;
|
|
|
|
r = -EINVAL;
|
|
user_tsc_khz = (u32)arg;
|
|
|
|
if (user_tsc_khz >= kvm_max_guest_tsc_khz)
|
|
goto out;
|
|
|
|
if (user_tsc_khz == 0)
|
|
user_tsc_khz = tsc_khz;
|
|
|
|
if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
|
|
r = 0;
|
|
|
|
goto out;
|
|
}
|
|
case KVM_GET_TSC_KHZ: {
|
|
r = vcpu->arch.virtual_tsc_khz;
|
|
goto out;
|
|
}
|
|
case KVM_KVMCLOCK_CTRL: {
|
|
r = kvm_set_guest_paused(vcpu);
|
|
goto out;
|
|
}
|
|
case KVM_ENABLE_CAP: {
|
|
struct kvm_enable_cap cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cap, argp, sizeof(cap)))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
|
|
break;
|
|
}
|
|
case KVM_GET_NESTED_STATE: {
|
|
struct kvm_nested_state __user *user_kvm_nested_state = argp;
|
|
u32 user_data_size;
|
|
|
|
r = -EINVAL;
|
|
if (!kvm_x86_ops->get_nested_state)
|
|
break;
|
|
|
|
BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
|
|
r = -EFAULT;
|
|
if (get_user(user_data_size, &user_kvm_nested_state->size))
|
|
break;
|
|
|
|
r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
|
|
user_data_size);
|
|
if (r < 0)
|
|
break;
|
|
|
|
if (r > user_data_size) {
|
|
if (put_user(r, &user_kvm_nested_state->size))
|
|
r = -EFAULT;
|
|
else
|
|
r = -E2BIG;
|
|
break;
|
|
}
|
|
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_NESTED_STATE: {
|
|
struct kvm_nested_state __user *user_kvm_nested_state = argp;
|
|
struct kvm_nested_state kvm_state;
|
|
int idx;
|
|
|
|
r = -EINVAL;
|
|
if (!kvm_x86_ops->set_nested_state)
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
|
|
break;
|
|
|
|
r = -EINVAL;
|
|
if (kvm_state.size < sizeof(kvm_state))
|
|
break;
|
|
|
|
if (kvm_state.flags &
|
|
~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE))
|
|
break;
|
|
|
|
/* nested_run_pending implies guest_mode. */
|
|
if (kvm_state.flags == KVM_STATE_NESTED_RUN_PENDING)
|
|
break;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
break;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
kfree(u.buffer);
|
|
out_nofree:
|
|
vcpu_put(vcpu);
|
|
return r;
|
|
}
|
|
|
|
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
|
|
{
|
|
int ret;
|
|
|
|
if (addr > (unsigned int)(-3 * PAGE_SIZE))
|
|
return -EINVAL;
|
|
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
|
|
u64 ident_addr)
|
|
{
|
|
return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
|
|
unsigned long kvm_nr_mmu_pages)
|
|
{
|
|
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
|
|
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.n_max_mmu_pages;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
struct kvm_pic *pic = kvm->arch.vpic;
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
memcpy(&chip->chip.pic, &pic->pics[0],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
memcpy(&chip->chip.pic, &pic->pics[1],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
kvm_get_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
struct kvm_pic *pic = kvm->arch.vpic;
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
spin_lock(&pic->lock);
|
|
memcpy(&pic->pics[0], &chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic->lock);
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
spin_lock(&pic->lock);
|
|
memcpy(&pic->pics[1], &chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic->lock);
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
kvm_set_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
kvm_pic_update_irq(pic);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
|
|
|
|
BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
|
|
|
|
mutex_lock(&kps->lock);
|
|
memcpy(ps, &kps->channels, sizeof(*ps));
|
|
mutex_unlock(&kps->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
int i;
|
|
struct kvm_pit *pit = kvm->arch.vpit;
|
|
|
|
mutex_lock(&pit->pit_state.lock);
|
|
memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
|
|
for (i = 0; i < 3; i++)
|
|
kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
|
|
sizeof(ps->channels));
|
|
ps->flags = kvm->arch.vpit->pit_state.flags;
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
memset(&ps->reserved, 0, sizeof(ps->reserved));
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
int start = 0;
|
|
int i;
|
|
u32 prev_legacy, cur_legacy;
|
|
struct kvm_pit *pit = kvm->arch.vpit;
|
|
|
|
mutex_lock(&pit->pit_state.lock);
|
|
prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
if (!prev_legacy && cur_legacy)
|
|
start = 1;
|
|
memcpy(&pit->pit_state.channels, &ps->channels,
|
|
sizeof(pit->pit_state.channels));
|
|
pit->pit_state.flags = ps->flags;
|
|
for (i = 0; i < 3; i++)
|
|
kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
|
|
start && i == 0);
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
|
|
struct kvm_reinject_control *control)
|
|
{
|
|
struct kvm_pit *pit = kvm->arch.vpit;
|
|
|
|
if (!pit)
|
|
return -ENXIO;
|
|
|
|
/* pit->pit_state.lock was overloaded to prevent userspace from getting
|
|
* an inconsistent state after running multiple KVM_REINJECT_CONTROL
|
|
* ioctls in parallel. Use a separate lock if that ioctl isn't rare.
|
|
*/
|
|
mutex_lock(&pit->pit_state.lock);
|
|
kvm_pit_set_reinject(pit, control->pit_reinject);
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
|
|
* @kvm: kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* Steps 1-4 below provide general overview of dirty page logging. See
|
|
* kvm_get_dirty_log_protect() function description for additional details.
|
|
*
|
|
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
|
|
* always flush the TLB (step 4) even if previous step failed and the dirty
|
|
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
|
|
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
|
|
* writes will be marked dirty for next log read.
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Copy the snapshot to the userspace.
|
|
* 4. Flush TLB's if needed.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
bool is_dirty = false;
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
/*
|
|
* Flush potentially hardware-cached dirty pages to dirty_bitmap.
|
|
*/
|
|
if (kvm_x86_ops->flush_log_dirty)
|
|
kvm_x86_ops->flush_log_dirty(kvm);
|
|
|
|
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
|
|
|
|
/*
|
|
* All the TLBs can be flushed out of mmu lock, see the comments in
|
|
* kvm_mmu_slot_remove_write_access().
|
|
*/
|
|
lockdep_assert_held(&kvm->slots_lock);
|
|
if (is_dirty)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
|
|
bool line_status)
|
|
{
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
|
|
irq_event->irq, irq_event->level,
|
|
line_status);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
|
|
struct kvm_enable_cap *cap)
|
|
{
|
|
int r;
|
|
|
|
if (cap->flags)
|
|
return -EINVAL;
|
|
|
|
switch (cap->cap) {
|
|
case KVM_CAP_DISABLE_QUIRKS:
|
|
kvm->arch.disabled_quirks = cap->args[0];
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_SPLIT_IRQCHIP: {
|
|
mutex_lock(&kvm->lock);
|
|
r = -EINVAL;
|
|
if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
|
|
goto split_irqchip_unlock;
|
|
r = -EEXIST;
|
|
if (irqchip_in_kernel(kvm))
|
|
goto split_irqchip_unlock;
|
|
if (kvm->created_vcpus)
|
|
goto split_irqchip_unlock;
|
|
r = kvm_setup_empty_irq_routing(kvm);
|
|
if (r)
|
|
goto split_irqchip_unlock;
|
|
/* Pairs with irqchip_in_kernel. */
|
|
smp_wmb();
|
|
kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
|
|
kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
|
|
r = 0;
|
|
split_irqchip_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_CAP_X2APIC_API:
|
|
r = -EINVAL;
|
|
if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
|
|
break;
|
|
|
|
if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
|
|
kvm->arch.x2apic_format = true;
|
|
if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
|
|
kvm->arch.x2apic_broadcast_quirk_disabled = true;
|
|
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_X86_DISABLE_EXITS:
|
|
r = -EINVAL;
|
|
if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
|
|
break;
|
|
|
|
if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
|
|
kvm_can_mwait_in_guest())
|
|
kvm->arch.mwait_in_guest = true;
|
|
if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
|
|
kvm->arch.hlt_in_guest = true;
|
|
if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
|
|
kvm->arch.pause_in_guest = true;
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_MSR_PLATFORM_INFO:
|
|
kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
|
|
r = 0;
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r = -ENOTTY;
|
|
/*
|
|
* This union makes it completely explicit to gcc-3.x
|
|
* that these two variables' stack usage should be
|
|
* combined, not added together.
|
|
*/
|
|
union {
|
|
struct kvm_pit_state ps;
|
|
struct kvm_pit_state2 ps2;
|
|
struct kvm_pit_config pit_config;
|
|
} u;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_TSS_ADDR:
|
|
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
|
|
break;
|
|
case KVM_SET_IDENTITY_MAP_ADDR: {
|
|
u64 ident_addr;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
r = -EINVAL;
|
|
if (kvm->created_vcpus)
|
|
goto set_identity_unlock;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
|
|
goto set_identity_unlock;
|
|
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
|
|
set_identity_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_SET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
|
|
break;
|
|
case KVM_GET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
|
|
break;
|
|
case KVM_CREATE_IRQCHIP: {
|
|
mutex_lock(&kvm->lock);
|
|
|
|
r = -EEXIST;
|
|
if (irqchip_in_kernel(kvm))
|
|
goto create_irqchip_unlock;
|
|
|
|
r = -EINVAL;
|
|
if (kvm->created_vcpus)
|
|
goto create_irqchip_unlock;
|
|
|
|
r = kvm_pic_init(kvm);
|
|
if (r)
|
|
goto create_irqchip_unlock;
|
|
|
|
r = kvm_ioapic_init(kvm);
|
|
if (r) {
|
|
kvm_pic_destroy(kvm);
|
|
goto create_irqchip_unlock;
|
|
}
|
|
|
|
r = kvm_setup_default_irq_routing(kvm);
|
|
if (r) {
|
|
kvm_ioapic_destroy(kvm);
|
|
kvm_pic_destroy(kvm);
|
|
goto create_irqchip_unlock;
|
|
}
|
|
/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
|
|
smp_wmb();
|
|
kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
|
|
create_irqchip_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_CREATE_PIT:
|
|
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
|
|
goto create_pit;
|
|
case KVM_CREATE_PIT2:
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.pit_config, argp,
|
|
sizeof(struct kvm_pit_config)))
|
|
goto out;
|
|
create_pit:
|
|
mutex_lock(&kvm->lock);
|
|
r = -EEXIST;
|
|
if (kvm->arch.vpit)
|
|
goto create_pit_unlock;
|
|
r = -ENOMEM;
|
|
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
|
|
if (kvm->arch.vpit)
|
|
r = 0;
|
|
create_pit_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
case KVM_GET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip;
|
|
|
|
chip = memdup_user(argp, sizeof(*chip));
|
|
if (IS_ERR(chip)) {
|
|
r = PTR_ERR(chip);
|
|
goto out;
|
|
}
|
|
|
|
r = -ENXIO;
|
|
if (!irqchip_kernel(kvm))
|
|
goto get_irqchip_out;
|
|
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
|
|
if (r)
|
|
goto get_irqchip_out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, chip, sizeof *chip))
|
|
goto get_irqchip_out;
|
|
r = 0;
|
|
get_irqchip_out:
|
|
kfree(chip);
|
|
break;
|
|
}
|
|
case KVM_SET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip;
|
|
|
|
chip = memdup_user(argp, sizeof(*chip));
|
|
if (IS_ERR(chip)) {
|
|
r = PTR_ERR(chip);
|
|
goto out;
|
|
}
|
|
|
|
r = -ENXIO;
|
|
if (!irqchip_kernel(kvm))
|
|
goto set_irqchip_out;
|
|
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
|
|
if (r)
|
|
goto set_irqchip_out;
|
|
r = 0;
|
|
set_irqchip_out:
|
|
kfree(chip);
|
|
break;
|
|
}
|
|
case KVM_GET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof u.ps))
|
|
goto out;
|
|
mutex_lock(&kvm->lock);
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto set_pit_out;
|
|
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
|
|
set_pit_out:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_GET_PIT2: {
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT2: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
|
|
goto out;
|
|
mutex_lock(&kvm->lock);
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto set_pit2_out;
|
|
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
|
|
set_pit2_out:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_REINJECT_CONTROL: {
|
|
struct kvm_reinject_control control;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&control, argp, sizeof(control)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_reinject(kvm, &control);
|
|
break;
|
|
}
|
|
case KVM_SET_BOOT_CPU_ID:
|
|
r = 0;
|
|
mutex_lock(&kvm->lock);
|
|
if (kvm->created_vcpus)
|
|
r = -EBUSY;
|
|
else
|
|
kvm->arch.bsp_vcpu_id = arg;
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
case KVM_XEN_HVM_CONFIG: {
|
|
struct kvm_xen_hvm_config xhc;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&xhc, argp, sizeof(xhc)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (xhc.flags)
|
|
goto out;
|
|
memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
|
|
goto out;
|
|
|
|
r = -EINVAL;
|
|
if (user_ns.flags)
|
|
goto out;
|
|
|
|
r = 0;
|
|
/*
|
|
* TODO: userspace has to take care of races with VCPU_RUN, so
|
|
* kvm_gen_update_masterclock() can be cut down to locked
|
|
* pvclock_update_vm_gtod_copy().
|
|
*/
|
|
kvm_gen_update_masterclock(kvm);
|
|
now_ns = get_kvmclock_ns(kvm);
|
|
kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
|
|
break;
|
|
}
|
|
case KVM_GET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
|
|
now_ns = get_kvmclock_ns(kvm);
|
|
user_ns.clock = now_ns;
|
|
user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
|
|
memset(&user_ns.pad, 0, sizeof(user_ns.pad));
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_ENABLE_CAP: {
|
|
struct kvm_enable_cap cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cap, argp, sizeof(cap)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_enable_cap(kvm, &cap);
|
|
break;
|
|
}
|
|
case KVM_MEMORY_ENCRYPT_OP: {
|
|
r = -ENOTTY;
|
|
if (kvm_x86_ops->mem_enc_op)
|
|
r = kvm_x86_ops->mem_enc_op(kvm, argp);
|
|
break;
|
|
}
|
|
case KVM_MEMORY_ENCRYPT_REG_REGION: {
|
|
struct kvm_enc_region region;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®ion, argp, sizeof(region)))
|
|
goto out;
|
|
|
|
r = -ENOTTY;
|
|
if (kvm_x86_ops->mem_enc_reg_region)
|
|
r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
|
|
break;
|
|
}
|
|
case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
|
|
struct kvm_enc_region region;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(®ion, argp, sizeof(region)))
|
|
goto out;
|
|
|
|
r = -ENOTTY;
|
|
if (kvm_x86_ops->mem_enc_unreg_region)
|
|
r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
|
|
break;
|
|
}
|
|
case KVM_HYPERV_EVENTFD: {
|
|
struct kvm_hyperv_eventfd hvevfd;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
|
|
break;
|
|
}
|
|
default:
|
|
r = -ENOTTY;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void kvm_init_msr_list(void)
|
|
{
|
|
u32 dummy[2];
|
|
unsigned i, j;
|
|
|
|
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
|
|
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
|
|
continue;
|
|
|
|
/*
|
|
* Even MSRs that are valid in the host may not be exposed
|
|
* to the guests in some cases.
|
|
*/
|
|
switch (msrs_to_save[i]) {
|
|
case MSR_IA32_BNDCFGS:
|
|
if (!kvm_mpx_supported())
|
|
continue;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!kvm_x86_ops->rdtscp_supported())
|
|
continue;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (j < i)
|
|
msrs_to_save[j] = msrs_to_save[i];
|
|
j++;
|
|
}
|
|
num_msrs_to_save = j;
|
|
|
|
for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
|
|
if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
|
|
continue;
|
|
|
|
if (j < i)
|
|
emulated_msrs[j] = emulated_msrs[i];
|
|
j++;
|
|
}
|
|
num_emulated_msrs = j;
|
|
|
|
for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
|
|
struct kvm_msr_entry msr;
|
|
|
|
msr.index = msr_based_features[i];
|
|
if (kvm_get_msr_feature(&msr))
|
|
continue;
|
|
|
|
if (j < i)
|
|
msr_based_features[j] = msr_based_features[i];
|
|
j++;
|
|
}
|
|
num_msr_based_features = j;
|
|
}
|
|
|
|
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
|
|
const void *v)
|
|
{
|
|
int handled = 0;
|
|
int n;
|
|
|
|
do {
|
|
n = min(len, 8);
|
|
if (!(lapic_in_kernel(vcpu) &&
|
|
!kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
|
|
&& kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
|
|
break;
|
|
handled += n;
|
|
addr += n;
|
|
len -= n;
|
|
v += n;
|
|
} while (len);
|
|
|
|
return handled;
|
|
}
|
|
|
|
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
|
|
{
|
|
int handled = 0;
|
|
int n;
|
|
|
|
do {
|
|
n = min(len, 8);
|
|
if (!(lapic_in_kernel(vcpu) &&
|
|
!kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
|
|
addr, n, v))
|
|
&& kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
|
|
break;
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
|
|
handled += n;
|
|
addr += n;
|
|
len -= n;
|
|
v += n;
|
|
} while (len);
|
|
|
|
return handled;
|
|
}
|
|
|
|
static void kvm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->set_segment(vcpu, var, seg);
|
|
}
|
|
|
|
void kvm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->get_segment(vcpu, var, seg);
|
|
}
|
|
|
|
gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
gpa_t t_gpa;
|
|
|
|
BUG_ON(!mmu_is_nested(vcpu));
|
|
|
|
/* NPT walks are always user-walks */
|
|
access |= PFERR_USER_MASK;
|
|
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
|
|
|
|
return t_gpa;
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_FETCH_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_WRITE_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
/* uses this to access any guest's mapped memory without checking CPL */
|
|
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
|
|
}
|
|
|
|
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu, u32 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
|
|
offset, toread);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= toread;
|
|
data += toread;
|
|
addr += toread;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
/* used for instruction fetching */
|
|
static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
unsigned offset;
|
|
int ret;
|
|
|
|
/* Inline kvm_read_guest_virt_helper for speed. */
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
|
|
exception);
|
|
if (unlikely(gpa == UNMAPPED_GVA))
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
|
|
offset = addr & (PAGE_SIZE-1);
|
|
if (WARN_ON(offset + bytes > PAGE_SIZE))
|
|
bytes = (unsigned)PAGE_SIZE - offset;
|
|
ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
|
|
offset, bytes);
|
|
if (unlikely(ret < 0))
|
|
return X86EMUL_IO_NEEDED;
|
|
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
|
|
/*
|
|
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
|
|
* is returned, but our callers are not ready for that and they blindly
|
|
* call kvm_inject_page_fault. Ensure that they at least do not leak
|
|
* uninitialized kernel stack memory into cr2 and error code.
|
|
*/
|
|
memset(exception, 0, sizeof(*exception));
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
|
|
exception);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
|
|
|
|
static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
|
|
gva_t addr, void *val, unsigned int bytes,
|
|
struct x86_exception *exception, bool system)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
u32 access = 0;
|
|
|
|
if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
|
|
access |= PFERR_USER_MASK;
|
|
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
|
|
}
|
|
|
|
static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr, void *val, unsigned int bytes)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
|
|
|
|
return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
|
|
}
|
|
|
|
static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu, u32 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
|
|
access,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= towrite;
|
|
data += towrite;
|
|
addr += towrite;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
|
|
unsigned int bytes, struct x86_exception *exception,
|
|
bool system)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
u32 access = PFERR_WRITE_MASK;
|
|
|
|
if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
|
|
access |= PFERR_USER_MASK;
|
|
|
|
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
|
|
access, exception);
|
|
}
|
|
|
|
int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
|
|
unsigned int bytes, struct x86_exception *exception)
|
|
{
|
|
/* kvm_write_guest_virt_system can pull in tons of pages. */
|
|
vcpu->arch.l1tf_flush_l1d = true;
|
|
|
|
/*
|
|
* FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
|
|
* is returned, but our callers are not ready for that and they blindly
|
|
* call kvm_inject_page_fault. Ensure that they at least do not leak
|
|
* uninitialized kernel stack memory into cr2 and error code.
|
|
*/
|
|
memset(exception, 0, sizeof(*exception));
|
|
return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
|
|
PFERR_WRITE_MASK, exception);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
|
|
|
|
int handle_ud(struct kvm_vcpu *vcpu)
|
|
{
|
|
int emul_type = EMULTYPE_TRAP_UD;
|
|
enum emulation_result er;
|
|
char sig[5]; /* ud2; .ascii "kvm" */
|
|
struct x86_exception e;
|
|
|
|
if (force_emulation_prefix &&
|
|
kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
|
|
sig, sizeof(sig), &e) == 0 &&
|
|
memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
|
|
kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
|
|
emul_type = 0;
|
|
}
|
|
|
|
er = kvm_emulate_instruction(vcpu, emul_type);
|
|
if (er == EMULATE_USER_EXIT)
|
|
return 0;
|
|
if (er != EMULATE_DONE)
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(handle_ud);
|
|
|
|
static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
|
|
gpa_t gpa, bool write)
|
|
{
|
|
/* For APIC access vmexit */
|
|
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
return 1;
|
|
|
|
if (vcpu_match_mmio_gpa(vcpu, gpa)) {
|
|
trace_vcpu_match_mmio(gva, gpa, write, true);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
|
|
gpa_t *gpa, struct x86_exception *exception,
|
|
bool write)
|
|
{
|
|
u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
|
|
| (write ? PFERR_WRITE_MASK : 0);
|
|
|
|
/*
|
|
* currently PKRU is only applied to ept enabled guest so
|
|
* there is no pkey in EPT page table for L1 guest or EPT
|
|
* shadow page table for L2 guest.
|
|
*/
|
|
if (vcpu_match_mmio_gva(vcpu, gva)
|
|
&& !permission_fault(vcpu, vcpu->arch.walk_mmu,
|
|
vcpu->arch.access, 0, access)) {
|
|
*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
|
|
(gva & (PAGE_SIZE - 1));
|
|
trace_vcpu_match_mmio(gva, *gpa, write, false);
|
|
return 1;
|
|
}
|
|
|
|
*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
|
|
if (*gpa == UNMAPPED_GVA)
|
|
return -1;
|
|
|
|
return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
|
|
}
|
|
|
|
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
const void *val, int bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
|
|
if (ret < 0)
|
|
return 0;
|
|
kvm_page_track_write(vcpu, gpa, val, bytes);
|
|
return 1;
|
|
}
|
|
|
|
struct read_write_emulator_ops {
|
|
int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
|
|
int bytes);
|
|
int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes);
|
|
int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
int bytes, void *val);
|
|
int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes);
|
|
bool write;
|
|
};
|
|
|
|
static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
|
|
{
|
|
if (vcpu->mmio_read_completed) {
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
|
|
vcpu->mmio_fragments[0].gpa, val);
|
|
vcpu->mmio_read_completed = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
|
|
}
|
|
|
|
static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
return emulator_write_phys(vcpu, gpa, val, bytes);
|
|
}
|
|
|
|
static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
|
|
{
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
|
|
return vcpu_mmio_write(vcpu, gpa, bytes, val);
|
|
}
|
|
|
|
static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
|
|
return X86EMUL_IO_NEEDED;
|
|
}
|
|
|
|
static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
void *val, int bytes)
|
|
{
|
|
struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
|
|
|
|
memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
static const struct read_write_emulator_ops read_emultor = {
|
|
.read_write_prepare = read_prepare,
|
|
.read_write_emulate = read_emulate,
|
|
.read_write_mmio = vcpu_mmio_read,
|
|
.read_write_exit_mmio = read_exit_mmio,
|
|
};
|
|
|
|
static const struct read_write_emulator_ops write_emultor = {
|
|
.read_write_emulate = write_emulate,
|
|
.read_write_mmio = write_mmio,
|
|
.read_write_exit_mmio = write_exit_mmio,
|
|
.write = true,
|
|
};
|
|
|
|
static int emulator_read_write_onepage(unsigned long addr, void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu,
|
|
const struct read_write_emulator_ops *ops)
|
|
{
|
|
gpa_t gpa;
|
|
int handled, ret;
|
|
bool write = ops->write;
|
|
struct kvm_mmio_fragment *frag;
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
|
|
/*
|
|
* If the exit was due to a NPF we may already have a GPA.
|
|
* If the GPA is present, use it to avoid the GVA to GPA table walk.
|
|
* Note, this cannot be used on string operations since string
|
|
* operation using rep will only have the initial GPA from the NPF
|
|
* occurred.
|
|
*/
|
|
if (vcpu->arch.gpa_available &&
|
|
emulator_can_use_gpa(ctxt) &&
|
|
(addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
|
|
gpa = vcpu->arch.gpa_val;
|
|
ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
|
|
} else {
|
|
ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
|
|
if (ret < 0)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
}
|
|
|
|
if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
|
|
if (handled == bytes)
|
|
return X86EMUL_CONTINUE;
|
|
|
|
gpa += handled;
|
|
bytes -= handled;
|
|
val += handled;
|
|
|
|
WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
|
|
frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
|
|
frag->gpa = gpa;
|
|
frag->data = val;
|
|
frag->len = bytes;
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
void *val, unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
const struct read_write_emulator_ops *ops)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
gpa_t gpa;
|
|
int rc;
|
|
|
|
if (ops->read_write_prepare &&
|
|
ops->read_write_prepare(vcpu, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
vcpu->mmio_nr_fragments = 0;
|
|
|
|
/* Crossing a page boundary? */
|
|
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
|
|
int now;
|
|
|
|
now = -addr & ~PAGE_MASK;
|
|
rc = emulator_read_write_onepage(addr, val, now, exception,
|
|
vcpu, ops);
|
|
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
addr += now;
|
|
if (ctxt->mode != X86EMUL_MODE_PROT64)
|
|
addr = (u32)addr;
|
|
val += now;
|
|
bytes -= now;
|
|
}
|
|
|
|
rc = emulator_read_write_onepage(addr, val, bytes, exception,
|
|
vcpu, ops);
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
|
|
if (!vcpu->mmio_nr_fragments)
|
|
return rc;
|
|
|
|
gpa = vcpu->mmio_fragments[0].gpa;
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->mmio_cur_fragment = 0;
|
|
|
|
vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
|
|
vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
vcpu->run->mmio.phys_addr = gpa;
|
|
|
|
return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
|
|
}
|
|
|
|
static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
return emulator_read_write(ctxt, addr, val, bytes,
|
|
exception, &read_emultor);
|
|
}
|
|
|
|
static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
return emulator_read_write(ctxt, addr, (void *)val, bytes,
|
|
exception, &write_emultor);
|
|
}
|
|
|
|
#define CMPXCHG_TYPE(t, ptr, old, new) \
|
|
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
|
|
#else
|
|
# define CMPXCHG64(ptr, old, new) \
|
|
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
|
|
#endif
|
|
|
|
static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
|
|
unsigned long addr,
|
|
const void *old,
|
|
const void *new,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
gpa_t gpa;
|
|
struct page *page;
|
|
char *kaddr;
|
|
bool exchanged;
|
|
|
|
/* guests cmpxchg8b have to be emulated atomically */
|
|
if (bytes > 8 || (bytes & (bytes - 1)))
|
|
goto emul_write;
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
|
|
|
|
if (gpa == UNMAPPED_GVA ||
|
|
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto emul_write;
|
|
|
|
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
|
|
goto emul_write;
|
|
|
|
page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
|
|
if (is_error_page(page))
|
|
goto emul_write;
|
|
|
|
kaddr = kmap_atomic(page);
|
|
kaddr += offset_in_page(gpa);
|
|
switch (bytes) {
|
|
case 1:
|
|
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
|
|
break;
|
|
case 2:
|
|
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
|
|
break;
|
|
case 4:
|
|
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
|
|
break;
|
|
case 8:
|
|
exchanged = CMPXCHG64(kaddr, old, new);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
kunmap_atomic(kaddr);
|
|
kvm_release_page_dirty(page);
|
|
|
|
if (!exchanged)
|
|
return X86EMUL_CMPXCHG_FAILED;
|
|
|
|
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
|
|
kvm_page_track_write(vcpu, gpa, new, bytes);
|
|
|
|
return X86EMUL_CONTINUE;
|
|
|
|
emul_write:
|
|
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
|
|
|
|
return emulator_write_emulated(ctxt, addr, new, bytes, exception);
|
|
}
|
|
|
|
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
|
|
{
|
|
int r = 0, i;
|
|
|
|
for (i = 0; i < vcpu->arch.pio.count; i++) {
|
|
if (vcpu->arch.pio.in)
|
|
r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
|
|
vcpu->arch.pio.size, pd);
|
|
else
|
|
r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
|
|
vcpu->arch.pio.port, vcpu->arch.pio.size,
|
|
pd);
|
|
if (r)
|
|
break;
|
|
pd += vcpu->arch.pio.size;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
|
|
unsigned short port, void *val,
|
|
unsigned int count, bool in)
|
|
{
|
|
vcpu->arch.pio.port = port;
|
|
vcpu->arch.pio.in = in;
|
|
vcpu->arch.pio.count = count;
|
|
vcpu->arch.pio.size = size;
|
|
|
|
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
|
|
vcpu->run->io.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = count;
|
|
vcpu->run->io.port = port;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
|
|
int size, unsigned short port, void *val,
|
|
unsigned int count)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
int ret;
|
|
|
|
if (vcpu->arch.pio.count)
|
|
goto data_avail;
|
|
|
|
memset(vcpu->arch.pio_data, 0, size * count);
|
|
|
|
ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
|
|
if (ret) {
|
|
data_avail:
|
|
memcpy(val, vcpu->arch.pio_data, size * count);
|
|
trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
|
|
int size, unsigned short port,
|
|
const void *val, unsigned int count)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
|
|
memcpy(vcpu->arch.pio_data, val, size * count);
|
|
trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
|
|
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
|
|
}
|
|
|
|
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
return kvm_x86_ops->get_segment_base(vcpu, seg);
|
|
}
|
|
|
|
static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
|
|
{
|
|
kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
|
|
}
|
|
|
|
static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!need_emulate_wbinvd(vcpu))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
if (kvm_x86_ops->has_wbinvd_exit()) {
|
|
int cpu = get_cpu();
|
|
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
|
|
wbinvd_ipi, NULL, 1);
|
|
put_cpu();
|
|
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
|
|
} else
|
|
wbinvd();
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_emulate_wbinvd_noskip(vcpu);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
|
|
|
|
|
|
|
|
static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
|
|
}
|
|
|
|
static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
|
|
unsigned long *dest)
|
|
{
|
|
return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
|
|
}
|
|
|
|
static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
|
|
unsigned long value)
|
|
{
|
|
|
|
return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
|
|
}
|
|
|
|
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
|
|
{
|
|
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
|
|
}
|
|
|
|
static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
unsigned long value;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
value = kvm_read_cr0(vcpu);
|
|
break;
|
|
case 2:
|
|
value = vcpu->arch.cr2;
|
|
break;
|
|
case 3:
|
|
value = kvm_read_cr3(vcpu);
|
|
break;
|
|
case 4:
|
|
value = kvm_read_cr4(vcpu);
|
|
break;
|
|
case 8:
|
|
value = kvm_get_cr8(vcpu);
|
|
break;
|
|
default:
|
|
kvm_err("%s: unexpected cr %u\n", __func__, cr);
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
int res = 0;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
|
|
break;
|
|
case 2:
|
|
vcpu->arch.cr2 = val;
|
|
break;
|
|
case 3:
|
|
res = kvm_set_cr3(vcpu, val);
|
|
break;
|
|
case 4:
|
|
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
|
|
break;
|
|
case 8:
|
|
res = kvm_set_cr8(vcpu, val);
|
|
break;
|
|
default:
|
|
kvm_err("%s: unexpected cr %u\n", __func__, cr);
|
|
res = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
|
|
}
|
|
|
|
static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
|
|
{
|
|
kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
|
|
}
|
|
|
|
static unsigned long emulator_get_cached_segment_base(
|
|
struct x86_emulate_ctxt *ctxt, int seg)
|
|
{
|
|
return get_segment_base(emul_to_vcpu(ctxt), seg);
|
|
}
|
|
|
|
static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
|
|
struct desc_struct *desc, u32 *base3,
|
|
int seg)
|
|
{
|
|
struct kvm_segment var;
|
|
|
|
kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
|
|
*selector = var.selector;
|
|
|
|
if (var.unusable) {
|
|
memset(desc, 0, sizeof(*desc));
|
|
if (base3)
|
|
*base3 = 0;
|
|
return false;
|
|
}
|
|
|
|
if (var.g)
|
|
var.limit >>= 12;
|
|
set_desc_limit(desc, var.limit);
|
|
set_desc_base(desc, (unsigned long)var.base);
|
|
#ifdef CONFIG_X86_64
|
|
if (base3)
|
|
*base3 = var.base >> 32;
|
|
#endif
|
|
desc->type = var.type;
|
|
desc->s = var.s;
|
|
desc->dpl = var.dpl;
|
|
desc->p = var.present;
|
|
desc->avl = var.avl;
|
|
desc->l = var.l;
|
|
desc->d = var.db;
|
|
desc->g = var.g;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
|
|
struct desc_struct *desc, u32 base3,
|
|
int seg)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
struct kvm_segment var;
|
|
|
|
var.selector = selector;
|
|
var.base = get_desc_base(desc);
|
|
#ifdef CONFIG_X86_64
|
|
var.base |= ((u64)base3) << 32;
|
|
#endif
|
|
var.limit = get_desc_limit(desc);
|
|
if (desc->g)
|
|
var.limit = (var.limit << 12) | 0xfff;
|
|
var.type = desc->type;
|
|
var.dpl = desc->dpl;
|
|
var.db = desc->d;
|
|
var.s = desc->s;
|
|
var.l = desc->l;
|
|
var.g = desc->g;
|
|
var.avl = desc->avl;
|
|
var.present = desc->p;
|
|
var.unusable = !var.present;
|
|
var.padding = 0;
|
|
|
|
kvm_set_segment(vcpu, &var, seg);
|
|
return;
|
|
}
|
|
|
|
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
|
|
u32 msr_index, u64 *pdata)
|
|
{
|
|
struct msr_data msr;
|
|
int r;
|
|
|
|
msr.index = msr_index;
|
|
msr.host_initiated = false;
|
|
r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
|
|
if (r)
|
|
return r;
|
|
|
|
*pdata = msr.data;
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
|
|
u32 msr_index, u64 data)
|
|
{
|
|
struct msr_data msr;
|
|
|
|
msr.data = data;
|
|
msr.index = msr_index;
|
|
msr.host_initiated = false;
|
|
return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
|
|
}
|
|
|
|
static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
|
|
return vcpu->arch.smbase;
|
|
}
|
|
|
|
static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
|
|
vcpu->arch.smbase = smbase;
|
|
}
|
|
|
|
static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
|
|
u32 pmc)
|
|
{
|
|
return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
|
|
}
|
|
|
|
static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
|
|
u32 pmc, u64 *pdata)
|
|
{
|
|
return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
|
|
}
|
|
|
|
static void emulator_halt(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
emul_to_vcpu(ctxt)->arch.halt_request = 1;
|
|
}
|
|
|
|
static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage)
|
|
{
|
|
return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
|
|
}
|
|
|
|
static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
|
|
u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
|
|
{
|
|
return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
|
|
}
|
|
|
|
static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
|
|
{
|
|
return kvm_register_read(emul_to_vcpu(ctxt), reg);
|
|
}
|
|
|
|
static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
|
|
{
|
|
kvm_register_write(emul_to_vcpu(ctxt), reg, val);
|
|
}
|
|
|
|
static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
|
|
{
|
|
kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
|
|
}
|
|
|
|
static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
return emul_to_vcpu(ctxt)->arch.hflags;
|
|
}
|
|
|
|
static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
|
|
{
|
|
kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
|
|
}
|
|
|
|
static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
|
|
{
|
|
return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
|
|
}
|
|
|
|
static const struct x86_emulate_ops emulate_ops = {
|
|
.read_gpr = emulator_read_gpr,
|
|
.write_gpr = emulator_write_gpr,
|
|
.read_std = emulator_read_std,
|
|
.write_std = emulator_write_std,
|
|
.read_phys = kvm_read_guest_phys_system,
|
|
.fetch = kvm_fetch_guest_virt,
|
|
.read_emulated = emulator_read_emulated,
|
|
.write_emulated = emulator_write_emulated,
|
|
.cmpxchg_emulated = emulator_cmpxchg_emulated,
|
|
.invlpg = emulator_invlpg,
|
|
.pio_in_emulated = emulator_pio_in_emulated,
|
|
.pio_out_emulated = emulator_pio_out_emulated,
|
|
.get_segment = emulator_get_segment,
|
|
.set_segment = emulator_set_segment,
|
|
.get_cached_segment_base = emulator_get_cached_segment_base,
|
|
.get_gdt = emulator_get_gdt,
|
|
.get_idt = emulator_get_idt,
|
|
.set_gdt = emulator_set_gdt,
|
|
.set_idt = emulator_set_idt,
|
|
.get_cr = emulator_get_cr,
|
|
.set_cr = emulator_set_cr,
|
|
.cpl = emulator_get_cpl,
|
|
.get_dr = emulator_get_dr,
|
|
.set_dr = emulator_set_dr,
|
|
.get_smbase = emulator_get_smbase,
|
|
.set_smbase = emulator_set_smbase,
|
|
.set_msr = emulator_set_msr,
|
|
.get_msr = emulator_get_msr,
|
|
.check_pmc = emulator_check_pmc,
|
|
.read_pmc = emulator_read_pmc,
|
|
.halt = emulator_halt,
|
|
.wbinvd = emulator_wbinvd,
|
|
.fix_hypercall = emulator_fix_hypercall,
|
|
.intercept = emulator_intercept,
|
|
.get_cpuid = emulator_get_cpuid,
|
|
.set_nmi_mask = emulator_set_nmi_mask,
|
|
.get_hflags = emulator_get_hflags,
|
|
.set_hflags = emulator_set_hflags,
|
|
.pre_leave_smm = emulator_pre_leave_smm,
|
|
};
|
|
|
|
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
|
|
{
|
|
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
|
|
/*
|
|
* an sti; sti; sequence only disable interrupts for the first
|
|
* instruction. So, if the last instruction, be it emulated or
|
|
* not, left the system with the INT_STI flag enabled, it
|
|
* means that the last instruction is an sti. We should not
|
|
* leave the flag on in this case. The same goes for mov ss
|
|
*/
|
|
if (int_shadow & mask)
|
|
mask = 0;
|
|
if (unlikely(int_shadow || mask)) {
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
|
|
if (!mask)
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
}
|
|
|
|
static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
if (ctxt->exception.vector == PF_VECTOR)
|
|
return kvm_propagate_fault(vcpu, &ctxt->exception);
|
|
|
|
if (ctxt->exception.error_code_valid)
|
|
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
|
|
ctxt->exception.error_code);
|
|
else
|
|
kvm_queue_exception(vcpu, ctxt->exception.vector);
|
|
return false;
|
|
}
|
|
|
|
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int cs_db, cs_l;
|
|
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
|
|
ctxt->eflags = kvm_get_rflags(vcpu);
|
|
ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
|
|
|
|
ctxt->eip = kvm_rip_read(vcpu);
|
|
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
|
|
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
|
|
(cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
|
|
cs_db ? X86EMUL_MODE_PROT32 :
|
|
X86EMUL_MODE_PROT16;
|
|
BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
|
|
BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
|
|
BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
|
|
|
|
init_decode_cache(ctxt);
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
|
|
}
|
|
|
|
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
ctxt->op_bytes = 2;
|
|
ctxt->ad_bytes = 2;
|
|
ctxt->_eip = ctxt->eip + inc_eip;
|
|
ret = emulate_int_real(ctxt, irq);
|
|
|
|
if (ret != X86EMUL_CONTINUE)
|
|
return EMULATE_FAIL;
|
|
|
|
ctxt->eip = ctxt->_eip;
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
kvm_set_rflags(vcpu, ctxt->eflags);
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
|
|
|
|
static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
|
|
{
|
|
int r = EMULATE_DONE;
|
|
|
|
++vcpu->stat.insn_emulation_fail;
|
|
trace_kvm_emulate_insn_failed(vcpu);
|
|
|
|
if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
|
|
return EMULATE_FAIL;
|
|
|
|
if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
vcpu->run->internal.ndata = 0;
|
|
r = EMULATE_USER_EXIT;
|
|
}
|
|
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
|
|
bool write_fault_to_shadow_pgtable,
|
|
int emulation_type)
|
|
{
|
|
gpa_t gpa = cr2_or_gpa;
|
|
kvm_pfn_t pfn;
|
|
|
|
if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
|
|
return false;
|
|
|
|
if (WARN_ON_ONCE(is_guest_mode(vcpu)))
|
|
return false;
|
|
|
|
if (!vcpu->arch.mmu.direct_map) {
|
|
/*
|
|
* Write permission should be allowed since only
|
|
* write access need to be emulated.
|
|
*/
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
|
|
|
|
/*
|
|
* If the mapping is invalid in guest, let cpu retry
|
|
* it to generate fault.
|
|
*/
|
|
if (gpa == UNMAPPED_GVA)
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Do not retry the unhandleable instruction if it faults on the
|
|
* readonly host memory, otherwise it will goto a infinite loop:
|
|
* retry instruction -> write #PF -> emulation fail -> retry
|
|
* instruction -> ...
|
|
*/
|
|
pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
/*
|
|
* If the instruction failed on the error pfn, it can not be fixed,
|
|
* report the error to userspace.
|
|
*/
|
|
if (is_error_noslot_pfn(pfn))
|
|
return false;
|
|
|
|
kvm_release_pfn_clean(pfn);
|
|
|
|
/* The instructions are well-emulated on direct mmu. */
|
|
if (vcpu->arch.mmu.direct_map) {
|
|
unsigned int indirect_shadow_pages;
|
|
|
|
spin_lock(&vcpu->kvm->mmu_lock);
|
|
indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
|
|
spin_unlock(&vcpu->kvm->mmu_lock);
|
|
|
|
if (indirect_shadow_pages)
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* if emulation was due to access to shadowed page table
|
|
* and it failed try to unshadow page and re-enter the
|
|
* guest to let CPU execute the instruction.
|
|
*/
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
/*
|
|
* If the access faults on its page table, it can not
|
|
* be fixed by unprotecting shadow page and it should
|
|
* be reported to userspace.
|
|
*/
|
|
return !write_fault_to_shadow_pgtable;
|
|
}
|
|
|
|
static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
|
|
gpa_t cr2_or_gpa, int emulation_type)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
|
|
|
|
last_retry_eip = vcpu->arch.last_retry_eip;
|
|
last_retry_addr = vcpu->arch.last_retry_addr;
|
|
|
|
/*
|
|
* If the emulation is caused by #PF and it is non-page_table
|
|
* writing instruction, it means the VM-EXIT is caused by shadow
|
|
* page protected, we can zap the shadow page and retry this
|
|
* instruction directly.
|
|
*
|
|
* Note: if the guest uses a non-page-table modifying instruction
|
|
* on the PDE that points to the instruction, then we will unmap
|
|
* the instruction and go to an infinite loop. So, we cache the
|
|
* last retried eip and the last fault address, if we meet the eip
|
|
* and the address again, we can break out of the potential infinite
|
|
* loop.
|
|
*/
|
|
vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
|
|
|
|
if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
|
|
return false;
|
|
|
|
if (WARN_ON_ONCE(is_guest_mode(vcpu)))
|
|
return false;
|
|
|
|
if (x86_page_table_writing_insn(ctxt))
|
|
return false;
|
|
|
|
if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
|
|
return false;
|
|
|
|
vcpu->arch.last_retry_eip = ctxt->eip;
|
|
vcpu->arch.last_retry_addr = cr2_or_gpa;
|
|
|
|
if (!vcpu->arch.mmu.direct_map)
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
|
|
|
|
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
|
|
|
|
return true;
|
|
}
|
|
|
|
static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
|
|
static int complete_emulated_pio(struct kvm_vcpu *vcpu);
|
|
|
|
static void kvm_smm_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
|
|
/* This is a good place to trace that we are exiting SMM. */
|
|
trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
|
|
|
|
/* Process a latched INIT or SMI, if any. */
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
kvm_mmu_reset_context(vcpu);
|
|
}
|
|
|
|
static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
|
|
{
|
|
unsigned changed = vcpu->arch.hflags ^ emul_flags;
|
|
|
|
vcpu->arch.hflags = emul_flags;
|
|
|
|
if (changed & HF_SMM_MASK)
|
|
kvm_smm_changed(vcpu);
|
|
}
|
|
|
|
static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
|
|
unsigned long *db)
|
|
{
|
|
u32 dr6 = 0;
|
|
int i;
|
|
u32 enable, rwlen;
|
|
|
|
enable = dr7;
|
|
rwlen = dr7 >> 16;
|
|
for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
|
|
if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
|
|
dr6 |= (1 << i);
|
|
return dr6;
|
|
}
|
|
|
|
static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
|
|
kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
|
|
kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
*r = EMULATE_USER_EXIT;
|
|
} else {
|
|
/*
|
|
* "Certain debug exceptions may clear bit 0-3. The
|
|
* remaining contents of the DR6 register are never
|
|
* cleared by the processor".
|
|
*/
|
|
vcpu->arch.dr6 &= ~15;
|
|
vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
}
|
|
}
|
|
|
|
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
int r = EMULATE_DONE;
|
|
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
|
|
/*
|
|
* rflags is the old, "raw" value of the flags. The new value has
|
|
* not been saved yet.
|
|
*
|
|
* This is correct even for TF set by the guest, because "the
|
|
* processor will not generate this exception after the instruction
|
|
* that sets the TF flag".
|
|
*/
|
|
if (unlikely(rflags & X86_EFLAGS_TF))
|
|
kvm_vcpu_do_singlestep(vcpu, &r);
|
|
return r == EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
|
|
|
|
static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
|
|
{
|
|
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
|
|
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
unsigned long eip = kvm_get_linear_rip(vcpu);
|
|
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
|
|
vcpu->arch.guest_debug_dr7,
|
|
vcpu->arch.eff_db);
|
|
|
|
if (dr6 != 0) {
|
|
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
|
|
kvm_run->debug.arch.pc = eip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
*r = EMULATE_USER_EXIT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
|
|
!(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
|
|
unsigned long eip = kvm_get_linear_rip(vcpu);
|
|
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
|
|
vcpu->arch.dr7,
|
|
vcpu->arch.db);
|
|
|
|
if (dr6 != 0) {
|
|
vcpu->arch.dr6 &= ~15;
|
|
vcpu->arch.dr6 |= dr6 | DR6_RTM;
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
*r = EMULATE_DONE;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
switch (ctxt->opcode_len) {
|
|
case 1:
|
|
switch (ctxt->b) {
|
|
case 0xe4: /* IN */
|
|
case 0xe5:
|
|
case 0xec:
|
|
case 0xed:
|
|
case 0xe6: /* OUT */
|
|
case 0xe7:
|
|
case 0xee:
|
|
case 0xef:
|
|
case 0x6c: /* INS */
|
|
case 0x6d:
|
|
case 0x6e: /* OUTS */
|
|
case 0x6f:
|
|
return true;
|
|
}
|
|
break;
|
|
case 2:
|
|
switch (ctxt->b) {
|
|
case 0x33: /* RDPMC */
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
|
|
int emulation_type, void *insn, int insn_len)
|
|
{
|
|
int r;
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
bool writeback = true;
|
|
bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
|
|
|
|
vcpu->arch.l1tf_flush_l1d = true;
|
|
|
|
/*
|
|
* Clear write_fault_to_shadow_pgtable here to ensure it is
|
|
* never reused.
|
|
*/
|
|
vcpu->arch.write_fault_to_shadow_pgtable = false;
|
|
kvm_clear_exception_queue(vcpu);
|
|
|
|
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
/*
|
|
* We will reenter on the same instruction since
|
|
* we do not set complete_userspace_io. This does not
|
|
* handle watchpoints yet, those would be handled in
|
|
* the emulate_ops.
|
|
*/
|
|
if (!(emulation_type & EMULTYPE_SKIP) &&
|
|
kvm_vcpu_check_breakpoint(vcpu, &r))
|
|
return r;
|
|
|
|
ctxt->interruptibility = 0;
|
|
ctxt->have_exception = false;
|
|
ctxt->exception.vector = -1;
|
|
ctxt->perm_ok = false;
|
|
|
|
ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
|
|
|
|
r = x86_decode_insn(ctxt, insn, insn_len);
|
|
|
|
trace_kvm_emulate_insn_start(vcpu);
|
|
++vcpu->stat.insn_emulation;
|
|
if (r != EMULATION_OK) {
|
|
if (emulation_type & EMULTYPE_TRAP_UD)
|
|
return EMULATE_FAIL;
|
|
if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
|
|
emulation_type))
|
|
return EMULATE_DONE;
|
|
if (ctxt->have_exception) {
|
|
/*
|
|
* #UD should result in just EMULATION_FAILED, and trap-like
|
|
* exception should not be encountered during decode.
|
|
*/
|
|
WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
|
|
exception_type(ctxt->exception.vector) == EXCPT_TRAP);
|
|
inject_emulated_exception(vcpu);
|
|
return EMULATE_DONE;
|
|
}
|
|
if (emulation_type & EMULTYPE_SKIP)
|
|
return EMULATE_FAIL;
|
|
return handle_emulation_failure(vcpu, emulation_type);
|
|
}
|
|
}
|
|
|
|
if ((emulation_type & EMULTYPE_VMWARE) &&
|
|
!is_vmware_backdoor_opcode(ctxt))
|
|
return EMULATE_FAIL;
|
|
|
|
if (emulation_type & EMULTYPE_SKIP) {
|
|
kvm_rip_write(vcpu, ctxt->_eip);
|
|
if (ctxt->eflags & X86_EFLAGS_RF)
|
|
kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
|
|
return EMULATE_DONE;
|
|
|
|
/* this is needed for vmware backdoor interface to work since it
|
|
changes registers values during IO operation */
|
|
if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
|
|
emulator_invalidate_register_cache(ctxt);
|
|
}
|
|
|
|
restart:
|
|
/* Save the faulting GPA (cr2) in the address field */
|
|
ctxt->exception.address = cr2_or_gpa;
|
|
|
|
r = x86_emulate_insn(ctxt);
|
|
|
|
if (r == EMULATION_INTERCEPTED)
|
|
return EMULATE_DONE;
|
|
|
|
if (r == EMULATION_FAILED) {
|
|
if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
|
|
emulation_type))
|
|
return EMULATE_DONE;
|
|
|
|
return handle_emulation_failure(vcpu, emulation_type);
|
|
}
|
|
|
|
if (ctxt->have_exception) {
|
|
r = EMULATE_DONE;
|
|
if (inject_emulated_exception(vcpu))
|
|
return r;
|
|
} else if (vcpu->arch.pio.count) {
|
|
if (!vcpu->arch.pio.in) {
|
|
/* FIXME: return into emulator if single-stepping. */
|
|
vcpu->arch.pio.count = 0;
|
|
} else {
|
|
writeback = false;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_pio;
|
|
}
|
|
r = EMULATE_USER_EXIT;
|
|
} else if (vcpu->mmio_needed) {
|
|
if (!vcpu->mmio_is_write)
|
|
writeback = false;
|
|
r = EMULATE_USER_EXIT;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
|
|
} else if (r == EMULATION_RESTART)
|
|
goto restart;
|
|
else
|
|
r = EMULATE_DONE;
|
|
|
|
if (writeback) {
|
|
unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
toggle_interruptibility(vcpu, ctxt->interruptibility);
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
if (!ctxt->have_exception ||
|
|
exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
if (r == EMULATE_DONE && ctxt->tf)
|
|
kvm_vcpu_do_singlestep(vcpu, &r);
|
|
__kvm_set_rflags(vcpu, ctxt->eflags);
|
|
}
|
|
|
|
/*
|
|
* For STI, interrupts are shadowed; so KVM_REQ_EVENT will
|
|
* do nothing, and it will be requested again as soon as
|
|
* the shadow expires. But we still need to check here,
|
|
* because POPF has no interrupt shadow.
|
|
*/
|
|
if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
} else
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
|
|
{
|
|
return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
|
|
|
|
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
|
|
void *insn, int insn_len)
|
|
{
|
|
return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
|
|
|
|
static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.pio.count = 0;
|
|
|
|
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
|
|
return 1;
|
|
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
|
|
unsigned short port)
|
|
{
|
|
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
|
|
size, port, &val, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Workaround userspace that relies on old KVM behavior of %rip being
|
|
* incremented prior to exiting to userspace to handle "OUT 0x7e".
|
|
*/
|
|
if (port == 0x7e &&
|
|
kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
|
|
vcpu->arch.complete_userspace_io =
|
|
complete_fast_pio_out_port_0x7e;
|
|
kvm_skip_emulated_instruction(vcpu);
|
|
} else {
|
|
vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
|
|
vcpu->arch.complete_userspace_io = complete_fast_pio_out;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long val;
|
|
|
|
/* We should only ever be called with arch.pio.count equal to 1 */
|
|
BUG_ON(vcpu->arch.pio.count != 1);
|
|
|
|
if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* For size less than 4 we merge, else we zero extend */
|
|
val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
|
|
: 0;
|
|
|
|
/*
|
|
* Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
|
|
* the copy and tracing
|
|
*/
|
|
emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
|
|
vcpu->arch.pio.port, &val, 1);
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
|
|
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
|
|
static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
|
|
unsigned short port)
|
|
{
|
|
unsigned long val;
|
|
int ret;
|
|
|
|
/* For size less than 4 we merge, else we zero extend */
|
|
val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
|
|
|
|
ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
|
|
&val, 1);
|
|
if (ret) {
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, val);
|
|
return ret;
|
|
}
|
|
|
|
vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
|
|
vcpu->arch.complete_userspace_io = complete_fast_pio_in;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
|
|
{
|
|
int ret;
|
|
|
|
if (in)
|
|
ret = kvm_fast_pio_in(vcpu, size, port);
|
|
else
|
|
ret = kvm_fast_pio_out(vcpu, size, port);
|
|
return ret && kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_fast_pio);
|
|
|
|
static int kvmclock_cpu_down_prep(unsigned int cpu)
|
|
{
|
|
__this_cpu_write(cpu_tsc_khz, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void tsc_khz_changed(void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
unsigned long khz = 0;
|
|
|
|
if (data)
|
|
khz = freq->new;
|
|
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
khz = cpufreq_quick_get(raw_smp_processor_id());
|
|
if (!khz)
|
|
khz = tsc_khz;
|
|
__this_cpu_write(cpu_tsc_khz, khz);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void kvm_hyperv_tsc_notifier(void)
|
|
{
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int cpu;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_make_mclock_inprogress_request(kvm);
|
|
|
|
hyperv_stop_tsc_emulation();
|
|
|
|
/* TSC frequency always matches when on Hyper-V */
|
|
for_each_present_cpu(cpu)
|
|
per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
|
|
kvm_max_guest_tsc_khz = tsc_khz;
|
|
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
struct kvm_arch *ka = &kvm->arch;
|
|
|
|
spin_lock(&ka->pvclock_gtod_sync_lock);
|
|
|
|
pvclock_update_vm_gtod_copy(kvm);
|
|
|
|
kvm_for_each_vcpu(cpu, vcpu, kvm)
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
|
|
kvm_for_each_vcpu(cpu, vcpu, kvm)
|
|
kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
|
|
|
|
spin_unlock(&ka->pvclock_gtod_sync_lock);
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
}
|
|
#endif
|
|
|
|
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, send_ipi = 0;
|
|
|
|
/*
|
|
* We allow guests to temporarily run on slowing clocks,
|
|
* provided we notify them after, or to run on accelerating
|
|
* clocks, provided we notify them before. Thus time never
|
|
* goes backwards.
|
|
*
|
|
* However, we have a problem. We can't atomically update
|
|
* the frequency of a given CPU from this function; it is
|
|
* merely a notifier, which can be called from any CPU.
|
|
* Changing the TSC frequency at arbitrary points in time
|
|
* requires a recomputation of local variables related to
|
|
* the TSC for each VCPU. We must flag these local variables
|
|
* to be updated and be sure the update takes place with the
|
|
* new frequency before any guests proceed.
|
|
*
|
|
* Unfortunately, the combination of hotplug CPU and frequency
|
|
* change creates an intractable locking scenario; the order
|
|
* of when these callouts happen is undefined with respect to
|
|
* CPU hotplug, and they can race with each other. As such,
|
|
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
|
|
* undefined; you can actually have a CPU frequency change take
|
|
* place in between the computation of X and the setting of the
|
|
* variable. To protect against this problem, all updates of
|
|
* the per_cpu tsc_khz variable are done in an interrupt
|
|
* protected IPI, and all callers wishing to update the value
|
|
* must wait for a synchronous IPI to complete (which is trivial
|
|
* if the caller is on the CPU already). This establishes the
|
|
* necessary total order on variable updates.
|
|
*
|
|
* Note that because a guest time update may take place
|
|
* anytime after the setting of the VCPU's request bit, the
|
|
* correct TSC value must be set before the request. However,
|
|
* to ensure the update actually makes it to any guest which
|
|
* starts running in hardware virtualization between the set
|
|
* and the acquisition of the spinlock, we must also ping the
|
|
* CPU after setting the request bit.
|
|
*
|
|
*/
|
|
|
|
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
|
|
return 0;
|
|
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
|
|
return 0;
|
|
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->cpu != freq->cpu)
|
|
continue;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
if (vcpu->cpu != raw_smp_processor_id())
|
|
send_ipi = 1;
|
|
}
|
|
}
|
|
mutex_unlock(&kvm_lock);
|
|
|
|
if (freq->old < freq->new && send_ipi) {
|
|
/*
|
|
* We upscale the frequency. Must make the guest
|
|
* doesn't see old kvmclock values while running with
|
|
* the new frequency, otherwise we risk the guest sees
|
|
* time go backwards.
|
|
*
|
|
* In case we update the frequency for another cpu
|
|
* (which might be in guest context) send an interrupt
|
|
* to kick the cpu out of guest context. Next time
|
|
* guest context is entered kvmclock will be updated,
|
|
* so the guest will not see stale values.
|
|
*/
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block kvmclock_cpufreq_notifier_block = {
|
|
.notifier_call = kvmclock_cpufreq_notifier
|
|
};
|
|
|
|
static int kvmclock_cpu_online(unsigned int cpu)
|
|
{
|
|
tsc_khz_changed(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_timer_init(void)
|
|
{
|
|
max_tsc_khz = tsc_khz;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
|
|
#ifdef CONFIG_CPU_FREQ
|
|
struct cpufreq_policy policy;
|
|
int cpu;
|
|
|
|
memset(&policy, 0, sizeof(policy));
|
|
cpu = get_cpu();
|
|
cpufreq_get_policy(&policy, cpu);
|
|
if (policy.cpuinfo.max_freq)
|
|
max_tsc_khz = policy.cpuinfo.max_freq;
|
|
put_cpu();
|
|
#endif
|
|
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
|
|
|
|
cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
|
|
kvmclock_cpu_online, kvmclock_cpu_down_prep);
|
|
}
|
|
|
|
DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
|
|
EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
|
|
|
|
int kvm_is_in_guest(void)
|
|
{
|
|
return __this_cpu_read(current_vcpu) != NULL;
|
|
}
|
|
|
|
static int kvm_is_user_mode(void)
|
|
{
|
|
int user_mode = 3;
|
|
|
|
if (__this_cpu_read(current_vcpu))
|
|
user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
|
|
|
|
return user_mode != 0;
|
|
}
|
|
|
|
static unsigned long kvm_get_guest_ip(void)
|
|
{
|
|
unsigned long ip = 0;
|
|
|
|
if (__this_cpu_read(current_vcpu))
|
|
ip = kvm_rip_read(__this_cpu_read(current_vcpu));
|
|
|
|
return ip;
|
|
}
|
|
|
|
static struct perf_guest_info_callbacks kvm_guest_cbs = {
|
|
.is_in_guest = kvm_is_in_guest,
|
|
.is_user_mode = kvm_is_user_mode,
|
|
.get_guest_ip = kvm_get_guest_ip,
|
|
};
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void pvclock_gtod_update_fn(struct work_struct *work)
|
|
{
|
|
struct kvm *kvm;
|
|
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mutex_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
atomic_set(&kvm_guest_has_master_clock, 0);
|
|
mutex_unlock(&kvm_lock);
|
|
}
|
|
|
|
static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
|
|
|
|
/*
|
|
* Notification about pvclock gtod data update.
|
|
*/
|
|
static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
|
|
void *priv)
|
|
{
|
|
struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
|
|
struct timekeeper *tk = priv;
|
|
|
|
update_pvclock_gtod(tk);
|
|
|
|
/* disable master clock if host does not trust, or does not
|
|
* use, TSC based clocksource.
|
|
*/
|
|
if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
|
|
atomic_read(&kvm_guest_has_master_clock) != 0)
|
|
queue_work(system_long_wq, &pvclock_gtod_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block pvclock_gtod_notifier = {
|
|
.notifier_call = pvclock_gtod_notify,
|
|
};
|
|
#endif
|
|
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int r;
|
|
struct kvm_x86_ops *ops = opaque;
|
|
|
|
if (kvm_x86_ops) {
|
|
printk(KERN_ERR "kvm: already loaded the other module\n");
|
|
r = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
if (!ops->cpu_has_kvm_support()) {
|
|
printk(KERN_ERR "kvm: no hardware support\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (ops->disabled_by_bios()) {
|
|
printk(KERN_ERR "kvm: disabled by bios\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
r = -ENOMEM;
|
|
shared_msrs = alloc_percpu(struct kvm_shared_msrs);
|
|
if (!shared_msrs) {
|
|
printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
|
|
goto out;
|
|
}
|
|
|
|
r = kvm_mmu_module_init();
|
|
if (r)
|
|
goto out_free_percpu;
|
|
|
|
kvm_x86_ops = ops;
|
|
|
|
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
|
|
PT_DIRTY_MASK, PT64_NX_MASK, 0,
|
|
PT_PRESENT_MASK, 0, sme_me_mask);
|
|
kvm_timer_init();
|
|
|
|
perf_register_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE))
|
|
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
|
|
|
|
kvm_lapic_init();
|
|
#ifdef CONFIG_X86_64
|
|
pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
|
|
|
|
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
|
|
set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
out_free_percpu:
|
|
free_percpu(shared_msrs);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_exit(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
|
|
clear_hv_tscchange_cb();
|
|
#endif
|
|
kvm_lapic_exit();
|
|
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
|
|
#ifdef CONFIG_X86_64
|
|
pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
|
|
cancel_work_sync(&pvclock_gtod_work);
|
|
#endif
|
|
kvm_x86_ops = NULL;
|
|
kvm_mmu_module_exit();
|
|
free_percpu(shared_msrs);
|
|
}
|
|
|
|
int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.halt_exits;
|
|
if (lapic_in_kernel(vcpu)) {
|
|
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
|
|
return 1;
|
|
} else {
|
|
vcpu->run->exit_reason = KVM_EXIT_HLT;
|
|
return 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
|
|
|
|
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret = kvm_skip_emulated_instruction(vcpu);
|
|
/*
|
|
* TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
|
|
* KVM_EXIT_DEBUG here.
|
|
*/
|
|
return kvm_vcpu_halt(vcpu) && ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
|
|
unsigned long clock_type)
|
|
{
|
|
struct kvm_clock_pairing clock_pairing;
|
|
struct timespec64 ts;
|
|
u64 cycle;
|
|
int ret;
|
|
|
|
if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
|
|
return -KVM_EOPNOTSUPP;
|
|
|
|
if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
|
|
return -KVM_EOPNOTSUPP;
|
|
|
|
clock_pairing.sec = ts.tv_sec;
|
|
clock_pairing.nsec = ts.tv_nsec;
|
|
clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
|
|
clock_pairing.flags = 0;
|
|
memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
|
|
|
|
ret = 0;
|
|
if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
|
|
sizeof(struct kvm_clock_pairing)))
|
|
ret = -KVM_EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* kvm_pv_kick_cpu_op: Kick a vcpu.
|
|
*
|
|
* @apicid - apicid of vcpu to be kicked.
|
|
*/
|
|
static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
|
|
{
|
|
struct kvm_lapic_irq lapic_irq;
|
|
|
|
lapic_irq.shorthand = 0;
|
|
lapic_irq.dest_mode = 0;
|
|
lapic_irq.level = 0;
|
|
lapic_irq.dest_id = apicid;
|
|
lapic_irq.msi_redir_hint = false;
|
|
|
|
lapic_irq.delivery_mode = APIC_DM_REMRD;
|
|
kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
|
|
}
|
|
|
|
void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.apicv_active = false;
|
|
kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
|
|
}
|
|
|
|
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long nr, a0, a1, a2, a3, ret;
|
|
int op_64_bit;
|
|
|
|
if (kvm_hv_hypercall_enabled(vcpu->kvm))
|
|
return kvm_hv_hypercall(vcpu);
|
|
|
|
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
|
|
trace_kvm_hypercall(nr, a0, a1, a2, a3);
|
|
|
|
op_64_bit = is_64_bit_mode(vcpu);
|
|
if (!op_64_bit) {
|
|
nr &= 0xFFFFFFFF;
|
|
a0 &= 0xFFFFFFFF;
|
|
a1 &= 0xFFFFFFFF;
|
|
a2 &= 0xFFFFFFFF;
|
|
a3 &= 0xFFFFFFFF;
|
|
}
|
|
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
|
|
ret = -KVM_EPERM;
|
|
goto out;
|
|
}
|
|
|
|
switch (nr) {
|
|
case KVM_HC_VAPIC_POLL_IRQ:
|
|
ret = 0;
|
|
break;
|
|
case KVM_HC_KICK_CPU:
|
|
kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
|
|
ret = 0;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case KVM_HC_CLOCK_PAIRING:
|
|
ret = kvm_pv_clock_pairing(vcpu, a0, a1);
|
|
break;
|
|
#endif
|
|
case KVM_HC_SEND_IPI:
|
|
ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
|
|
break;
|
|
default:
|
|
ret = -KVM_ENOSYS;
|
|
break;
|
|
}
|
|
out:
|
|
if (!op_64_bit)
|
|
ret = (u32)ret;
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
|
|
|
|
++vcpu->stat.hypercalls;
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
|
|
|
|
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
|
|
{
|
|
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
|
|
char instruction[3];
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
|
|
kvm_x86_ops->patch_hypercall(vcpu, instruction);
|
|
|
|
return emulator_write_emulated(ctxt, rip, instruction, 3,
|
|
&ctxt->exception);
|
|
}
|
|
|
|
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->run->request_interrupt_window &&
|
|
likely(!pic_in_kernel(vcpu->kvm));
|
|
}
|
|
|
|
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
|
|
kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
|
|
kvm_run->cr8 = kvm_get_cr8(vcpu);
|
|
kvm_run->apic_base = kvm_get_apic_base(vcpu);
|
|
kvm_run->ready_for_interrupt_injection =
|
|
pic_in_kernel(vcpu->kvm) ||
|
|
kvm_vcpu_ready_for_interrupt_injection(vcpu);
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
int max_irr, tpr;
|
|
|
|
if (!kvm_x86_ops->update_cr8_intercept)
|
|
return;
|
|
|
|
if (!lapic_in_kernel(vcpu))
|
|
return;
|
|
|
|
if (vcpu->arch.apicv_active)
|
|
return;
|
|
|
|
if (!vcpu->arch.apic->vapic_addr)
|
|
max_irr = kvm_lapic_find_highest_irr(vcpu);
|
|
else
|
|
max_irr = -1;
|
|
|
|
if (max_irr != -1)
|
|
max_irr >>= 4;
|
|
|
|
tpr = kvm_lapic_get_cr8(vcpu);
|
|
|
|
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
|
|
}
|
|
|
|
static int inject_pending_event(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
/* try to reinject previous events if any */
|
|
|
|
if (vcpu->arch.exception.injected)
|
|
kvm_x86_ops->queue_exception(vcpu);
|
|
/*
|
|
* Do not inject an NMI or interrupt if there is a pending
|
|
* exception. Exceptions and interrupts are recognized at
|
|
* instruction boundaries, i.e. the start of an instruction.
|
|
* Trap-like exceptions, e.g. #DB, have higher priority than
|
|
* NMIs and interrupts, i.e. traps are recognized before an
|
|
* NMI/interrupt that's pending on the same instruction.
|
|
* Fault-like exceptions, e.g. #GP and #PF, are the lowest
|
|
* priority, but are only generated (pended) during instruction
|
|
* execution, i.e. a pending fault-like exception means the
|
|
* fault occurred on the *previous* instruction and must be
|
|
* serviced prior to recognizing any new events in order to
|
|
* fully complete the previous instruction.
|
|
*/
|
|
else if (!vcpu->arch.exception.pending) {
|
|
if (vcpu->arch.nmi_injected)
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
else if (vcpu->arch.interrupt.injected)
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Call check_nested_events() even if we reinjected a previous event
|
|
* in order for caller to determine if it should require immediate-exit
|
|
* from L2 to L1 due to pending L1 events which require exit
|
|
* from L2 to L1.
|
|
*/
|
|
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
|
|
r = kvm_x86_ops->check_nested_events(vcpu);
|
|
if (r != 0)
|
|
return r;
|
|
}
|
|
|
|
/* try to inject new event if pending */
|
|
if (vcpu->arch.exception.pending) {
|
|
trace_kvm_inj_exception(vcpu->arch.exception.nr,
|
|
vcpu->arch.exception.has_error_code,
|
|
vcpu->arch.exception.error_code);
|
|
|
|
WARN_ON_ONCE(vcpu->arch.exception.injected);
|
|
vcpu->arch.exception.pending = false;
|
|
vcpu->arch.exception.injected = true;
|
|
|
|
if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
|
|
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
|
|
X86_EFLAGS_RF);
|
|
|
|
if (vcpu->arch.exception.nr == DB_VECTOR &&
|
|
(vcpu->arch.dr7 & DR7_GD)) {
|
|
vcpu->arch.dr7 &= ~DR7_GD;
|
|
kvm_update_dr7(vcpu);
|
|
}
|
|
|
|
kvm_x86_ops->queue_exception(vcpu);
|
|
}
|
|
|
|
/* Don't consider new event if we re-injected an event */
|
|
if (kvm_event_needs_reinjection(vcpu))
|
|
return 0;
|
|
|
|
if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
|
|
kvm_x86_ops->smi_allowed(vcpu)) {
|
|
vcpu->arch.smi_pending = false;
|
|
++vcpu->arch.smi_count;
|
|
enter_smm(vcpu);
|
|
} else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
|
|
--vcpu->arch.nmi_pending;
|
|
vcpu->arch.nmi_injected = true;
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
} else if (kvm_cpu_has_injectable_intr(vcpu)) {
|
|
/*
|
|
* Because interrupts can be injected asynchronously, we are
|
|
* calling check_nested_events again here to avoid a race condition.
|
|
* See https://lkml.org/lkml/2014/7/2/60 for discussion about this
|
|
* proposal and current concerns. Perhaps we should be setting
|
|
* KVM_REQ_EVENT only on certain events and not unconditionally?
|
|
*/
|
|
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
|
|
r = kvm_x86_ops->check_nested_events(vcpu);
|
|
if (r != 0)
|
|
return r;
|
|
}
|
|
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
|
|
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
|
|
false);
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void process_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned limit = 2;
|
|
|
|
/*
|
|
* x86 is limited to one NMI running, and one NMI pending after it.
|
|
* If an NMI is already in progress, limit further NMIs to just one.
|
|
* Otherwise, allow two (and we'll inject the first one immediately).
|
|
*/
|
|
if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
|
|
limit = 1;
|
|
|
|
vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
|
|
vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
|
|
{
|
|
u32 flags = 0;
|
|
flags |= seg->g << 23;
|
|
flags |= seg->db << 22;
|
|
flags |= seg->l << 21;
|
|
flags |= seg->avl << 20;
|
|
flags |= seg->present << 15;
|
|
flags |= seg->dpl << 13;
|
|
flags |= seg->s << 12;
|
|
flags |= seg->type << 8;
|
|
return flags;
|
|
}
|
|
|
|
static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
|
|
{
|
|
struct kvm_segment seg;
|
|
int offset;
|
|
|
|
kvm_get_segment(vcpu, &seg, n);
|
|
put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
|
|
|
|
if (n < 3)
|
|
offset = 0x7f84 + n * 12;
|
|
else
|
|
offset = 0x7f2c + (n - 3) * 12;
|
|
|
|
put_smstate(u32, buf, offset + 8, seg.base);
|
|
put_smstate(u32, buf, offset + 4, seg.limit);
|
|
put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
|
|
{
|
|
struct kvm_segment seg;
|
|
int offset;
|
|
u16 flags;
|
|
|
|
kvm_get_segment(vcpu, &seg, n);
|
|
offset = 0x7e00 + n * 16;
|
|
|
|
flags = enter_smm_get_segment_flags(&seg) >> 8;
|
|
put_smstate(u16, buf, offset, seg.selector);
|
|
put_smstate(u16, buf, offset + 2, flags);
|
|
put_smstate(u32, buf, offset + 4, seg.limit);
|
|
put_smstate(u64, buf, offset + 8, seg.base);
|
|
}
|
|
#endif
|
|
|
|
static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
|
|
{
|
|
struct desc_ptr dt;
|
|
struct kvm_segment seg;
|
|
unsigned long val;
|
|
int i;
|
|
|
|
put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
|
|
put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
|
|
put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
|
|
put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
|
|
|
|
for (i = 0; i < 8; i++)
|
|
put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
|
|
|
|
kvm_get_dr(vcpu, 6, &val);
|
|
put_smstate(u32, buf, 0x7fcc, (u32)val);
|
|
kvm_get_dr(vcpu, 7, &val);
|
|
put_smstate(u32, buf, 0x7fc8, (u32)val);
|
|
|
|
kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
|
|
put_smstate(u32, buf, 0x7fc4, seg.selector);
|
|
put_smstate(u32, buf, 0x7f64, seg.base);
|
|
put_smstate(u32, buf, 0x7f60, seg.limit);
|
|
put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
|
|
|
|
kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
|
|
put_smstate(u32, buf, 0x7fc0, seg.selector);
|
|
put_smstate(u32, buf, 0x7f80, seg.base);
|
|
put_smstate(u32, buf, 0x7f7c, seg.limit);
|
|
put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
|
|
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
put_smstate(u32, buf, 0x7f74, dt.address);
|
|
put_smstate(u32, buf, 0x7f70, dt.size);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
put_smstate(u32, buf, 0x7f58, dt.address);
|
|
put_smstate(u32, buf, 0x7f54, dt.size);
|
|
|
|
for (i = 0; i < 6; i++)
|
|
enter_smm_save_seg_32(vcpu, buf, i);
|
|
|
|
put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
|
|
|
|
/* revision id */
|
|
put_smstate(u32, buf, 0x7efc, 0x00020000);
|
|
put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
|
|
{
|
|
struct desc_ptr dt;
|
|
struct kvm_segment seg;
|
|
unsigned long val;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
|
|
|
|
put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
|
|
put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
|
|
|
|
kvm_get_dr(vcpu, 6, &val);
|
|
put_smstate(u64, buf, 0x7f68, val);
|
|
kvm_get_dr(vcpu, 7, &val);
|
|
put_smstate(u64, buf, 0x7f60, val);
|
|
|
|
put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
|
|
put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
|
|
put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
|
|
|
|
put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
|
|
|
|
/* revision id */
|
|
put_smstate(u32, buf, 0x7efc, 0x00020064);
|
|
|
|
put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
|
|
|
|
kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
|
|
put_smstate(u16, buf, 0x7e90, seg.selector);
|
|
put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
|
|
put_smstate(u32, buf, 0x7e94, seg.limit);
|
|
put_smstate(u64, buf, 0x7e98, seg.base);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
put_smstate(u32, buf, 0x7e84, dt.size);
|
|
put_smstate(u64, buf, 0x7e88, dt.address);
|
|
|
|
kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
|
|
put_smstate(u16, buf, 0x7e70, seg.selector);
|
|
put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
|
|
put_smstate(u32, buf, 0x7e74, seg.limit);
|
|
put_smstate(u64, buf, 0x7e78, seg.base);
|
|
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
put_smstate(u32, buf, 0x7e64, dt.size);
|
|
put_smstate(u64, buf, 0x7e68, dt.address);
|
|
|
|
for (i = 0; i < 6; i++)
|
|
enter_smm_save_seg_64(vcpu, buf, i);
|
|
}
|
|
#endif
|
|
|
|
static void enter_smm(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment cs, ds;
|
|
struct desc_ptr dt;
|
|
char buf[512];
|
|
u32 cr0;
|
|
|
|
trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
|
|
memset(buf, 0, 512);
|
|
#ifdef CONFIG_X86_64
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
|
|
enter_smm_save_state_64(vcpu, buf);
|
|
else
|
|
#endif
|
|
enter_smm_save_state_32(vcpu, buf);
|
|
|
|
/*
|
|
* Give pre_enter_smm() a chance to make ISA-specific changes to the
|
|
* vCPU state (e.g. leave guest mode) after we've saved the state into
|
|
* the SMM state-save area.
|
|
*/
|
|
kvm_x86_ops->pre_enter_smm(vcpu, buf);
|
|
|
|
vcpu->arch.hflags |= HF_SMM_MASK;
|
|
kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
|
|
|
|
if (kvm_x86_ops->get_nmi_mask(vcpu))
|
|
vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
|
|
else
|
|
kvm_x86_ops->set_nmi_mask(vcpu, true);
|
|
|
|
kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
|
|
kvm_rip_write(vcpu, 0x8000);
|
|
|
|
cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
|
|
kvm_x86_ops->set_cr0(vcpu, cr0);
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
kvm_x86_ops->set_cr4(vcpu, 0);
|
|
|
|
/* Undocumented: IDT limit is set to zero on entry to SMM. */
|
|
dt.address = dt.size = 0;
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
|
|
__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
|
|
|
|
cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
|
|
cs.base = vcpu->arch.smbase;
|
|
|
|
ds.selector = 0;
|
|
ds.base = 0;
|
|
|
|
cs.limit = ds.limit = 0xffffffff;
|
|
cs.type = ds.type = 0x3;
|
|
cs.dpl = ds.dpl = 0;
|
|
cs.db = ds.db = 0;
|
|
cs.s = ds.s = 1;
|
|
cs.l = ds.l = 0;
|
|
cs.g = ds.g = 1;
|
|
cs.avl = ds.avl = 0;
|
|
cs.present = ds.present = 1;
|
|
cs.unusable = ds.unusable = 0;
|
|
cs.padding = ds.padding = 0;
|
|
|
|
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
|
|
kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
|
|
kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
|
|
kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
|
|
kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
|
|
kvm_x86_ops->set_efer(vcpu, 0);
|
|
#endif
|
|
|
|
kvm_update_cpuid(vcpu);
|
|
kvm_mmu_reset_context(vcpu);
|
|
}
|
|
|
|
static void process_smi(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.smi_pending = true;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
void kvm_make_scan_ioapic_request(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
|
|
}
|
|
|
|
static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_apic_present(vcpu))
|
|
return;
|
|
|
|
bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
|
|
|
|
if (irqchip_split(vcpu->kvm))
|
|
kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
|
|
else {
|
|
if (vcpu->arch.apicv_active)
|
|
kvm_x86_ops->sync_pir_to_irr(vcpu);
|
|
if (ioapic_in_kernel(vcpu->kvm))
|
|
kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
|
|
}
|
|
|
|
if (is_guest_mode(vcpu))
|
|
vcpu->arch.load_eoi_exitmap_pending = true;
|
|
else
|
|
kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
|
|
}
|
|
|
|
static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 eoi_exit_bitmap[4];
|
|
|
|
if (!kvm_apic_hw_enabled(vcpu->arch.apic))
|
|
return;
|
|
|
|
bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
|
|
vcpu_to_synic(vcpu)->vec_bitmap, 256);
|
|
kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
|
|
}
|
|
|
|
void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long apic_address;
|
|
|
|
/*
|
|
* The physical address of apic access page is stored in the VMCS.
|
|
* Update it when it becomes invalid.
|
|
*/
|
|
apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
|
|
if (start <= apic_address && apic_address < end)
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
|
|
}
|
|
|
|
void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page = NULL;
|
|
|
|
if (!lapic_in_kernel(vcpu))
|
|
return;
|
|
|
|
if (!kvm_x86_ops->set_apic_access_page_addr)
|
|
return;
|
|
|
|
page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
|
|
if (is_error_page(page))
|
|
return;
|
|
kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
|
|
|
|
/*
|
|
* Do not pin apic access page in memory, the MMU notifier
|
|
* will call us again if it is migrated or swapped out.
|
|
*/
|
|
put_page(page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
|
|
|
|
void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
smp_send_reschedule(vcpu->cpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
|
|
|
|
/*
|
|
* Returns 1 to let vcpu_run() continue the guest execution loop without
|
|
* exiting to the userspace. Otherwise, the value will be returned to the
|
|
* userspace.
|
|
*/
|
|
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
bool req_int_win =
|
|
dm_request_for_irq_injection(vcpu) &&
|
|
kvm_cpu_accept_dm_intr(vcpu);
|
|
|
|
bool req_immediate_exit = false;
|
|
|
|
if (kvm_request_pending(vcpu)) {
|
|
if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
|
|
kvm_x86_ops->get_vmcs12_pages(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
|
|
kvm_mmu_unload(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
|
|
__kvm_migrate_timers(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
|
|
kvm_gen_update_masterclock(vcpu->kvm);
|
|
if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
|
|
kvm_gen_kvmclock_update(vcpu);
|
|
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
|
|
r = kvm_guest_time_update(vcpu);
|
|
if (unlikely(r))
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
|
|
kvm_mmu_sync_roots(vcpu);
|
|
if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
|
|
kvm_mmu_load_cr3(vcpu);
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvm_vcpu_flush_tlb(vcpu, true);
|
|
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
vcpu->mmio_needed = 0;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
|
|
/* Page is swapped out. Do synthetic halt */
|
|
vcpu->arch.apf.halted = true;
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
|
|
record_steal_time(vcpu);
|
|
if (kvm_check_request(KVM_REQ_SMI, vcpu))
|
|
process_smi(vcpu);
|
|
if (kvm_check_request(KVM_REQ_NMI, vcpu))
|
|
process_nmi(vcpu);
|
|
if (kvm_check_request(KVM_REQ_PMU, vcpu))
|
|
kvm_pmu_handle_event(vcpu);
|
|
if (kvm_check_request(KVM_REQ_PMI, vcpu))
|
|
kvm_pmu_deliver_pmi(vcpu);
|
|
if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
|
|
BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
|
|
if (test_bit(vcpu->arch.pending_ioapic_eoi,
|
|
vcpu->arch.ioapic_handled_vectors)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
|
|
vcpu->run->eoi.vector =
|
|
vcpu->arch.pending_ioapic_eoi;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
|
|
vcpu_scan_ioapic(vcpu);
|
|
if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
|
|
vcpu_load_eoi_exitmap(vcpu);
|
|
if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
|
|
kvm_vcpu_reload_apic_access_page(vcpu);
|
|
if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
|
|
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
|
|
vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_HYPERV;
|
|
vcpu->run->hyperv = vcpu->arch.hyperv.exit;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* KVM_REQ_HV_STIMER has to be processed after
|
|
* KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
|
|
* depend on the guest clock being up-to-date
|
|
*/
|
|
if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
|
|
kvm_hv_process_stimers(vcpu);
|
|
}
|
|
|
|
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
|
|
++vcpu->stat.req_event;
|
|
kvm_apic_accept_events(vcpu);
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (inject_pending_event(vcpu) != 0)
|
|
req_immediate_exit = true;
|
|
else {
|
|
/* Enable SMI/NMI/IRQ window open exits if needed.
|
|
*
|
|
* SMIs have three cases:
|
|
* 1) They can be nested, and then there is nothing to
|
|
* do here because RSM will cause a vmexit anyway.
|
|
* 2) There is an ISA-specific reason why SMI cannot be
|
|
* injected, and the moment when this changes can be
|
|
* intercepted.
|
|
* 3) Or the SMI can be pending because
|
|
* inject_pending_event has completed the injection
|
|
* of an IRQ or NMI from the previous vmexit, and
|
|
* then we request an immediate exit to inject the
|
|
* SMI.
|
|
*/
|
|
if (vcpu->arch.smi_pending && !is_smm(vcpu))
|
|
if (!kvm_x86_ops->enable_smi_window(vcpu))
|
|
req_immediate_exit = true;
|
|
if (vcpu->arch.nmi_pending)
|
|
kvm_x86_ops->enable_nmi_window(vcpu);
|
|
if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
|
|
kvm_x86_ops->enable_irq_window(vcpu);
|
|
WARN_ON(vcpu->arch.exception.pending);
|
|
}
|
|
|
|
if (kvm_lapic_enabled(vcpu)) {
|
|
update_cr8_intercept(vcpu);
|
|
kvm_lapic_sync_to_vapic(vcpu);
|
|
}
|
|
}
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r)) {
|
|
goto cancel_injection;
|
|
}
|
|
|
|
preempt_disable();
|
|
|
|
kvm_x86_ops->prepare_guest_switch(vcpu);
|
|
|
|
/*
|
|
* Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
|
|
* IPI are then delayed after guest entry, which ensures that they
|
|
* result in virtual interrupt delivery.
|
|
*/
|
|
local_irq_disable();
|
|
vcpu->mode = IN_GUEST_MODE;
|
|
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
|
|
/*
|
|
* 1) We should set ->mode before checking ->requests. Please see
|
|
* the comment in kvm_vcpu_exiting_guest_mode().
|
|
*
|
|
* 2) For APICv, we should set ->mode before checking PIR.ON. This
|
|
* pairs with the memory barrier implicit in pi_test_and_set_on
|
|
* (see vmx_deliver_posted_interrupt).
|
|
*
|
|
* 3) This also orders the write to mode from any reads to the page
|
|
* tables done while the VCPU is running. Please see the comment
|
|
* in kvm_flush_remote_tlbs.
|
|
*/
|
|
smp_mb__after_srcu_read_unlock();
|
|
|
|
/*
|
|
* This handles the case where a posted interrupt was
|
|
* notified with kvm_vcpu_kick.
|
|
*/
|
|
if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
|
|
kvm_x86_ops->sync_pir_to_irr(vcpu);
|
|
|
|
if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
|
|
|| need_resched() || signal_pending(current)) {
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
smp_wmb();
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = 1;
|
|
goto cancel_injection;
|
|
}
|
|
|
|
if (req_immediate_exit) {
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
kvm_x86_ops->request_immediate_exit(vcpu);
|
|
}
|
|
|
|
trace_kvm_entry(vcpu->vcpu_id);
|
|
if (lapic_timer_advance_ns)
|
|
wait_lapic_expire(vcpu);
|
|
guest_enter_irqoff();
|
|
|
|
if (unlikely(vcpu->arch.switch_db_regs)) {
|
|
set_debugreg(0, 7);
|
|
set_debugreg(vcpu->arch.eff_db[0], 0);
|
|
set_debugreg(vcpu->arch.eff_db[1], 1);
|
|
set_debugreg(vcpu->arch.eff_db[2], 2);
|
|
set_debugreg(vcpu->arch.eff_db[3], 3);
|
|
set_debugreg(vcpu->arch.dr6, 6);
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
|
|
}
|
|
|
|
kvm_x86_ops->run(vcpu);
|
|
|
|
/*
|
|
* Do this here before restoring debug registers on the host. And
|
|
* since we do this before handling the vmexit, a DR access vmexit
|
|
* can (a) read the correct value of the debug registers, (b) set
|
|
* KVM_DEBUGREG_WONT_EXIT again.
|
|
*/
|
|
if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
|
|
WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
|
|
kvm_x86_ops->sync_dirty_debug_regs(vcpu);
|
|
kvm_update_dr0123(vcpu);
|
|
kvm_update_dr6(vcpu);
|
|
kvm_update_dr7(vcpu);
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
|
|
}
|
|
|
|
/*
|
|
* If the guest has used debug registers, at least dr7
|
|
* will be disabled while returning to the host.
|
|
* If we don't have active breakpoints in the host, we don't
|
|
* care about the messed up debug address registers. But if
|
|
* we have some of them active, restore the old state.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_restore();
|
|
|
|
vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
smp_wmb();
|
|
|
|
kvm_before_interrupt(vcpu);
|
|
kvm_x86_ops->handle_external_intr(vcpu);
|
|
kvm_after_interrupt(vcpu);
|
|
|
|
++vcpu->stat.exits;
|
|
|
|
guest_exit_irqoff();
|
|
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
/*
|
|
* Profile KVM exit RIPs:
|
|
*/
|
|
if (unlikely(prof_on == KVM_PROFILING)) {
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
profile_hit(KVM_PROFILING, (void *)rip);
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.tsc_always_catchup))
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
|
|
if (vcpu->arch.apic_attention)
|
|
kvm_lapic_sync_from_vapic(vcpu);
|
|
|
|
vcpu->arch.gpa_available = false;
|
|
r = kvm_x86_ops->handle_exit(vcpu);
|
|
return r;
|
|
|
|
cancel_injection:
|
|
kvm_x86_ops->cancel_injection(vcpu);
|
|
if (unlikely(vcpu->arch.apic_attention))
|
|
kvm_lapic_sync_from_vapic(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_arch_vcpu_runnable(vcpu) &&
|
|
(!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
kvm_vcpu_block(vcpu);
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
|
|
if (kvm_x86_ops->post_block)
|
|
kvm_x86_ops->post_block(vcpu);
|
|
|
|
if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
|
|
return 1;
|
|
}
|
|
|
|
kvm_apic_accept_events(vcpu);
|
|
switch(vcpu->arch.mp_state) {
|
|
case KVM_MP_STATE_HALTED:
|
|
vcpu->arch.pv.pv_unhalted = false;
|
|
vcpu->arch.mp_state =
|
|
KVM_MP_STATE_RUNNABLE;
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.apf.halted = false;
|
|
break;
|
|
case KVM_MP_STATE_INIT_RECEIVED:
|
|
break;
|
|
default:
|
|
return -EINTR;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
|
|
kvm_x86_ops->check_nested_events(vcpu);
|
|
|
|
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
|
|
!vcpu->arch.apf.halted);
|
|
}
|
|
|
|
static int vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
vcpu->arch.l1tf_flush_l1d = true;
|
|
|
|
for (;;) {
|
|
if (kvm_vcpu_running(vcpu)) {
|
|
r = vcpu_enter_guest(vcpu);
|
|
} else {
|
|
r = vcpu_block(kvm, vcpu);
|
|
}
|
|
|
|
if (r <= 0)
|
|
break;
|
|
|
|
kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
kvm_inject_pending_timer_irqs(vcpu);
|
|
|
|
if (dm_request_for_irq_injection(vcpu) &&
|
|
kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
|
|
r = 0;
|
|
vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
++vcpu->stat.request_irq_exits;
|
|
break;
|
|
}
|
|
|
|
kvm_check_async_pf_completion(vcpu);
|
|
|
|
if (signal_pending(current)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.signal_exits;
|
|
break;
|
|
}
|
|
if (need_resched()) {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
cond_resched();
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
if (r != EMULATE_DONE)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int complete_emulated_pio(struct kvm_vcpu *vcpu)
|
|
{
|
|
BUG_ON(!vcpu->arch.pio.count);
|
|
|
|
return complete_emulated_io(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Implements the following, as a state machine:
|
|
*
|
|
* read:
|
|
* for each fragment
|
|
* for each mmio piece in the fragment
|
|
* write gpa, len
|
|
* exit
|
|
* copy data
|
|
* execute insn
|
|
*
|
|
* write:
|
|
* for each fragment
|
|
* for each mmio piece in the fragment
|
|
* write gpa, len
|
|
* copy data
|
|
* exit
|
|
*/
|
|
static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
struct kvm_mmio_fragment *frag;
|
|
unsigned len;
|
|
|
|
BUG_ON(!vcpu->mmio_needed);
|
|
|
|
/* Complete previous fragment */
|
|
frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
|
|
len = min(8u, frag->len);
|
|
if (!vcpu->mmio_is_write)
|
|
memcpy(frag->data, run->mmio.data, len);
|
|
|
|
if (frag->len <= 8) {
|
|
/* Switch to the next fragment. */
|
|
frag++;
|
|
vcpu->mmio_cur_fragment++;
|
|
} else {
|
|
/* Go forward to the next mmio piece. */
|
|
frag->data += len;
|
|
frag->gpa += len;
|
|
frag->len -= len;
|
|
}
|
|
|
|
if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
|
|
vcpu->mmio_needed = 0;
|
|
|
|
/* FIXME: return into emulator if single-stepping. */
|
|
if (vcpu->mmio_is_write)
|
|
return 1;
|
|
vcpu->mmio_read_completed = 1;
|
|
return complete_emulated_io(vcpu);
|
|
}
|
|
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
run->mmio.phys_addr = frag->gpa;
|
|
if (vcpu->mmio_is_write)
|
|
memcpy(run->mmio.data, frag->data, min(8u, frag->len));
|
|
run->mmio.len = min(8u, frag->len);
|
|
run->mmio.is_write = vcpu->mmio_is_write;
|
|
vcpu->arch.complete_userspace_io = complete_emulated_mmio;
|
|
return 0;
|
|
}
|
|
|
|
/* Swap (qemu) user FPU context for the guest FPU context. */
|
|
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
|
|
/* PKRU is separately restored in kvm_x86_ops->run. */
|
|
__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
|
|
~XFEATURE_MASK_PKRU);
|
|
preempt_enable();
|
|
trace_kvm_fpu(1);
|
|
}
|
|
|
|
/* When vcpu_run ends, restore user space FPU context. */
|
|
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
|
|
copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
|
|
preempt_enable();
|
|
++vcpu->stat.fpu_reload;
|
|
trace_kvm_fpu(0);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
int r;
|
|
|
|
vcpu_load(vcpu);
|
|
kvm_sigset_activate(vcpu);
|
|
kvm_load_guest_fpu(vcpu);
|
|
|
|
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
|
|
if (kvm_run->immediate_exit) {
|
|
r = -EINTR;
|
|
goto out;
|
|
}
|
|
kvm_vcpu_block(vcpu);
|
|
kvm_apic_accept_events(vcpu);
|
|
kvm_clear_request(KVM_REQ_UNHALT, vcpu);
|
|
r = -EAGAIN;
|
|
if (signal_pending(current)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.signal_exits;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (vcpu->run->kvm_dirty_regs) {
|
|
r = sync_regs(vcpu);
|
|
if (r != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* re-sync apic's tpr */
|
|
if (!lapic_in_kernel(vcpu)) {
|
|
if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (unlikely(vcpu->arch.complete_userspace_io)) {
|
|
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
|
|
vcpu->arch.complete_userspace_io = NULL;
|
|
r = cui(vcpu);
|
|
if (r <= 0)
|
|
goto out;
|
|
} else
|
|
WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
|
|
|
|
if (kvm_run->immediate_exit)
|
|
r = -EINTR;
|
|
else
|
|
r = vcpu_run(vcpu);
|
|
|
|
out:
|
|
kvm_put_guest_fpu(vcpu);
|
|
if (vcpu->run->kvm_valid_regs)
|
|
store_regs(vcpu);
|
|
post_kvm_run_save(vcpu);
|
|
kvm_sigset_deactivate(vcpu);
|
|
|
|
vcpu_put(vcpu);
|
|
return r;
|
|
}
|
|
|
|
static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
|
|
/*
|
|
* We are here if userspace calls get_regs() in the middle of
|
|
* instruction emulation. Registers state needs to be copied
|
|
* back from emulation context to vcpu. Userspace shouldn't do
|
|
* that usually, but some bad designed PV devices (vmware
|
|
* backdoor interface) need this to work
|
|
*/
|
|
emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
}
|
|
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
|
|
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
|
|
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
|
|
#ifdef CONFIG_X86_64
|
|
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
|
|
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
|
|
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
|
|
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
|
|
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
|
|
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
|
|
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
|
|
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
|
|
#endif
|
|
|
|
regs->rip = kvm_rip_read(vcpu);
|
|
regs->rflags = kvm_get_rflags(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
vcpu_load(vcpu);
|
|
__get_regs(vcpu, regs);
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
|
|
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
|
|
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
|
|
#ifdef CONFIG_X86_64
|
|
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
|
|
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
|
|
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
|
|
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
|
|
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
|
|
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
|
|
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
|
|
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
|
|
#endif
|
|
|
|
kvm_rip_write(vcpu, regs->rip);
|
|
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
|
|
|
|
vcpu->arch.exception.pending = false;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
vcpu_load(vcpu);
|
|
__set_regs(vcpu, regs);
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
*db = cs.db;
|
|
*l = cs.l;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
|
|
|
|
static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
|
|
{
|
|
struct desc_ptr dt;
|
|
|
|
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
sregs->idt.limit = dt.size;
|
|
sregs->idt.base = dt.address;
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
sregs->gdt.limit = dt.size;
|
|
sregs->gdt.base = dt.address;
|
|
|
|
sregs->cr0 = kvm_read_cr0(vcpu);
|
|
sregs->cr2 = vcpu->arch.cr2;
|
|
sregs->cr3 = kvm_read_cr3(vcpu);
|
|
sregs->cr4 = kvm_read_cr4(vcpu);
|
|
sregs->cr8 = kvm_get_cr8(vcpu);
|
|
sregs->efer = vcpu->arch.efer;
|
|
sregs->apic_base = kvm_get_apic_base(vcpu);
|
|
|
|
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
|
|
|
|
if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
|
|
set_bit(vcpu->arch.interrupt.nr,
|
|
(unsigned long *)sregs->interrupt_bitmap);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
vcpu_load(vcpu);
|
|
__get_sregs(vcpu, sregs);
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
vcpu_load(vcpu);
|
|
if (kvm_mpx_supported())
|
|
kvm_load_guest_fpu(vcpu);
|
|
|
|
kvm_apic_accept_events(vcpu);
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
|
|
vcpu->arch.pv.pv_unhalted)
|
|
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
else
|
|
mp_state->mp_state = vcpu->arch.mp_state;
|
|
|
|
if (kvm_mpx_supported())
|
|
kvm_put_guest_fpu(vcpu);
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
int ret = -EINVAL;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (!lapic_in_kernel(vcpu) &&
|
|
mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
|
|
goto out;
|
|
|
|
/* INITs are latched while in SMM */
|
|
if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
|
|
(mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
|
|
mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
|
|
goto out;
|
|
|
|
if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
|
|
vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
|
|
set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
|
|
} else
|
|
vcpu->arch.mp_state = mp_state->mp_state;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
ret = 0;
|
|
out:
|
|
vcpu_put(vcpu);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
|
|
int reason, bool has_error_code, u32 error_code)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
|
|
has_error_code, error_code);
|
|
|
|
if (ret)
|
|
return EMULATE_FAIL;
|
|
|
|
kvm_rip_write(vcpu, ctxt->eip);
|
|
kvm_set_rflags(vcpu, ctxt->eflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_task_switch);
|
|
|
|
static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
|
|
{
|
|
if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
|
|
/*
|
|
* When EFER.LME and CR0.PG are set, the processor is in
|
|
* 64-bit mode (though maybe in a 32-bit code segment).
|
|
* CR4.PAE and EFER.LMA must be set.
|
|
*/
|
|
if (!(sregs->cr4 & X86_CR4_PAE)
|
|
|| !(sregs->efer & EFER_LMA))
|
|
return -EINVAL;
|
|
} else {
|
|
/*
|
|
* Not in 64-bit mode: EFER.LMA is clear and the code
|
|
* segment cannot be 64-bit.
|
|
*/
|
|
if (sregs->efer & EFER_LMA || sregs->cs.l)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return kvm_valid_cr4(vcpu, sregs->cr4);
|
|
}
|
|
|
|
static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
|
|
{
|
|
struct msr_data apic_base_msr;
|
|
int mmu_reset_needed = 0;
|
|
int cpuid_update_needed = 0;
|
|
int pending_vec, max_bits, idx;
|
|
struct desc_ptr dt;
|
|
int ret = -EINVAL;
|
|
|
|
if (kvm_valid_sregs(vcpu, sregs))
|
|
goto out;
|
|
|
|
apic_base_msr.data = sregs->apic_base;
|
|
apic_base_msr.host_initiated = true;
|
|
if (kvm_set_apic_base(vcpu, &apic_base_msr))
|
|
goto out;
|
|
|
|
dt.size = sregs->idt.limit;
|
|
dt.address = sregs->idt.base;
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
dt.size = sregs->gdt.limit;
|
|
dt.address = sregs->gdt.base;
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
|
|
vcpu->arch.cr2 = sregs->cr2;
|
|
mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
|
|
vcpu->arch.cr3 = sregs->cr3;
|
|
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
|
|
|
|
kvm_set_cr8(vcpu, sregs->cr8);
|
|
|
|
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
|
|
kvm_x86_ops->set_efer(vcpu, sregs->efer);
|
|
|
|
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
|
|
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
|
|
vcpu->arch.cr0 = sregs->cr0;
|
|
|
|
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
|
|
cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
|
|
(X86_CR4_OSXSAVE | X86_CR4_PKE));
|
|
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
|
|
if (cpuid_update_needed)
|
|
kvm_update_cpuid(vcpu);
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
if (is_pae_paging(vcpu)) {
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
|
|
mmu_reset_needed = 1;
|
|
}
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
if (mmu_reset_needed)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
max_bits = KVM_NR_INTERRUPTS;
|
|
pending_vec = find_first_bit(
|
|
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
|
|
if (pending_vec < max_bits) {
|
|
kvm_queue_interrupt(vcpu, pending_vec, false);
|
|
pr_debug("Set back pending irq %d\n", pending_vec);
|
|
}
|
|
|
|
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
update_cr8_intercept(vcpu);
|
|
|
|
/* Older userspace won't unhalt the vcpu on reset. */
|
|
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
|
|
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
|
|
!is_protmode(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int ret;
|
|
|
|
vcpu_load(vcpu);
|
|
ret = __set_sregs(vcpu, sregs);
|
|
vcpu_put(vcpu);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
struct kvm_guest_debug *dbg)
|
|
{
|
|
unsigned long rflags;
|
|
int i, r;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
|
|
r = -EBUSY;
|
|
if (vcpu->arch.exception.pending)
|
|
goto out;
|
|
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
else
|
|
kvm_queue_exception(vcpu, BP_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* Read rflags as long as potentially injected trace flags are still
|
|
* filtered out.
|
|
*/
|
|
rflags = kvm_get_rflags(vcpu);
|
|
|
|
vcpu->guest_debug = dbg->control;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
|
|
vcpu->guest_debug = 0;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
|
|
for (i = 0; i < KVM_NR_DB_REGS; ++i)
|
|
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
|
|
vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
|
|
} else {
|
|
for (i = 0; i < KVM_NR_DB_REGS; i++)
|
|
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
|
|
}
|
|
kvm_update_dr7(vcpu);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
/*
|
|
* Trigger an rflags update that will inject or remove the trace
|
|
* flags.
|
|
*/
|
|
kvm_set_rflags(vcpu, rflags);
|
|
|
|
kvm_x86_ops->update_bp_intercept(vcpu);
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
vcpu_put(vcpu);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Translate a guest virtual address to a guest physical address.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
struct kvm_translation *tr)
|
|
{
|
|
unsigned long vaddr = tr->linear_address;
|
|
gpa_t gpa;
|
|
int idx;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
tr->physical_address = gpa;
|
|
tr->valid = gpa != UNMAPPED_GVA;
|
|
tr->writeable = 1;
|
|
tr->usermode = 0;
|
|
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct fxregs_state *fxsave;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
fxsave = &vcpu->arch.guest_fpu.state.fxsave;
|
|
memcpy(fpu->fpr, fxsave->st_space, 128);
|
|
fpu->fcw = fxsave->cwd;
|
|
fpu->fsw = fxsave->swd;
|
|
fpu->ftwx = fxsave->twd;
|
|
fpu->last_opcode = fxsave->fop;
|
|
fpu->last_ip = fxsave->rip;
|
|
fpu->last_dp = fxsave->rdp;
|
|
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
|
|
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct fxregs_state *fxsave;
|
|
|
|
vcpu_load(vcpu);
|
|
|
|
fxsave = &vcpu->arch.guest_fpu.state.fxsave;
|
|
|
|
memcpy(fxsave->st_space, fpu->fpr, 128);
|
|
fxsave->cwd = fpu->fcw;
|
|
fxsave->swd = fpu->fsw;
|
|
fxsave->twd = fpu->ftwx;
|
|
fxsave->fop = fpu->last_opcode;
|
|
fxsave->rip = fpu->last_ip;
|
|
fxsave->rdp = fpu->last_dp;
|
|
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
|
|
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static void store_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
|
|
|
|
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
|
|
__get_regs(vcpu, &vcpu->run->s.regs.regs);
|
|
|
|
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
|
|
__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
|
|
|
|
if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
|
|
kvm_vcpu_ioctl_x86_get_vcpu_events(
|
|
vcpu, &vcpu->run->s.regs.events);
|
|
}
|
|
|
|
static int sync_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
|
|
return -EINVAL;
|
|
|
|
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
|
|
__set_regs(vcpu, &vcpu->run->s.regs.regs);
|
|
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
|
|
}
|
|
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
|
|
if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
|
|
return -EINVAL;
|
|
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
|
|
}
|
|
if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
|
|
if (kvm_vcpu_ioctl_x86_set_vcpu_events(
|
|
vcpu, &vcpu->run->s.regs.events))
|
|
return -EINVAL;
|
|
vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fx_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
fpstate_init(&vcpu->arch.guest_fpu.state);
|
|
if (boot_cpu_has(X86_FEATURE_XSAVES))
|
|
vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
|
|
host_xcr0 | XSTATE_COMPACTION_ENABLED;
|
|
|
|
/*
|
|
* Ensure guest xcr0 is valid for loading
|
|
*/
|
|
vcpu->arch.xcr0 = XFEATURE_MASK_FP;
|
|
|
|
vcpu->arch.cr0 |= X86_CR0_ET;
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
|
|
struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
|
|
|
|
kvm_release_pfn(cache->pfn, cache->dirty, cache);
|
|
|
|
kvmclock_reset(vcpu);
|
|
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
free_cpumask_var(wbinvd_dirty_mask);
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
|
|
unsigned int id)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
|
|
printk_once(KERN_WARNING
|
|
"kvm: SMP vm created on host with unstable TSC; "
|
|
"guest TSC will not be reliable\n");
|
|
|
|
vcpu = kvm_x86_ops->vcpu_create(kvm, id);
|
|
|
|
return vcpu;
|
|
}
|
|
|
|
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
|
|
kvm_vcpu_mtrr_init(vcpu);
|
|
vcpu_load(vcpu);
|
|
kvm_vcpu_reset(vcpu, false);
|
|
kvm_mmu_setup(vcpu);
|
|
vcpu_put(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct msr_data msr;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
kvm_hv_vcpu_postcreate(vcpu);
|
|
|
|
if (mutex_lock_killable(&vcpu->mutex))
|
|
return;
|
|
vcpu_load(vcpu);
|
|
msr.data = 0x0;
|
|
msr.index = MSR_IA32_TSC;
|
|
msr.host_initiated = true;
|
|
kvm_write_tsc(vcpu, &msr);
|
|
vcpu_put(vcpu);
|
|
mutex_unlock(&vcpu->mutex);
|
|
|
|
if (!kvmclock_periodic_sync)
|
|
return;
|
|
|
|
schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
|
|
KVMCLOCK_SYNC_PERIOD);
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_free(vcpu);
|
|
}
|
|
|
|
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
kvm_lapic_reset(vcpu, init_event);
|
|
|
|
vcpu->arch.hflags = 0;
|
|
|
|
vcpu->arch.smi_pending = 0;
|
|
vcpu->arch.smi_count = 0;
|
|
atomic_set(&vcpu->arch.nmi_queued, 0);
|
|
vcpu->arch.nmi_pending = 0;
|
|
vcpu->arch.nmi_injected = false;
|
|
kvm_clear_interrupt_queue(vcpu);
|
|
kvm_clear_exception_queue(vcpu);
|
|
vcpu->arch.exception.pending = false;
|
|
|
|
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
|
|
kvm_update_dr0123(vcpu);
|
|
vcpu->arch.dr6 = DR6_INIT;
|
|
kvm_update_dr6(vcpu);
|
|
vcpu->arch.dr7 = DR7_FIXED_1;
|
|
kvm_update_dr7(vcpu);
|
|
|
|
vcpu->arch.cr2 = 0;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
vcpu->arch.apf.msr_val = 0;
|
|
vcpu->arch.st.msr_val = 0;
|
|
|
|
kvmclock_reset(vcpu);
|
|
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
vcpu->arch.apf.halted = false;
|
|
|
|
if (kvm_mpx_supported()) {
|
|
void *mpx_state_buffer;
|
|
|
|
/*
|
|
* To avoid have the INIT path from kvm_apic_has_events() that be
|
|
* called with loaded FPU and does not let userspace fix the state.
|
|
*/
|
|
if (init_event)
|
|
kvm_put_guest_fpu(vcpu);
|
|
mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
|
|
XFEATURE_MASK_BNDREGS);
|
|
if (mpx_state_buffer)
|
|
memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
|
|
mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
|
|
XFEATURE_MASK_BNDCSR);
|
|
if (mpx_state_buffer)
|
|
memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
|
|
if (init_event)
|
|
kvm_load_guest_fpu(vcpu);
|
|
}
|
|
|
|
if (!init_event) {
|
|
kvm_pmu_reset(vcpu);
|
|
vcpu->arch.smbase = 0x30000;
|
|
|
|
vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
|
|
vcpu->arch.msr_misc_features_enables = 0;
|
|
|
|
vcpu->arch.xcr0 = XFEATURE_MASK_FP;
|
|
}
|
|
|
|
memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
|
|
vcpu->arch.regs_avail = ~0;
|
|
vcpu->arch.regs_dirty = ~0;
|
|
|
|
vcpu->arch.ia32_xss = 0;
|
|
|
|
kvm_x86_ops->vcpu_reset(vcpu, init_event);
|
|
}
|
|
|
|
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
cs.selector = vector << 8;
|
|
cs.base = vector << 12;
|
|
kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
kvm_rip_write(vcpu, 0);
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void)
|
|
{
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
int ret;
|
|
u64 local_tsc;
|
|
u64 max_tsc = 0;
|
|
bool stable, backwards_tsc = false;
|
|
|
|
kvm_shared_msr_cpu_online();
|
|
ret = kvm_x86_ops->hardware_enable();
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
local_tsc = rdtsc();
|
|
stable = !kvm_check_tsc_unstable();
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!stable && vcpu->cpu == smp_processor_id())
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
if (stable && vcpu->arch.last_host_tsc > local_tsc) {
|
|
backwards_tsc = true;
|
|
if (vcpu->arch.last_host_tsc > max_tsc)
|
|
max_tsc = vcpu->arch.last_host_tsc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sometimes, even reliable TSCs go backwards. This happens on
|
|
* platforms that reset TSC during suspend or hibernate actions, but
|
|
* maintain synchronization. We must compensate. Fortunately, we can
|
|
* detect that condition here, which happens early in CPU bringup,
|
|
* before any KVM threads can be running. Unfortunately, we can't
|
|
* bring the TSCs fully up to date with real time, as we aren't yet far
|
|
* enough into CPU bringup that we know how much real time has actually
|
|
* elapsed; our helper function, ktime_get_boot_ns() will be using boot
|
|
* variables that haven't been updated yet.
|
|
*
|
|
* So we simply find the maximum observed TSC above, then record the
|
|
* adjustment to TSC in each VCPU. When the VCPU later gets loaded,
|
|
* the adjustment will be applied. Note that we accumulate
|
|
* adjustments, in case multiple suspend cycles happen before some VCPU
|
|
* gets a chance to run again. In the event that no KVM threads get a
|
|
* chance to run, we will miss the entire elapsed period, as we'll have
|
|
* reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
|
|
* loose cycle time. This isn't too big a deal, since the loss will be
|
|
* uniform across all VCPUs (not to mention the scenario is extremely
|
|
* unlikely). It is possible that a second hibernate recovery happens
|
|
* much faster than a first, causing the observed TSC here to be
|
|
* smaller; this would require additional padding adjustment, which is
|
|
* why we set last_host_tsc to the local tsc observed here.
|
|
*
|
|
* N.B. - this code below runs only on platforms with reliable TSC,
|
|
* as that is the only way backwards_tsc is set above. Also note
|
|
* that this runs for ALL vcpus, which is not a bug; all VCPUs should
|
|
* have the same delta_cyc adjustment applied if backwards_tsc
|
|
* is detected. Note further, this adjustment is only done once,
|
|
* as we reset last_host_tsc on all VCPUs to stop this from being
|
|
* called multiple times (one for each physical CPU bringup).
|
|
*
|
|
* Platforms with unreliable TSCs don't have to deal with this, they
|
|
* will be compensated by the logic in vcpu_load, which sets the TSC to
|
|
* catchup mode. This will catchup all VCPUs to real time, but cannot
|
|
* guarantee that they stay in perfect synchronization.
|
|
*/
|
|
if (backwards_tsc) {
|
|
u64 delta_cyc = max_tsc - local_tsc;
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm->arch.backwards_tsc_observed = true;
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
vcpu->arch.tsc_offset_adjustment += delta_cyc;
|
|
vcpu->arch.last_host_tsc = local_tsc;
|
|
kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
|
|
}
|
|
|
|
/*
|
|
* We have to disable TSC offset matching.. if you were
|
|
* booting a VM while issuing an S4 host suspend....
|
|
* you may have some problem. Solving this issue is
|
|
* left as an exercise to the reader.
|
|
*/
|
|
kvm->arch.last_tsc_nsec = 0;
|
|
kvm->arch.last_tsc_write = 0;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void)
|
|
{
|
|
kvm_x86_ops->hardware_disable();
|
|
drop_user_return_notifiers();
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_x86_ops->hardware_setup();
|
|
if (r != 0)
|
|
return r;
|
|
|
|
cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
|
|
|
|
if (kvm_has_tsc_control) {
|
|
/*
|
|
* Make sure the user can only configure tsc_khz values that
|
|
* fit into a signed integer.
|
|
* A min value is not calculated because it will always
|
|
* be 1 on all machines.
|
|
*/
|
|
u64 max = min(0x7fffffffULL,
|
|
__scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
|
|
kvm_max_guest_tsc_khz = max;
|
|
|
|
kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
|
|
}
|
|
|
|
kvm_init_msr_list();
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_hardware_unsetup(void)
|
|
{
|
|
kvm_x86_ops->hardware_unsetup();
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
kvm_x86_ops->check_processor_compatibility(rtn);
|
|
}
|
|
|
|
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
|
|
|
|
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
|
|
}
|
|
|
|
struct static_key kvm_no_apic_vcpu __read_mostly;
|
|
EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page;
|
|
int r;
|
|
|
|
vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
|
|
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
|
|
if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
else
|
|
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->arch.pio_data = page_address(page);
|
|
|
|
kvm_set_tsc_khz(vcpu, max_tsc_khz);
|
|
|
|
r = kvm_mmu_create(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_pio_data;
|
|
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
r = kvm_create_lapic(vcpu);
|
|
if (r < 0)
|
|
goto fail_mmu_destroy;
|
|
} else
|
|
static_key_slow_inc(&kvm_no_apic_vcpu);
|
|
|
|
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
|
|
GFP_KERNEL);
|
|
if (!vcpu->arch.mce_banks) {
|
|
r = -ENOMEM;
|
|
goto fail_free_lapic;
|
|
}
|
|
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
|
|
|
|
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
|
|
r = -ENOMEM;
|
|
goto fail_free_mce_banks;
|
|
}
|
|
|
|
fx_init(vcpu);
|
|
|
|
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
|
|
|
vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
|
|
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
kvm_pmu_init(vcpu);
|
|
|
|
vcpu->arch.pending_external_vector = -1;
|
|
vcpu->arch.preempted_in_kernel = false;
|
|
|
|
kvm_hv_vcpu_init(vcpu);
|
|
|
|
return 0;
|
|
|
|
fail_free_mce_banks:
|
|
kfree(vcpu->arch.mce_banks);
|
|
fail_free_lapic:
|
|
kvm_free_lapic(vcpu);
|
|
fail_mmu_destroy:
|
|
kvm_mmu_destroy(vcpu);
|
|
fail_free_pio_data:
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
fail:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
int idx;
|
|
|
|
kvm_hv_vcpu_uninit(vcpu);
|
|
kvm_pmu_destroy(vcpu);
|
|
kfree(vcpu->arch.mce_banks);
|
|
kvm_free_lapic(vcpu);
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
kvm_mmu_destroy(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
if (!lapic_in_kernel(vcpu))
|
|
static_key_slow_dec(&kvm_no_apic_vcpu);
|
|
}
|
|
|
|
void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
vcpu->arch.l1tf_flush_l1d = true;
|
|
kvm_x86_ops->sched_in(vcpu, cpu);
|
|
}
|
|
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
if (type)
|
|
return -EINVAL;
|
|
|
|
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
|
|
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
|
|
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
|
|
|
|
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
|
|
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
|
|
/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
|
|
set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
|
|
&kvm->arch.irq_sources_bitmap);
|
|
|
|
raw_spin_lock_init(&kvm->arch.tsc_write_lock);
|
|
mutex_init(&kvm->arch.apic_map_lock);
|
|
spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
|
|
|
|
kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
|
|
pvclock_update_vm_gtod_copy(kvm);
|
|
|
|
kvm->arch.guest_can_read_msr_platform_info = true;
|
|
|
|
INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
|
|
INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
|
|
|
|
kvm_hv_init_vm(kvm);
|
|
kvm_page_track_init(kvm);
|
|
kvm_mmu_init_vm(kvm);
|
|
|
|
if (kvm_x86_ops->vm_init)
|
|
return kvm_x86_ops->vm_init(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_post_init_vm(struct kvm *kvm)
|
|
{
|
|
return kvm_mmu_post_init_vm(kvm);
|
|
}
|
|
|
|
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_load(vcpu);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
}
|
|
|
|
static void kvm_free_vcpus(struct kvm *kvm)
|
|
{
|
|
unsigned int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
/*
|
|
* Unpin any mmu pages first.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_unload_vcpu_mmu(vcpu);
|
|
}
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_arch_vcpu_free(vcpu);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
|
|
kvm->vcpus[i] = NULL;
|
|
|
|
atomic_set(&kvm->online_vcpus, 0);
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
void kvm_arch_sync_events(struct kvm *kvm)
|
|
{
|
|
cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
|
|
cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
|
|
kvm_free_pit(kvm);
|
|
}
|
|
|
|
int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
|
|
{
|
|
int i, r;
|
|
unsigned long hva;
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
struct kvm_memory_slot *slot, old;
|
|
|
|
/* Called with kvm->slots_lock held. */
|
|
if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
|
|
return -EINVAL;
|
|
|
|
slot = id_to_memslot(slots, id);
|
|
if (size) {
|
|
if (slot->npages)
|
|
return -EEXIST;
|
|
|
|
/*
|
|
* MAP_SHARED to prevent internal slot pages from being moved
|
|
* by fork()/COW.
|
|
*/
|
|
hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_ANONYMOUS, 0);
|
|
if (IS_ERR((void *)hva))
|
|
return PTR_ERR((void *)hva);
|
|
} else {
|
|
if (!slot->npages)
|
|
return 0;
|
|
|
|
hva = 0;
|
|
}
|
|
|
|
old = *slot;
|
|
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
|
|
struct kvm_userspace_memory_region m;
|
|
|
|
m.slot = id | (i << 16);
|
|
m.flags = 0;
|
|
m.guest_phys_addr = gpa;
|
|
m.userspace_addr = hva;
|
|
m.memory_size = size;
|
|
r = __kvm_set_memory_region(kvm, &m);
|
|
if (r < 0)
|
|
return r;
|
|
}
|
|
|
|
if (!size)
|
|
vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__x86_set_memory_region);
|
|
|
|
int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = __x86_set_memory_region(kvm, id, gpa, size);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(x86_set_memory_region);
|
|
|
|
void kvm_arch_pre_destroy_vm(struct kvm *kvm)
|
|
{
|
|
kvm_mmu_pre_destroy_vm(kvm);
|
|
}
|
|
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
if (current->mm == kvm->mm) {
|
|
/*
|
|
* Free memory regions allocated on behalf of userspace,
|
|
* unless the the memory map has changed due to process exit
|
|
* or fd copying.
|
|
*/
|
|
x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
|
|
x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
|
|
x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
|
|
}
|
|
if (kvm_x86_ops->vm_destroy)
|
|
kvm_x86_ops->vm_destroy(kvm);
|
|
kvm_pic_destroy(kvm);
|
|
kvm_ioapic_destroy(kvm);
|
|
kvm_free_vcpus(kvm);
|
|
kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
|
|
kvm_mmu_uninit_vm(kvm);
|
|
kvm_page_track_cleanup(kvm);
|
|
kvm_hv_destroy_vm(kvm);
|
|
}
|
|
|
|
void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
|
|
kvfree(free->arch.rmap[i]);
|
|
free->arch.rmap[i] = NULL;
|
|
}
|
|
if (i == 0)
|
|
continue;
|
|
|
|
if (!dont || free->arch.lpage_info[i - 1] !=
|
|
dont->arch.lpage_info[i - 1]) {
|
|
kvfree(free->arch.lpage_info[i - 1]);
|
|
free->arch.lpage_info[i - 1] = NULL;
|
|
}
|
|
}
|
|
|
|
kvm_page_track_free_memslot(free, dont);
|
|
}
|
|
|
|
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Clear out the previous array pointers for the KVM_MR_MOVE case. The
|
|
* old arrays will be freed by __kvm_set_memory_region() if installing
|
|
* the new memslot is successful.
|
|
*/
|
|
memset(&slot->arch, 0, sizeof(slot->arch));
|
|
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
struct kvm_lpage_info *linfo;
|
|
unsigned long ugfn;
|
|
int lpages;
|
|
int level = i + 1;
|
|
|
|
lpages = gfn_to_index(slot->base_gfn + npages - 1,
|
|
slot->base_gfn, level) + 1;
|
|
|
|
slot->arch.rmap[i] =
|
|
kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
|
|
GFP_KERNEL);
|
|
if (!slot->arch.rmap[i])
|
|
goto out_free;
|
|
if (i == 0)
|
|
continue;
|
|
|
|
linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
|
|
if (!linfo)
|
|
goto out_free;
|
|
|
|
slot->arch.lpage_info[i - 1] = linfo;
|
|
|
|
if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
|
|
linfo[0].disallow_lpage = 1;
|
|
if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
|
|
linfo[lpages - 1].disallow_lpage = 1;
|
|
ugfn = slot->userspace_addr >> PAGE_SHIFT;
|
|
/*
|
|
* If the gfn and userspace address are not aligned wrt each
|
|
* other, or if explicitly asked to, disable large page
|
|
* support for this slot
|
|
*/
|
|
if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
|
|
!kvm_largepages_enabled()) {
|
|
unsigned long j;
|
|
|
|
for (j = 0; j < lpages; ++j)
|
|
linfo[j].disallow_lpage = 1;
|
|
}
|
|
}
|
|
|
|
if (kvm_page_track_create_memslot(slot, npages))
|
|
goto out_free;
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
|
|
kvfree(slot->arch.rmap[i]);
|
|
slot->arch.rmap[i] = NULL;
|
|
if (i == 0)
|
|
continue;
|
|
|
|
kvfree(slot->arch.lpage_info[i - 1]);
|
|
slot->arch.lpage_info[i - 1] = NULL;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
/*
|
|
* memslots->generation has been incremented.
|
|
* mmio generation may have reached its maximum value.
|
|
*/
|
|
kvm_mmu_invalidate_mmio_sptes(kvm, gen);
|
|
|
|
/* Force re-initialization of steal_time cache */
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
enum kvm_mr_change change)
|
|
{
|
|
if (change == KVM_MR_MOVE)
|
|
return kvm_arch_create_memslot(kvm, memslot,
|
|
mem->memory_size >> PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
|
|
struct kvm_memory_slot *new)
|
|
{
|
|
/* Still write protect RO slot */
|
|
if (new->flags & KVM_MEM_READONLY) {
|
|
kvm_mmu_slot_remove_write_access(kvm, new);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Call kvm_x86_ops dirty logging hooks when they are valid.
|
|
*
|
|
* kvm_x86_ops->slot_disable_log_dirty is called when:
|
|
*
|
|
* - KVM_MR_CREATE with dirty logging is disabled
|
|
* - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
|
|
*
|
|
* The reason is, in case of PML, we need to set D-bit for any slots
|
|
* with dirty logging disabled in order to eliminate unnecessary GPA
|
|
* logging in PML buffer (and potential PML buffer full VMEXT). This
|
|
* guarantees leaving PML enabled during guest's lifetime won't have
|
|
* any additonal overhead from PML when guest is running with dirty
|
|
* logging disabled for memory slots.
|
|
*
|
|
* kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
|
|
* to dirty logging mode.
|
|
*
|
|
* If kvm_x86_ops dirty logging hooks are invalid, use write protect.
|
|
*
|
|
* In case of write protect:
|
|
*
|
|
* Write protect all pages for dirty logging.
|
|
*
|
|
* All the sptes including the large sptes which point to this
|
|
* slot are set to readonly. We can not create any new large
|
|
* spte on this slot until the end of the logging.
|
|
*
|
|
* See the comments in fast_page_fault().
|
|
*/
|
|
if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
|
|
if (kvm_x86_ops->slot_enable_log_dirty)
|
|
kvm_x86_ops->slot_enable_log_dirty(kvm, new);
|
|
else
|
|
kvm_mmu_slot_remove_write_access(kvm, new);
|
|
} else {
|
|
if (kvm_x86_ops->slot_disable_log_dirty)
|
|
kvm_x86_ops->slot_disable_log_dirty(kvm, new);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
const struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old,
|
|
const struct kvm_memory_slot *new,
|
|
enum kvm_mr_change change)
|
|
{
|
|
int nr_mmu_pages = 0;
|
|
|
|
if (!kvm->arch.n_requested_mmu_pages)
|
|
nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
|
|
|
|
if (nr_mmu_pages)
|
|
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
|
|
|
|
/*
|
|
* Dirty logging tracks sptes in 4k granularity, meaning that large
|
|
* sptes have to be split. If live migration is successful, the guest
|
|
* in the source machine will be destroyed and large sptes will be
|
|
* created in the destination. However, if the guest continues to run
|
|
* in the source machine (for example if live migration fails), small
|
|
* sptes will remain around and cause bad performance.
|
|
*
|
|
* Scan sptes if dirty logging has been stopped, dropping those
|
|
* which can be collapsed into a single large-page spte. Later
|
|
* page faults will create the large-page sptes.
|
|
*/
|
|
if ((change != KVM_MR_DELETE) &&
|
|
(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
|
|
!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
kvm_mmu_zap_collapsible_sptes(kvm, new);
|
|
|
|
/*
|
|
* Set up write protection and/or dirty logging for the new slot.
|
|
*
|
|
* For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
|
|
* been zapped so no dirty logging staff is needed for old slot. For
|
|
* KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
|
|
* new and it's also covered when dealing with the new slot.
|
|
*
|
|
* FIXME: const-ify all uses of struct kvm_memory_slot.
|
|
*/
|
|
if (change != KVM_MR_DELETE)
|
|
kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_all(struct kvm *kvm)
|
|
{
|
|
kvm_mmu_invalidate_zap_all_pages(kvm);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
|
|
struct kvm_memory_slot *slot)
|
|
{
|
|
kvm_page_track_flush_slot(kvm, slot);
|
|
}
|
|
|
|
static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (is_guest_mode(vcpu) &&
|
|
kvm_x86_ops->guest_apic_has_interrupt &&
|
|
kvm_x86_ops->guest_apic_has_interrupt(vcpu));
|
|
}
|
|
|
|
static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!list_empty_careful(&vcpu->async_pf.done))
|
|
return true;
|
|
|
|
if (kvm_apic_has_events(vcpu))
|
|
return true;
|
|
|
|
if (vcpu->arch.pv.pv_unhalted)
|
|
return true;
|
|
|
|
if (vcpu->arch.exception.pending)
|
|
return true;
|
|
|
|
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
|
|
(vcpu->arch.nmi_pending &&
|
|
kvm_x86_ops->nmi_allowed(vcpu)))
|
|
return true;
|
|
|
|
if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
|
|
(vcpu->arch.smi_pending && !is_smm(vcpu)))
|
|
return true;
|
|
|
|
if (kvm_arch_interrupt_allowed(vcpu) &&
|
|
(kvm_cpu_has_interrupt(vcpu) ||
|
|
kvm_guest_apic_has_interrupt(vcpu)))
|
|
return true;
|
|
|
|
if (kvm_hv_has_stimer_pending(vcpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
|
|
}
|
|
|
|
bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
|
|
return true;
|
|
|
|
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
|
|
kvm_test_request(KVM_REQ_SMI, vcpu) ||
|
|
kvm_test_request(KVM_REQ_EVENT, vcpu))
|
|
return true;
|
|
|
|
if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.preempted_in_kernel;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_x86_ops->interrupt_allowed(vcpu);
|
|
}
|
|
|
|
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (is_64_bit_mode(vcpu))
|
|
return kvm_rip_read(vcpu);
|
|
return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
|
|
kvm_rip_read(vcpu));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
|
|
|
|
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
|
|
{
|
|
return kvm_get_linear_rip(vcpu) == linear_rip;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
|
|
|
|
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rflags;
|
|
|
|
rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
return rflags;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_rflags);
|
|
|
|
static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
|
|
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
|
|
rflags |= X86_EFLAGS_TF;
|
|
kvm_x86_ops->set_rflags(vcpu, rflags);
|
|
}
|
|
|
|
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
__kvm_set_rflags(vcpu, rflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_rflags);
|
|
|
|
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
|
|
{
|
|
int r;
|
|
|
|
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
|
|
work->wakeup_all)
|
|
return;
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r))
|
|
return;
|
|
|
|
if (!vcpu->arch.mmu.direct_map &&
|
|
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.mmu.page_fault(vcpu, work->cr2_or_gpa, 0, true);
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
|
|
{
|
|
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_next_probe(u32 key)
|
|
{
|
|
return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
|
|
}
|
|
|
|
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
while (vcpu->arch.apf.gfns[key] != ~0)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
vcpu->arch.apf.gfns[key] = gfn;
|
|
}
|
|
|
|
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
int i;
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
|
|
(vcpu->arch.apf.gfns[key] != gfn &&
|
|
vcpu->arch.apf.gfns[key] != ~0); i++)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
return key;
|
|
}
|
|
|
|
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
|
|
}
|
|
|
|
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 i, j, k;
|
|
|
|
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
|
|
while (true) {
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
do {
|
|
j = kvm_async_pf_next_probe(j);
|
|
if (vcpu->arch.apf.gfns[j] == ~0)
|
|
return;
|
|
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
|
|
/*
|
|
* k lies cyclically in ]i,j]
|
|
* | i.k.j |
|
|
* |....j i.k.| or |.k..j i...|
|
|
*/
|
|
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
|
|
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
|
|
{
|
|
|
|
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
|
|
sizeof(val));
|
|
}
|
|
|
|
static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
|
|
{
|
|
|
|
return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
|
|
sizeof(u32));
|
|
}
|
|
|
|
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
|
|
trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
|
|
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
|
|
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
|
|
(vcpu->arch.apf.send_user_only &&
|
|
kvm_x86_ops->get_cpl(vcpu) == 0))
|
|
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
|
|
else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
fault.async_page_fault = true;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
u32 val;
|
|
|
|
if (work->wakeup_all)
|
|
work->arch.token = ~0; /* broadcast wakeup */
|
|
else
|
|
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
|
|
trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
|
|
|
|
if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
|
|
!apf_get_user(vcpu, &val)) {
|
|
if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
|
|
vcpu->arch.exception.pending &&
|
|
vcpu->arch.exception.nr == PF_VECTOR &&
|
|
!apf_put_user(vcpu, 0)) {
|
|
vcpu->arch.exception.injected = false;
|
|
vcpu->arch.exception.pending = false;
|
|
vcpu->arch.exception.nr = 0;
|
|
vcpu->arch.exception.has_error_code = false;
|
|
vcpu->arch.exception.error_code = 0;
|
|
} else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
fault.async_page_fault = true;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
}
|
|
vcpu->arch.apf.halted = false;
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
|
|
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
|
|
return true;
|
|
else
|
|
return kvm_can_do_async_pf(vcpu);
|
|
}
|
|
|
|
void kvm_arch_start_assignment(struct kvm *kvm)
|
|
{
|
|
atomic_inc(&kvm->arch.assigned_device_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
|
|
|
|
void kvm_arch_end_assignment(struct kvm *kvm)
|
|
{
|
|
atomic_dec(&kvm->arch.assigned_device_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
|
|
|
|
bool kvm_arch_has_assigned_device(struct kvm *kvm)
|
|
{
|
|
return atomic_read(&kvm->arch.assigned_device_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
|
|
|
|
void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
atomic_inc(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
|
|
|
|
void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
atomic_dec(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
|
|
|
|
bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
|
|
{
|
|
return atomic_read(&kvm->arch.noncoherent_dma_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
|
|
|
|
bool kvm_arch_has_irq_bypass(void)
|
|
{
|
|
return kvm_x86_ops->update_pi_irte != NULL;
|
|
}
|
|
|
|
int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
irqfd->producer = prod;
|
|
|
|
return kvm_x86_ops->update_pi_irte(irqfd->kvm,
|
|
prod->irq, irqfd->gsi, 1);
|
|
}
|
|
|
|
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
|
|
struct irq_bypass_producer *prod)
|
|
{
|
|
int ret;
|
|
struct kvm_kernel_irqfd *irqfd =
|
|
container_of(cons, struct kvm_kernel_irqfd, consumer);
|
|
|
|
WARN_ON(irqfd->producer != prod);
|
|
irqfd->producer = NULL;
|
|
|
|
/*
|
|
* When producer of consumer is unregistered, we change back to
|
|
* remapped mode, so we can re-use the current implementation
|
|
* when the irq is masked/disabled or the consumer side (KVM
|
|
* int this case doesn't want to receive the interrupts.
|
|
*/
|
|
ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
|
|
if (ret)
|
|
printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
|
|
" fails: %d\n", irqfd->consumer.token, ret);
|
|
}
|
|
|
|
int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
|
|
uint32_t guest_irq, bool set)
|
|
{
|
|
if (!kvm_x86_ops->update_pi_irte)
|
|
return -EINVAL;
|
|
|
|
return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
|
|
}
|
|
|
|
bool kvm_vector_hashing_enabled(void)
|
|
{
|
|
return vector_hashing;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
|