kernel_samsung_a34x-permissive/drivers/battery/common/sec_cisd.c
2024-04-28 15:49:01 +02:00

908 lines
28 KiB
C
Executable file

/*
* sec_cisd.c
* Samsung Mobile Battery Driver
*
* Copyright (C) 2012 Samsung Electronics
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "sec_battery.h"
#include "sec_cisd.h"
#if IS_ENABLED(CONFIG_SEC_ABC)
#include <linux/sti/abc_common.h>
#endif
const char *cisd_data_str[] = {
"RESET_ALG", "ALG_INDEX", "FULL_CNT", "CAP_MAX", "CAP_MIN", "RECHARGING_CNT", "VALERT_CNT",
"BATT_CYCLE", "WIRE_CNT", "WIRELESS_CNT", "HIGH_SWELLING_CNT", "LOW_SWELLING_CNT",
"WC_HIGH_SWELLING_CNT", "SWELLING_FULL_CNT", "SWELLING_RECOVERY_CNT", "AICL_CNT", "BATT_THM_MAX",
"BATT_THM_MIN", "CHG_THM_MAX", "CHG_THM_MIN", "WPC_THM_MAX", "WPC_THM_MIN", "USB_THM_MAX", "USB_THM_MIN",
"CHG_BATT_THM_MAX", "CHG_BATT_THM_MIN", "CHG_CHG_THM_MAX", "CHG_CHG_THM_MIN", "CHG_WPC_THM_MAX",
"CHG_WPC_THM_MIN", "CHG_USB_THM_MAX", "CHG_USB_THM_MIN", "USB_OVERHEAT_CHARGING", "UNSAFETY_VOLT",
"UNSAFETY_TEMP", "SAFETY_TIMER", "VSYS_OVP", "VBAT_OVP", "USB_OVERHEAT_RAPID_CHANGE", "ASOC",
"USB_OVERHEAT_ALONE", "CAP_NOM", "RC0"
};
EXPORT_SYMBOL(cisd_data_str);
const char *cisd_data_str_d[] = {
"FULL_CNT_D", "CAP_MAX_D", "CAP_MIN_D", "RECHARGING_CNT_D", "VALERT_CNT_D", "WIRE_CNT_D", "WIRELESS_CNT_D",
"HIGH_SWELLING_CNT_D", "LOW_SWELLING_CNT_D", "WC_HIGH_SWELLING_CNT_D", "SWELLING_FULL_CNT_D",
"SWELLING_RECOVERY_CNT_D", "AICL_CNT_D", "BATT_THM_MAX_D", "BATT_THM_MIN_D", "SUB_BATT_THM_MAX_D",
"SUB_BATT_THM_MIN_D", "CHG_THM_MAX_D", "CHG_THM_MIN_D", "USB_THM_MAX_D", "USB_THM_MIN_D",
"CHG_BATT_THM_MAX_D", "CHG_BATT_THM_MIN_D", "CHG_SUB_BATT_THM_MAX_D", "CHG_SUB_BATT_THM_MIN_D",
"CHG_CHG_THM_MAX_D", "CHG_CHG_THM_MIN_D", "CHG_USB_THM_MAX_D", "CHG_USB_THM_MIN_D",
"USB_OVERHEAT_CHARGING_D", "UNSAFETY_VOLT_D", "UNSAFETY_TEMP_D",
"SAFETY_TIMER_D", "VSYS_OVP_D", "VBAT_OVP_D", "USB_OVERHEAT_RAPID_CHANGE_D", "BUCK_OFF_D",
"USB_OVERHEAT_ALONE_D", "DROP_SENSOR_D", "CHG_TIME_D", "TOTAL_CHG_TIME_D"
};
EXPORT_SYMBOL(cisd_data_str_d);
const char *cisd_cable_data_str[] = {"TA", "AFC", "AFC_FAIL", "QC", "QC_FAIL", "PD", "PD_HIGH", "HV_WC_20"};
EXPORT_SYMBOL(cisd_cable_data_str);
const char *cisd_tx_data_str[] = {"ON", "OTHER", "GEAR", "PHONE", "BUDS"};
EXPORT_SYMBOL(cisd_tx_data_str);
#if IS_ENABLED(CONFIG_DUAL_BATTERY)
const char *cisd_event_data_str[] = {"DC_ERR", "TA_OCP_DET", "TA_OCP_ON", "OVP_EVENT_POWER", "OVP_EVENT_SIGNAL", "OTG", "D2D", "MAIN_BAT_ERR", "SUB_BAT_ERR", "WA_ERR"};
#else
const char *cisd_event_data_str[] = {"DC_ERR", "TA_OCP_DET", "TA_OCP_ON", "OVP_EVENT_POWER", "OVP_EVENT_SIGNAL", "OTG", "D2D"};
#endif
EXPORT_SYMBOL(cisd_event_data_str);
bool sec_bat_cisd_check(struct sec_battery_info *battery)
{
union power_supply_propval val = {0, };
struct cisd *pcisd = &battery->cisd;
bool ret = false;
int voltage = battery->voltage_now;
if (battery->factory_mode || battery->is_jig_on || battery->skip_cisd) {
dev_info(battery->dev, "%s: No need to check in factory mode\n",
__func__);
return ret;
}
#if IS_ENABLED(CONFIG_DUAL_BATTERY)
voltage = max(battery->voltage_pack_main, battery->voltage_pack_sub);
#endif
if ((battery->status == POWER_SUPPLY_STATUS_CHARGING) ||
(battery->status == POWER_SUPPLY_STATUS_FULL)) {
/* check abnormal vbat */
pcisd->ab_vbat_check_count = voltage > pcisd->max_voltage_thr ?
pcisd->ab_vbat_check_count + 1 : 0;
if ((pcisd->ab_vbat_check_count >= pcisd->ab_vbat_max_count) &&
!(pcisd->state & CISD_STATE_OVER_VOLTAGE)) {
dev_info(battery->dev, "%s : [CISD] Battery Over Voltage Protection !! vbat(%d)mV\n",
__func__, voltage);
val.intval = true;
psy_do_property("battery", set, POWER_SUPPLY_EXT_PROP_VBAT_OVP,
val);
pcisd->data[CISD_DATA_VBAT_OVP]++;
pcisd->data[CISD_DATA_VBAT_OVP_PER_DAY]++;
pcisd->state |= CISD_STATE_OVER_VOLTAGE;
#if IS_ENABLED(CONFIG_SEC_ABC)
#if IS_ENABLED(CONFIG_SEC_FACTORY)
sec_abc_send_event("MODULE=battery@INFO=over_voltage");
#else
sec_abc_send_event("MODULE=battery@WARN=over_voltage");
#endif
#endif
}
if (battery->temperature > pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MAX] = battery->wpc_temp;
if (battery->wpc_temp < pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_WPC_TEMP_MIN] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN] = battery->usb_temp;
if (battery->temperature > pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY] = battery->temperature;
if (battery->sub_bat_temp > pcisd->data[CISD_DATA_CHG_SUB_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_SUB_BATT_TEMP_MAX_PER_DAY] = battery->sub_bat_temp;
if (battery->sub_bat_temp < pcisd->data[CISD_DATA_CHG_SUB_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_SUB_BATT_TEMP_MIN_PER_DAY] = battery->sub_bat_temp;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY] = battery->chg_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY] = battery->usb_temp;
if (battery->usb_temp > 800 && !battery->usb_overheat_check) {
battery->cisd.data[CISD_DATA_USB_OVERHEAT_CHARGING]++;
battery->cisd.data[CISD_DATA_USB_OVERHEAT_CHARGING_PER_DAY]++;
battery->usb_overheat_check = true;
}
} else {
/* discharging */
if (battery->status == POWER_SUPPLY_STATUS_NOT_CHARGING) {
/* check abnormal vbat */
pcisd->ab_vbat_check_count = voltage > pcisd->max_voltage_thr ?
pcisd->ab_vbat_check_count + 1 : 0;
if ((pcisd->ab_vbat_check_count >= pcisd->ab_vbat_max_count) &&
!(pcisd->state & CISD_STATE_OVER_VOLTAGE)) {
pcisd->data[CISD_DATA_VBAT_OVP]++;
pcisd->data[CISD_DATA_VBAT_OVP_PER_DAY]++;
pcisd->state |= CISD_STATE_OVER_VOLTAGE;
#if IS_ENABLED(CONFIG_SEC_ABC)
#if IS_ENABLED(CONFIG_SEC_FACTORY)
sec_abc_send_event("MODULE=battery@INFO=over_voltage");
#else
sec_abc_send_event("MODULE=battery@WARN=over_voltage");
#endif
#endif
}
}
val.intval = SEC_BATTERY_CAPACITY_FULL;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_ENERGY_NOW, val);
if (val.intval == -1) {
dev_info(battery->dev, "%s: [CISD] FG I2C fail. skip cisd check\n", __func__);
return ret;
}
if (val.intval > pcisd->data[CISD_DATA_CAP_MAX])
pcisd->data[CISD_DATA_CAP_MAX] = val.intval;
if (val.intval < pcisd->data[CISD_DATA_CAP_MIN])
pcisd->data[CISD_DATA_CAP_MIN] = val.intval;
if (val.intval > pcisd->data[CISD_DATA_CAP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CAP_MAX_PER_DAY] = val.intval;
if (val.intval < pcisd->data[CISD_DATA_CAP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CAP_MIN_PER_DAY] = val.intval;
val.intval = SEC_BATTERY_CAPACITY_AGEDCELL;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_ENERGY_NOW, val);
if (val.intval == -1) {
dev_info(battery->dev, "%s: [CISD] FG I2C fail. skip cisd check\n", __func__);
return ret;
}
pcisd->data[CISD_DATA_CAP_NOM] = val.intval;
dev_info(battery->dev, "%s: [CISD] CAP_NOM %dmAh\n", __func__, pcisd->data[CISD_DATA_CAP_NOM]);
val.intval = SEC_BATTERY_CAPACITY_RC0;
psy_do_property(battery->pdata->fuelgauge_name, get,
POWER_SUPPLY_PROP_ENERGY_NOW, val);
if (val.intval == -1) {
dev_info(battery->dev, "%s: [CISD] FG I2C fail. skip cisd check\n", __func__);
return ret;
}
pcisd->data[CISD_DATA_RC0] = val.intval;
dev_info(battery->dev, "%s: [CISD] RC0 0x%x\n", __func__, pcisd->data[CISD_DATA_RC0]);
}
if (battery->temperature > pcisd->data[CISD_DATA_BATT_TEMP_MAX])
pcisd->data[CISD_DATA_BATT_TEMP_MAX] = battery->temperature;
if (battery->temperature < battery->cisd.data[CISD_DATA_BATT_TEMP_MIN])
pcisd->data[CISD_DATA_BATT_TEMP_MIN] = battery->temperature;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_TEMP_MAX])
pcisd->data[CISD_DATA_CHG_TEMP_MAX] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_TEMP_MIN])
pcisd->data[CISD_DATA_CHG_TEMP_MIN] = battery->chg_temp;
if (battery->wpc_temp > pcisd->data[CISD_DATA_WPC_TEMP_MAX])
pcisd->data[CISD_DATA_WPC_TEMP_MAX] = battery->wpc_temp;
if (battery->wpc_temp < battery->cisd.data[CISD_DATA_WPC_TEMP_MIN])
pcisd->data[CISD_DATA_WPC_TEMP_MIN] = battery->wpc_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_USB_TEMP_MAX])
pcisd->data[CISD_DATA_USB_TEMP_MAX] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_USB_TEMP_MIN])
pcisd->data[CISD_DATA_USB_TEMP_MIN] = battery->usb_temp;
if (battery->temperature > pcisd->data[CISD_DATA_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_BATT_TEMP_MAX_PER_DAY] = battery->temperature;
if (battery->temperature < pcisd->data[CISD_DATA_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_BATT_TEMP_MIN_PER_DAY] = battery->temperature;
if (battery->sub_bat_temp > pcisd->data[CISD_DATA_SUB_BATT_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_SUB_BATT_TEMP_MAX_PER_DAY] = battery->sub_bat_temp;
if (battery->sub_bat_temp < pcisd->data[CISD_DATA_SUB_BATT_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_SUB_BATT_TEMP_MIN_PER_DAY] = battery->sub_bat_temp;
if (battery->chg_temp > pcisd->data[CISD_DATA_CHG_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_CHG_TEMP_MAX_PER_DAY] = battery->chg_temp;
if (battery->chg_temp < pcisd->data[CISD_DATA_CHG_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_CHG_TEMP_MIN_PER_DAY] = battery->chg_temp;
if (battery->usb_temp > pcisd->data[CISD_DATA_USB_TEMP_MAX_PER_DAY])
pcisd->data[CISD_DATA_USB_TEMP_MAX_PER_DAY] = battery->usb_temp;
if (battery->usb_temp < pcisd->data[CISD_DATA_USB_TEMP_MIN_PER_DAY])
pcisd->data[CISD_DATA_USB_TEMP_MIN_PER_DAY] = battery->usb_temp;
return ret;
}
EXPORT_SYMBOL(sec_bat_cisd_check);
static irqreturn_t cisd_irq_thread(int irq, void *data)
{
struct cisd *pcisd = data;
pr_info("%s: irq(%d)\n", __func__, irq);
if (irq == pcisd->irq_ovp_power &&
!gpio_get_value(pcisd->gpio_ovp_power))
pcisd->event_data[EVENT_OVP_POWER]++;
if (irq == pcisd->irq_ovp_signal &&
!gpio_get_value(pcisd->gpio_ovp_signal))
pcisd->event_data[EVENT_OVP_SIGNAL]++;
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static void sec_cisd_parse_dt(struct cisd *pcisd)
{
struct device_node *np;
int ret = 0;
np = of_find_node_by_name(NULL, "sec-cisd");
if (!np) {
pr_err("%s: np NULL\n", __func__);
return;
}
ret = of_get_named_gpio(np, "ovp_power", 0);
if (ret >= 0) {
pcisd->gpio_ovp_power = ret;
pr_info("%s: set ovp_power gpio(%d)\n", __func__, pcisd->gpio_ovp_power);
pcisd->irq_ovp_power = gpio_to_irq(pcisd->gpio_ovp_power);
ret = request_threaded_irq(pcisd->irq_ovp_power, NULL,
cisd_irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"cisd-ovp-power", pcisd);
if (ret < 0) {
pr_err("%s: failed to request ovp_power irq(ret = %d)\n",
__func__, ret);
pcisd->irq_ovp_power = 0;
} else
pr_info("%s: set irq_ovp_power(%d)\n", __func__, pcisd->irq_ovp_power);
} else
pr_err("%s: failed to get ovp_power\n", __func__);
ret = of_get_named_gpio(np, "ovp_signal", 0);
if (ret >= 0) {
pcisd->gpio_ovp_signal = ret;
pr_info("%s: set ovp_signal gpio(%d)\n", __func__, pcisd->gpio_ovp_signal);
pcisd->irq_ovp_signal = gpio_to_irq(pcisd->gpio_ovp_signal);
ret = request_threaded_irq(pcisd->irq_ovp_signal, NULL,
cisd_irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"cisd-ovp-signal", pcisd);
if (ret < 0) {
pr_err("%s: failed to request ovp_signal irq(ret = %d)\n",
__func__, ret);
pcisd->irq_ovp_signal = 0;
} else
pr_info("%s: set irq_ovp_signal(%d)\n", __func__, pcisd->irq_ovp_signal);
} else
pr_err("%s: failed to get ovp_signal\n", __func__);
}
#else
static void sec_cisd_parse_dt(struct cisd *pcisd)
{
}
#endif
struct cisd *gcisd;
EXPORT_SYMBOL(gcisd);
void sec_battery_cisd_init(struct sec_battery_info *battery)
{
/* parse dt */
sec_cisd_parse_dt(&battery->cisd);
/* init cisd data */
battery->cisd.state = CISD_STATE_NONE;
battery->cisd.data[CISD_DATA_ALG_INDEX] = battery->pdata->cisd_alg_index;
battery->cisd.data[CISD_DATA_FULL_COUNT] = 1;
battery->cisd.data[CISD_DATA_BATT_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_WPC_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_USB_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_BATT_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_WPC_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_USB_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MAX] = -300;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_WPC_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MIN] = 1000;
battery->cisd.data[CISD_DATA_CAP_MIN] = 0xFFFF;
battery->cisd.data[CISD_DATA_ASOC] = 100;
battery->cisd.data[CISD_DATA_FULL_COUNT_PER_DAY] = 1;
battery->cisd.data[CISD_DATA_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_SUB_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_USB_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_SUB_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_USB_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_SUB_BATT_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MAX_PER_DAY] = -300;
battery->cisd.data[CISD_DATA_CHG_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_SUB_BATT_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_CHG_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_USB_TEMP_MIN_PER_DAY] = 1000;
battery->cisd.data[CISD_DATA_CHG_RETENTION_TIME_PER_DAY] = 0;
battery->cisd.data[CISD_DATA_TOTAL_CHG_RETENTION_TIME_PER_DAY] = 0;
battery->cisd.ab_vbat_max_count = 2; /* should be 2 */
battery->cisd.ab_vbat_check_count = 0;
battery->cisd.max_voltage_thr = battery->pdata->max_voltage_thr;
/* set cisd pointer */
gcisd = &battery->cisd;
/* initialize pad data */
mutex_init(&battery->cisd.padlock);
mutex_init(&battery->cisd.powerlock);
mutex_init(&battery->cisd.pdlock);
init_cisd_pad_data(&battery->cisd);
init_cisd_power_data(&battery->cisd);
init_cisd_pd_data(&battery->cisd);
}
EXPORT_SYMBOL(sec_battery_cisd_init);
static struct pad_data *create_pad_data(unsigned int pad_id, unsigned int pad_count)
{
struct pad_data *temp_data;
temp_data = kzalloc(sizeof(struct pad_data), GFP_KERNEL);
if (temp_data == NULL)
return NULL;
temp_data->id = pad_id;
temp_data->count = pad_count;
temp_data->prev = temp_data->next = NULL;
return temp_data;
}
static struct pad_data *find_pad_data_by_id(struct cisd *cisd, unsigned int pad_id)
{
struct pad_data *temp_data = cisd->pad_array->next;
if (cisd->pad_count <= 0 || temp_data == NULL)
return NULL;
while ((temp_data->id != pad_id) &&
((temp_data = temp_data->next) != NULL));
return temp_data;
}
static void add_pad_data(struct cisd *cisd, unsigned int pad_id, unsigned int pad_count)
{
struct pad_data *temp_data = cisd->pad_array->next;
struct pad_data *pad_data;
if (pad_id >= MAX_PAD_ID)
return;
pad_data = create_pad_data(pad_id, pad_count);
if (pad_data == NULL)
return;
pr_info("%s: id(0x%x), count(%d)\n", __func__, pad_id, pad_count);
while (temp_data) {
if (temp_data->id > pad_id) {
temp_data->prev->next = pad_data;
pad_data->prev = temp_data->prev;
pad_data->next = temp_data;
temp_data->prev = pad_data;
cisd->pad_count++;
return;
}
temp_data = temp_data->next;
}
pr_info("%s: failed to add pad_data(%d, %d)\n",
__func__, pad_id, pad_count);
kfree(pad_data);
}
void init_cisd_pad_data(struct cisd *cisd)
{
struct pad_data *temp_data = NULL;
mutex_lock(&cisd->padlock);
temp_data = cisd->pad_array;
while (temp_data) {
struct pad_data *next_data = temp_data->next;
kfree(temp_data);
temp_data = next_data;
}
/* create dummy data */
cisd->pad_array = create_pad_data(0, 0);
if (cisd->pad_array == NULL)
goto err_create_dummy_data;
temp_data = create_pad_data(MAX_PAD_ID, 0);
if (temp_data == NULL) {
kfree(cisd->pad_array);
cisd->pad_array = NULL;
goto err_create_dummy_data;
}
cisd->pad_count = 0;
cisd->pad_array->next = temp_data;
temp_data->prev = cisd->pad_array;
err_create_dummy_data:
mutex_unlock(&cisd->padlock);
}
EXPORT_SYMBOL(init_cisd_pad_data);
void count_cisd_pad_data(struct cisd *cisd, unsigned int pad_id)
{
struct pad_data *pad_data;
if (cisd->pad_array == NULL) {
pr_info("%s: can't update the connected count of pad_id(0x%x) because of null\n",
__func__, pad_id);
return;
}
mutex_lock(&cisd->padlock);
if ((pad_data = find_pad_data_by_id(cisd, pad_id)) != NULL)
pad_data->count++;
else
add_pad_data(cisd, pad_id, 1);
mutex_unlock(&cisd->padlock);
}
EXPORT_SYMBOL(count_cisd_pad_data);
static unsigned int convert_wc_index_to_pad_id(unsigned int wc_index)
{
switch (wc_index) {
case WC_UNKNOWN:
return WC_PAD_ID_UNKNOWN;
case WC_SNGL_NOBLE:
return WC_PAD_ID_SNGL_NOBLE;
case WC_SNGL_VEHICLE:
return WC_PAD_ID_SNGL_VEHICLE;
case WC_SNGL_MINI:
return WC_PAD_ID_SNGL_MINI;
case WC_SNGL_ZERO:
return WC_PAD_ID_SNGL_ZERO;
case WC_SNGL_DREAM:
return WC_PAD_ID_SNGL_DREAM;
case WC_STAND_HERO:
return WC_PAD_ID_STAND_HERO;
case WC_STAND_DREAM:
return WC_PAD_ID_STAND_DREAM;
case WC_EXT_PACK:
return WC_PAD_ID_EXT_BATT_PACK;
case WC_EXT_PACK_TA:
return WC_PAD_ID_EXT_BATT_PACK_TA;
default:
break;
}
return 0;
}
void set_cisd_pad_data(struct sec_battery_info *battery, const char *buf)
{
struct cisd *pcisd = &battery->cisd;
unsigned int pad_total_count, pad_id, pad_count;
struct pad_data *pad_data;
int i, x;
pr_info("%s: %s\n", __func__, buf);
if (pcisd->pad_count > 0)
init_cisd_pad_data(pcisd);
if (pcisd->pad_array == NULL) {
pr_info("%s: can't set the pad data because of null\n", __func__);
return;
}
if (sscanf(buf, "%10u %n", &pad_total_count, &x) <= 0) {
pr_info("%s: failed to read pad index\n", __func__);
return;
}
buf += (size_t)x;
pr_info("%s: stored pad_total_count(%d)\n", __func__, pad_total_count);
if (!pad_total_count) {
for (i = WC_DATA_INDEX + 1; i < WC_DATA_MAX; i++) {
if (sscanf(buf, "%10u %n", &pad_count, &x) <= 0)
break;
buf += (size_t)x;
if (pad_count > 0) {
pad_id = convert_wc_index_to_pad_id(i);
mutex_lock(&pcisd->padlock);
if ((pad_data = find_pad_data_by_id(pcisd, pad_id)) != NULL)
pad_data->count = pad_count;
else
add_pad_data(pcisd, pad_id, pad_count);
mutex_unlock(&pcisd->padlock);
}
}
} else {
if (pad_total_count >= MAX_PAD_ID)
return;
pr_info("%s: add pad data(count: %d)\n", __func__, pad_total_count);
for (i = 0; i < pad_total_count; i++) {
if (sscanf(buf, "0x%02x:%10u %n", &pad_id, &pad_count, &x) != 2) {
pr_info("%s: failed to read pad data(0x%x, %d, %d)!!!re-init pad data\n",
__func__, pad_id, pad_count, x);
init_cisd_pad_data(pcisd);
break;
}
buf += (size_t)x;
mutex_lock(&pcisd->padlock);
if ((pad_data = find_pad_data_by_id(pcisd, pad_id)) != NULL)
pad_data->count = pad_count;
else
add_pad_data(pcisd, pad_id, pad_count);
mutex_unlock(&pcisd->padlock);
}
}
}
EXPORT_SYMBOL(set_cisd_pad_data);
static struct power_data *create_power_data(unsigned int power, unsigned int power_count)
{
struct power_data *temp_data;
temp_data = kzalloc(sizeof(struct power_data), GFP_KERNEL);
if (temp_data == NULL)
return NULL;
temp_data->power = power;
temp_data->count = power_count;
temp_data->prev = temp_data->next = NULL;
return temp_data;
}
static struct power_data *find_data_by_power(struct cisd *cisd, unsigned int power)
{
struct power_data *temp_data = cisd->power_array->next;
if (cisd->power_count <= 0 || temp_data == NULL)
return NULL;
while ((temp_data->power != power) &&
((temp_data = temp_data->next) != NULL));
return temp_data;
}
static void add_power_data(struct cisd *cisd, unsigned int power, unsigned int power_count)
{
struct power_data *temp_data = cisd->power_array->next;
struct power_data *power_data;
power_data = create_power_data(power, power_count);
if (power_data == NULL)
return;
pr_info("%s: power(%d), count(%d)\n", __func__, power, power_count);
while (temp_data) {
if (temp_data->power > power) {
temp_data->prev->next = power_data;
power_data->prev = temp_data->prev;
power_data->next = temp_data;
temp_data->prev = power_data;
cisd->power_count++;
return;
}
temp_data = temp_data->next;
}
pr_info("%s: failed to add pad_data(%d, %d)\n",
__func__, power, power_count);
kfree(power_data);
}
void init_cisd_power_data(struct cisd *cisd)
{
struct power_data *temp_data = NULL;
mutex_lock(&cisd->powerlock);
temp_data = cisd->power_array;
while (temp_data) {
struct power_data *next_data = temp_data->next;
kfree(temp_data);
temp_data = next_data;
}
/* create dummy data */
cisd->power_array = create_power_data(0, 0);
if (cisd->power_array == NULL)
goto err_create_dummy_data;
temp_data = create_power_data(MAX_CHARGER_POWER, 0);
if (temp_data == NULL) {
kfree(cisd->power_array);
cisd->power_array = NULL;
goto err_create_dummy_data;
}
cisd->power_count = 0;
cisd->power_array->next = temp_data;
temp_data->prev = cisd->power_array;
err_create_dummy_data:
mutex_unlock(&cisd->powerlock);
}
EXPORT_SYMBOL(init_cisd_power_data);
#define FIND_MAX_POWER 45000
#define FIND_POWER_STEP 10000
#define POWER_MARGIN 1000
void count_cisd_power_data(struct cisd *cisd, int power)
{
struct power_data *power_data;
int power_index = 0;
pr_info("%s: power value : %d\n", __func__, power);
if (cisd->power_array == NULL || power < 15000) {
pr_info("%s: can't update the connected count of power(%d) because of null\n",
__func__, power);
return;
}
power_index = FIND_MAX_POWER;
while (power_index >= 14000) {
if (power + POWER_MARGIN - power_index >= 0) {
power_index /= 1000;
break;
}
power_index -= FIND_POWER_STEP;
}
mutex_lock(&cisd->powerlock);
if ((power_data = find_data_by_power(cisd, power_index)) != NULL)
power_data->count++;
else
add_power_data(cisd, power_index, 1);
mutex_unlock(&cisd->powerlock);
}
EXPORT_SYMBOL(count_cisd_power_data);
void set_cisd_power_data(struct sec_battery_info *battery, const char *buf)
{
struct cisd *pcisd = &battery->cisd;
unsigned int power_total_count, power_id, power_count;
struct power_data *power_data;
int i, x;
pr_info("%s: %s\n", __func__, buf);
if (pcisd->power_count > 0)
init_cisd_power_data(pcisd);
if (pcisd->power_array == NULL) {
pr_info("%s: can't set the power data because of null\n", __func__);
return;
}
if (sscanf(buf, "%10u %n", &power_total_count, &x) <= 0)
return;
buf += (size_t)x;
pr_info("%s: add power data(count: %d)\n", __func__, power_total_count);
for (i = 0; i < power_total_count; i++) {
if (sscanf(buf, "%10u:%10u %n", &power_id, &power_count, &x) != 2) {
pr_info("%s: failed to read power data(%d, %d, %d)!!!re-init power data\n",
__func__, power_id, power_count, x);
init_cisd_power_data(pcisd);
break;
}
buf += (size_t)x;
mutex_lock(&pcisd->powerlock);
if ((power_data = find_data_by_power(pcisd, power_id)) != NULL)
power_data->count = power_count;
else
add_power_data(pcisd, power_id, power_count);
mutex_unlock(&pcisd->powerlock);
}
}
EXPORT_SYMBOL(set_cisd_power_data);
static struct pd_data *create_pd_data(unsigned short pid, unsigned int pd_count)
{
struct pd_data *temp_data;
temp_data = kzalloc(sizeof(struct pd_data), GFP_KERNEL);
if (temp_data == NULL)
return NULL;
temp_data->pid = pid;
temp_data->count = pd_count;
temp_data->prev = temp_data->next = NULL;
return temp_data;
}
static struct pd_data *find_data_by_pd(struct cisd *cisd, unsigned short pid)
{
struct pd_data *temp_data = cisd->pd_array->next;
if (cisd->pd_count <= 0 || temp_data == NULL)
return NULL;
while ((temp_data->pid != pid) &&
((temp_data = temp_data->next) != NULL))
;
return temp_data;
}
static void add_pd_data(struct cisd *cisd, unsigned short pid, unsigned int pd_count)
{
struct pd_data *temp_data = cisd->pd_array->next;
struct pd_data *pd_data;
pd_data = create_pd_data(pid, pd_count);
if (pd_data == NULL)
return;
pr_info("%s: pid(0x%04x), count(%d)\n", __func__, pid, pd_count);
while (temp_data) {
if (temp_data->pid > pid) {
temp_data->prev->next = pd_data;
pd_data->prev = temp_data->prev;
pd_data->next = temp_data;
temp_data->prev = pd_data;
cisd->pd_count++;
return;
}
temp_data = temp_data->next;
}
pr_info("%s: failed to add pd_data(0x%04x, %d)\n",
__func__, pid, pd_count);
kfree(pd_data);
}
void init_cisd_pd_data(struct cisd *cisd)
{
struct pd_data *temp_data = NULL;
mutex_lock(&cisd->pdlock);
temp_data = cisd->pd_array;
while (temp_data) {
struct pd_data *next_data = temp_data->next;
kfree(temp_data);
temp_data = next_data;
}
/* create dummy data */
cisd->pd_array = create_pd_data(0, 0);
if (cisd->pd_array == NULL)
goto err_create_dummy_data;
temp_data = create_pd_data(MAX_SS_PD_PID, 0);
if (temp_data == NULL) {
kfree(cisd->pd_array);
cisd->pd_array = NULL;
goto err_create_dummy_data;
}
cisd->pd_count = 0;
cisd->pd_array->next = temp_data;
temp_data->prev = cisd->pd_array;
err_create_dummy_data:
mutex_unlock(&cisd->pdlock);
}
EXPORT_SYMBOL(init_cisd_pd_data);
void count_cisd_pd_data(unsigned short vid, unsigned short pid)
{
struct power_supply *psy = power_supply_get_by_name("battery");
struct sec_battery_info *battery = power_supply_get_drvdata(psy);
struct cisd *cisd = &battery->cisd;
struct pd_data *pd_data;
pr_info("%s: vid : 0x%04x, pid : 0x%04x\n", __func__, vid, pid);
if (cisd->pd_array == NULL) {
pr_info("%s: can't update count of pid(0x%04x) because of null\n",
__func__, pid);
return;
}
if ((vid != SS_PD_VID) || ((vid == SS_PD_VID)
&& (pid < MIN_SS_PD_PID || pid > MAX_SS_PD_PID))) {
pr_info("%s: other pd ta(vid_0x%04x, pid_0x%04x). change pid to 0x0000\n",
__func__, vid, pid);
pid = 0x0;
}
mutex_lock(&cisd->pdlock);
pd_data = find_data_by_pd(cisd, pid);
if (pd_data != NULL)
pd_data->count++;
else
add_pd_data(cisd, pid, 1);
mutex_unlock(&cisd->pdlock);
}
EXPORT_SYMBOL(count_cisd_pd_data);
void set_cisd_pd_data(struct sec_battery_info *battery, const char *buf)
{
struct cisd *pcisd = &battery->cisd;
unsigned int pd_total_count, pid, pd_count;
struct pd_data *pd_data;
int i, x;
pr_info("%s: %s\n", __func__, buf);
if (pcisd->pd_count > 0)
init_cisd_pd_data(pcisd);
if (pcisd->pd_array == NULL) {
pr_info("%s: can't set the pd data because of null\n", __func__);
return;
}
if (sscanf(buf, "%10u %n", &pd_total_count, &x) <= 0)
return;
buf += (size_t)x;
pr_info("%s: add pd data(count: %d)\n", __func__, pd_total_count);
for (i = 0; i < pd_total_count; i++) {
if (sscanf(buf, "0x%04x:%10u %n", &pid, &pd_count, &x) != 2) {
pr_info("%s: failed to read pd data(0x%04x, %d, %d)!!!re-init pd data\n",
__func__, pid, pd_count, x);
init_cisd_pd_data(pcisd);
break;
}
buf += (size_t)x;
mutex_lock(&pcisd->pdlock);
pd_data = find_data_by_pd(pcisd, pid);
if (pd_data != NULL)
pd_data->count = pd_count;
else
add_pd_data(pcisd, pid, pd_count);
mutex_unlock(&pcisd->pdlock);
}
}
EXPORT_SYMBOL(set_cisd_pd_data);