kernel_samsung_a34x-permissive/drivers/cpufreq/sspm-cpufreq.c
2024-04-28 15:49:01 +02:00

345 lines
8.2 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/energy_model.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include "../misc/mediatek/sspm/sspm_ipi.h"
#define OFFS_WFI_S 0x037c
#define DVFS_D_LEN (4)
struct mtk_cpu_dvfs_info {
struct cpumask cpus;
struct clk *cpu_clk;
struct device *cpu_dev;
struct list_head list_head;
struct mutex lock;
struct regulator *proc_reg;
struct regulator *sram_reg;
void __iomem *csram_base;
};
static LIST_HEAD(dvfs_info_list);
enum cpu_dvfs_ipi_type {
IPI_DVFS_INIT,
IPI_SET_CLUSTER_ON_OFF,
NR_DVFS_IPI,
};
struct cdvfs_data {
unsigned int cmd;
union {
struct {
unsigned int arg[3];
} set_fv;
} u;
};
static int dvfs_to_spm2_command(u32 cmd, struct cdvfs_data *cdvfs_d)
{
unsigned int len = DVFS_D_LEN;
int ack_data;
unsigned int ret = 0;
switch (cmd) {
case IPI_DVFS_INIT:
cdvfs_d->cmd = cmd;
sspm_ipi_send_sync_new(IPI_ID_CPU_DVFS, IPI_OPT_POLLING,
cdvfs_d, len, &ack_data, 1);
if (ret) {
pr_debug("#@# %s(%d) sspm_ipi_send_sync ret %d\n",
__func__, __LINE__, ret);
} else if (ack_data < 0) {
ret = ack_data;
pr_debug("#@# %s(%d) cmd(%d) return %d\n",
__func__, __LINE__, cmd, ret);
}
break;
case IPI_SET_CLUSTER_ON_OFF:
cdvfs_d->cmd = cmd;
sspm_ipi_send_sync_new(IPI_ID_CPU_DVFS, IPI_OPT_POLLING,
cdvfs_d, len, &ack_data, 1);
if (ret) {
pr_debug("ret = %d, set cluster%d ON/OFF state to %d\n",
ret, cdvfs_d->u.set_fv.arg[0],
cdvfs_d->u.set_fv.arg[1]);
} else if (ack_data < 0) {
pr_debug("ret = %d, set cluster%d ON/OFF state to %d\n",
ret, cdvfs_d->u.set_fv.arg[0],
cdvfs_d->u.set_fv.arg[1]);
}
break;
default:
break;
}
return ret;
}
static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
{
struct mtk_cpu_dvfs_info *info;
struct list_head *list;
list_for_each(list, &dvfs_info_list) {
info = list_entry(list, struct mtk_cpu_dvfs_info, list_head);
if (cpumask_test_cpu(cpu, &info->cpus))
return info;
}
return NULL;
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
unsigned int cluster_id = policy->cpu / 6;
writel_relaxed(index, info->csram_base + (OFFS_WFI_S + (cluster_id * 4))
);
arch_set_freq_scale(policy->related_cpus,
policy->freq_table[index].frequency,
policy->cpuinfo.max_freq);
return 0;
}
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct regulator *proc_reg = ERR_PTR(-ENODEV);
struct regulator *sram_reg = ERR_PTR(-ENODEV);
struct clk *cpu_clk = ERR_PTR(-ENODEV);
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
return -ENODEV;
cpu_clk = devm_clk_get(cpu_dev, "cpu");
if (IS_ERR(cpu_clk)) {
if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
pr_debug("cpu clk for cpu%d not ready, retry.\n", cpu);
else
pr_debug("failed to get cpu clk for cpu%d\n", cpu);
ret = PTR_ERR(cpu_clk);
return ret;
}
ret = clk_prepare_enable(cpu_clk);
if (ret)
pr_debug("cannot enable parent clock: %d\n", ret);
proc_reg = regulator_get_optional(cpu_dev, "proc");
if (IS_ERR(proc_reg)) {
if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
pr_debug("proc regulator for cpu%d not ready, retry.\n",
cpu);
else
pr_debug("failed to get proc regulator for cpu%d\n",
cpu);
ret = PTR_ERR(proc_reg);
goto out_free_resources;
}
/* Both presence and absence of sram regulator are valid cases. */
sram_reg = regulator_get_optional(cpu_dev, "sram");
/* Get OPP-sharing information from "operating-points-v2" bindings */
ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
if (ret)
goto out_free_resources;
ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
if (ret)
goto out_free_resources;
info->cpu_dev = cpu_dev;
info->proc_reg = proc_reg;
info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
info->cpu_clk = cpu_clk;
mutex_init(&info->lock);
return 0;
out_free_resources:
if (!IS_ERR(proc_reg))
regulator_put(proc_reg);
if (!IS_ERR(sram_reg))
regulator_put(sram_reg);
if (!IS_ERR(cpu_clk))
clk_put(cpu_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
if (!IS_ERR(info->proc_reg))
regulator_put(info->proc_reg);
if (!IS_ERR(info->sram_reg))
regulator_put(info->sram_reg);
if (!IS_ERR(info->cpu_clk))
clk_put(info->cpu_clk);
dev_pm_opp_of_cpumask_remove_table(&info->cpus);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cdvfs_data cdvfs_d;
struct cpufreq_frequency_table *freq_table;
struct em_data_callback em_cb = EM_DATA_CB(of_dev_pm_opp_get_cpu_power);
int ret;
info = mtk_cpu_dvfs_info_lookup(policy->cpu);
if (!info)
return -EINVAL;
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret)
return ret;
ret = cpufreq_frequency_table_verify(policy, freq_table);
if (ret)
goto out_free_cpufreq_table;
ret = dev_pm_opp_get_opp_count(info->cpu_dev);
if (ret <= 0) {
ret = -EINVAL;
goto out_free_opp;
}
cpumask_copy(policy->cpus, &info->cpus);
em_register_perf_domain(policy->cpus, ret, &em_cb);
policy->driver_data = info;
policy->clk = info->cpu_clk;
policy->freq_table = freq_table;
policy->transition_delay_us = 1000; /* us */
/* Cluster, ON:1/OFF:0 */
cdvfs_d.u.set_fv.arg[0] = policy->cpu / 6;
cdvfs_d.u.set_fv.arg[1] = 1;
dvfs_to_spm2_command(IPI_SET_CLUSTER_ON_OFF, &cdvfs_d);
return 0;
out_free_opp:
dev_pm_opp_of_cpumask_remove_table(policy->cpus);
out_free_cpufreq_table:
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
return ret;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct cdvfs_data cdvfs_d;
struct mtk_cpu_dvfs_info *info = policy->driver_data;
/* Cluster, ON:1/OFF:0 */
cdvfs_d.u.set_fv.arg[0] = policy->cpu / 6;
cdvfs_d.u.set_fv.arg[1] = 0;
dvfs_to_spm2_command(IPI_SET_CLUSTER_ON_OFF, &cdvfs_d);
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
return 0;
}
static struct cpufreq_driver mtk_cpufreq_driver = {
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mtk_cpufreq_probe(struct platform_device *pdev)
{
struct mtk_cpu_dvfs_info *info;
struct list_head *list, *tmp;
int cpu, ret;
struct cdvfs_data cdvfs_d;
cdvfs_d.u.set_fv.arg[0] = 0;
dvfs_to_spm2_command(IPI_DVFS_INIT, &cdvfs_d);
for_each_possible_cpu(cpu) {
info = mtk_cpu_dvfs_info_lookup(cpu);
if (info)
continue;
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
info->csram_base = of_iomap(pdev->dev.of_node, 0);
if (!info->csram_base) {
ret = -ENOMEM;
goto release_dvfs_info_list;
}
ret = mtk_cpu_dvfs_info_init(info, cpu);
if (ret)
goto release_dvfs_info_list;
list_add(&info->list_head, &dvfs_info_list);
}
ret = cpufreq_register_driver(&mtk_cpufreq_driver);
if (ret)
goto release_dvfs_info_list;
return 0;
release_dvfs_info_list:
list_for_each_safe(list, tmp, &dvfs_info_list) {
info = list_entry(list, struct mtk_cpu_dvfs_info, list_head);
mtk_cpu_dvfs_info_release(info);
list_del(list);
}
return ret;
}
/* List of machines supported by this driver */
static const struct of_device_id mtk_cpufreq_machines[] = {
{ .compatible = "mediatek,sspm-dvfsp", },
{ }
};
MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
static struct platform_driver mtk_cpufreq_platdrv = {
.probe = mtk_cpufreq_probe,
.driver = {
.name = "dvfsp",
.of_match_table = of_match_ptr(mtk_cpufreq_machines),
},
};
module_platform_driver(mtk_cpufreq_platdrv);
MODULE_AUTHOR("Wei-Chia Su <Wei-Chia.Su@mediatek.com>");
MODULE_DESCRIPTION("Medaitek SSPM CPUFreq Platform driver");
MODULE_LICENSE("GPL v2");