kernel_samsung_a34x-permissive/drivers/crypto/caam/caamalg.c
2024-04-28 15:49:01 +02:00

3566 lines
94 KiB
C
Executable file

/*
* caam - Freescale FSL CAAM support for crypto API
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
* Copyright 2016 NXP
*
* Based on talitos crypto API driver.
*
* relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
*
* --------------- ---------------
* | JobDesc #1 |-------------------->| ShareDesc |
* | *(packet 1) | | (PDB) |
* --------------- |------------->| (hashKey) |
* . | | (cipherKey) |
* . | |-------->| (operation) |
* --------------- | | ---------------
* | JobDesc #2 |------| |
* | *(packet 2) | |
* --------------- |
* . |
* . |
* --------------- |
* | JobDesc #3 |------------
* | *(packet 3) |
* ---------------
*
* The SharedDesc never changes for a connection unless rekeyed, but
* each packet will likely be in a different place. So all we need
* to know to process the packet is where the input is, where the
* output goes, and what context we want to process with. Context is
* in the SharedDesc, packet references in the JobDesc.
*
* So, a job desc looks like:
*
* ---------------------
* | Header |
* | ShareDesc Pointer |
* | SEQ_OUT_PTR |
* | (output buffer) |
* | (output length) |
* | SEQ_IN_PTR |
* | (input buffer) |
* | (input length) |
* ---------------------
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
#include "sg_sw_sec4.h"
#include "key_gen.h"
#include "caamalg_desc.h"
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 3000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
CTR_RFC3686_NONCE_SIZE + \
SHA512_DIGEST_SIZE * 2)
#define AEAD_DESC_JOB_IO_LEN (DESC_JOB_IO_LEN + CAAM_CMD_SZ * 2)
#define GCM_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \
CAAM_CMD_SZ * 4)
#define AUTHENC_DESC_JOB_IO_LEN (AEAD_DESC_JOB_IO_LEN + \
CAAM_CMD_SZ * 5)
#define DESC_MAX_USED_BYTES (CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif
static struct list_head alg_list;
struct caam_alg_entry {
int class1_alg_type;
int class2_alg_type;
bool rfc3686;
bool geniv;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
/*
* per-session context
*/
struct caam_ctx {
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u32 sh_desc_givenc[DESC_MAX_USED_LEN];
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t sh_desc_enc_dma;
dma_addr_t sh_desc_dec_dma;
dma_addr_t sh_desc_givenc_dma;
dma_addr_t key_dma;
enum dma_data_direction dir;
struct device *jrdev;
struct alginfo adata;
struct alginfo cdata;
unsigned int authsize;
};
static int aead_null_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - AEAD_DESC_JOB_IO_LEN -
ctx->adata.keylen_pad;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_AEAD_NULL_ENC_LEN) {
ctx->adata.key_inline = true;
ctx->adata.key_virt = ctx->key;
} else {
ctx->adata.key_inline = false;
ctx->adata.key_dma = ctx->key_dma;
}
/* aead_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
cnstr_shdsc_aead_null_encap(desc, &ctx->adata, ctx->authsize,
ctrlpriv->era);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_AEAD_NULL_DEC_LEN) {
ctx->adata.key_inline = true;
ctx->adata.key_virt = ctx->key;
} else {
ctx->adata.key_inline = false;
ctx->adata.key_dma = ctx->key_dma;
}
/* aead_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
cnstr_shdsc_aead_null_decap(desc, &ctx->adata, ctx->authsize,
ctrlpriv->era);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
struct caam_aead_alg, aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
u32 ctx1_iv_off = 0;
u32 *desc, *nonce = NULL;
u32 inl_mask;
unsigned int data_len[2];
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
if (!ctx->authsize)
return 0;
/* NULL encryption / decryption */
if (!ctx->cdata.keylen)
return aead_null_set_sh_desc(aead);
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
}
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
if (alg->caam.geniv)
goto skip_enc;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (desc_inline_query(DESC_AEAD_ENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
/* aead_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata, ivsize,
ctx->authsize, is_rfc3686, nonce, ctx1_iv_off,
false, ctrlpriv->era);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
skip_enc:
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (desc_inline_query(DESC_AEAD_DEC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
/* aead_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata, ivsize,
ctx->authsize, alg->caam.geniv, is_rfc3686,
nonce, ctx1_iv_off, false, ctrlpriv->era);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
if (!alg->caam.geniv)
goto skip_givenc;
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (desc_inline_query(DESC_AEAD_GIVENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
AUTHENC_DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
if (inl_mask & 1)
ctx->adata.key_virt = ctx->key;
else
ctx->adata.key_dma = ctx->key_dma;
if (inl_mask & 2)
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
else
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
/* aead_givencrypt shared descriptor */
desc = ctx->sh_desc_enc;
cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata, ivsize,
ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, false, ctrlpriv->era);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
skip_givenc:
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES GCM encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_GCM_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_enc;
cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_GCM_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_dec;
cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* RFC4106 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_RFC4106_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_enc;
cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_RFC4106_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_dec;
cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 *desc;
int rem_bytes = CAAM_DESC_BYTES_MAX - GCM_DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* RFC4543 encrypt shared descriptor
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_RFC4543_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_enc;
cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/*
* Job Descriptor and Shared Descriptors
* must all fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_RFC4543_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
desc = ctx->sh_desc_dec;
cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
false);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static int aead_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
#ifdef DEBUG
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* If DKP is supported, use it in the shared descriptor to generate
* the split key.
*/
if (ctrlpriv->era >= 6) {
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma,
ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
goto skip_split_key;
}
ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, keys.authkey,
keys.authkeylen, CAAM_MAX_KEY_SIZE -
keys.enckeylen);
if (ret) {
goto badkey;
}
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
#endif
skip_split_key:
ctx->cdata.keylen = keys.enckeylen;
memzero_explicit(&keys, sizeof(keys));
return aead_set_sh_desc(aead);
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(jrdev, ctx->key_dma, keylen, ctx->dir);
ctx->cdata.keylen = keylen;
return gcm_set_sh_desc(aead);
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
return rfc4106_set_sh_desc(aead);
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
if (keylen < 4)
return -EINVAL;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev, ctx->key_dma, ctx->cdata.keylen,
ctx->dir);
return rfc4543_set_sh_desc(aead);
}
static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablkcipher);
const char *alg_name = crypto_tfm_alg_name(tfm);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc;
u32 ctx1_iv_off = 0;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = (ctr_mode &&
(strstr(alg_name, "rfc3686") != NULL));
#ifdef DEBUG
print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* ablkcipher_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
cnstr_shdsc_ablkcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/* ablkcipher_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
cnstr_shdsc_ablkcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
/* ablkcipher_givencrypt shared descriptor */
desc = ctx->sh_desc_givenc;
cnstr_shdsc_ablkcipher_givencap(desc, &ctx->cdata, ivsize, is_rfc3686,
ctx1_iv_off);
dma_sync_single_for_device(jrdev, ctx->sh_desc_givenc_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
static int xts_ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
u32 *desc;
if (keylen != 2 * AES_MIN_KEY_SIZE && keylen != 2 * AES_MAX_KEY_SIZE) {
crypto_ablkcipher_set_flags(ablkcipher,
CRYPTO_TFM_RES_BAD_KEY_LEN);
dev_err(jrdev, "key size mismatch\n");
return -EINVAL;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts_ablkcipher_encrypt shared descriptor */
desc = ctx->sh_desc_enc;
cnstr_shdsc_xts_ablkcipher_encap(desc, &ctx->cdata);
dma_sync_single_for_device(jrdev, ctx->sh_desc_enc_dma,
desc_bytes(desc), ctx->dir);
/* xts_ablkcipher_decrypt shared descriptor */
desc = ctx->sh_desc_dec;
cnstr_shdsc_xts_ablkcipher_decap(desc, &ctx->cdata);
dma_sync_single_for_device(jrdev, ctx->sh_desc_dec_dma,
desc_bytes(desc), ctx->dir);
return 0;
}
/*
* aead_edesc - s/w-extended aead descriptor
* @src_nents: number of segments in input s/w scatterlist
* @dst_nents: number of segments in output s/w scatterlist
* @sec4_sg_bytes: length of dma mapped sec4_sg space
* @sec4_sg_dma: bus physical mapped address of h/w link table
* @sec4_sg: pointer to h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct aead_edesc {
int src_nents;
int dst_nents;
int sec4_sg_bytes;
dma_addr_t sec4_sg_dma;
struct sec4_sg_entry *sec4_sg;
u32 hw_desc[];
};
/*
* ablkcipher_edesc - s/w-extended ablkcipher descriptor
* @src_nents: number of segments in input s/w scatterlist
* @dst_nents: number of segments in output s/w scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @iv_dir: DMA mapping direction for IV
* @sec4_sg_bytes: length of dma mapped sec4_sg space
* @sec4_sg_dma: bus physical mapped address of h/w link table
* @sec4_sg: pointer to h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
* and IV
*/
struct ablkcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
enum dma_data_direction iv_dir;
int sec4_sg_bytes;
dma_addr_t sec4_sg_dma;
struct sec4_sg_entry *sec4_sg;
u32 hw_desc[0];
};
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents,
dma_addr_t iv_dma, int ivsize,
enum dma_data_direction iv_dir, dma_addr_t sec4_sg_dma,
int sec4_sg_bytes)
{
if (dst != src) {
if (src_nents)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
if (sec4_sg_bytes)
dma_unmap_single(dev, sec4_sg_dma, sec4_sg_bytes,
DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents, 0, 0, DMA_NONE,
edesc->sec4_sg_dma, edesc->sec4_sg_bytes);
}
static void ablkcipher_unmap(struct device *dev,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
caam_unmap(dev, req->src, req->dst,
edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, edesc->iv_dir,
edesc->sec4_sg_dma, edesc->sec4_sg_bytes);
}
static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct aead_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
aead_unmap(jrdev, edesc, req);
kfree(edesc);
aead_request_complete(req, err);
}
static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *req = context;
struct aead_edesc *edesc;
#ifdef DEBUG
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct aead_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
aead_unmap(jrdev, edesc, req);
/*
* verify hw auth check passed else return -EBADMSG
*/
if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
err = -EBADMSG;
kfree(edesc);
aead_request_complete(req, err);
}
static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
#ifdef DEBUG
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ablkcipher_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
#endif
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
ablkcipher_unmap(jrdev, edesc, req);
/*
* The crypto API expects us to set the IV (req->info) to the last
* ciphertext block when running in CBC mode.
*/
if ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CBC)
scatterwalk_map_and_copy(req->info, req->dst, req->nbytes -
ivsize, ivsize, 0);
/* In case initial IV was generated, copy it in GIVCIPHER request */
if (edesc->iv_dir == DMA_FROM_DEVICE) {
u8 *iv;
struct skcipher_givcrypt_request *greq;
greq = container_of(req, struct skcipher_givcrypt_request,
creq);
iv = (u8 *)edesc->hw_desc + desc_bytes(edesc->hw_desc) +
edesc->sec4_sg_bytes;
memcpy(greq->giv, iv, ivsize);
}
kfree(edesc);
ablkcipher_request_complete(req, err);
}
static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct ablkcipher_request *req = context;
struct ablkcipher_edesc *edesc;
#ifdef DEBUG
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = container_of(desc, struct ablkcipher_edesc, hw_desc[0]);
if (err)
caam_jr_strstatus(jrdev, err);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
#endif
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
ablkcipher_request_complete(req, err);
}
/*
* Fill in aead job descriptor
*/
static void init_aead_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int authsize = ctx->authsize;
u32 *desc = edesc->hw_desc;
u32 out_options, in_options;
dma_addr_t dst_dma, src_dma;
int len, sec4_sg_index = 0;
dma_addr_t ptr;
u32 *sh_desc;
sh_desc = encrypt ? ctx->sh_desc_enc : ctx->sh_desc_dec;
ptr = encrypt ? ctx->sh_desc_enc_dma : ctx->sh_desc_dec_dma;
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (all_contig) {
src_dma = edesc->src_nents ? sg_dma_address(req->src) : 0;
in_options = 0;
} else {
src_dma = edesc->sec4_sg_dma;
sec4_sg_index += edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->assoclen + req->cryptlen,
in_options);
dst_dma = src_dma;
out_options = in_options;
if (unlikely(req->src != req->dst)) {
if (edesc->dst_nents == 1) {
dst_dma = sg_dma_address(req->dst);
out_options = 0;
} else {
dst_dma = edesc->sec4_sg_dma +
sec4_sg_index *
sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
}
if (encrypt)
append_seq_out_ptr(desc, dst_dma,
req->assoclen + req->cryptlen + authsize,
out_options);
else
append_seq_out_ptr(desc, dst_dma,
req->assoclen + req->cryptlen - authsize,
out_options);
}
static void init_gcm_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 *desc = edesc->hw_desc;
bool generic_gcm = (ivsize == GCM_AES_IV_SIZE);
unsigned int last;
init_aead_job(req, edesc, all_contig, encrypt);
append_math_add_imm_u32(desc, REG3, ZERO, IMM, req->assoclen);
/* BUG This should not be specific to generic GCM. */
last = 0;
if (encrypt && generic_gcm && !(req->assoclen + req->cryptlen))
last = FIFOLD_TYPE_LAST1;
/* Read GCM IV */
append_cmd(desc, CMD_FIFO_LOAD | FIFOLD_CLASS_CLASS1 | IMMEDIATE |
FIFOLD_TYPE_IV | FIFOLD_TYPE_FLUSH1 | GCM_AES_IV_SIZE | last);
/* Append Salt */
if (!generic_gcm)
append_data(desc, ctx->key + ctx->cdata.keylen, 4);
/* Append IV */
append_data(desc, req->iv, ivsize);
/* End of blank commands */
}
static void init_authenc_job(struct aead_request *req,
struct aead_edesc *edesc,
bool all_contig, bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
struct caam_aead_alg, aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
u32 *desc = edesc->hw_desc;
u32 ivoffset = 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ivoffset = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686)
ivoffset = 16 + CTR_RFC3686_NONCE_SIZE;
init_aead_job(req, edesc, all_contig, encrypt);
/*
* {REG3, DPOVRD} = assoclen, depending on whether MATH command supports
* having DPOVRD as destination.
*/
if (ctrlpriv->era < 3)
append_math_add_imm_u32(desc, REG3, ZERO, IMM, req->assoclen);
else
append_math_add_imm_u32(desc, DPOVRD, ZERO, IMM, req->assoclen);
if (ivsize && ((is_rfc3686 && encrypt) || !alg->caam.geniv))
append_load_as_imm(desc, req->iv, ivsize,
LDST_CLASS_1_CCB |
LDST_SRCDST_BYTE_CONTEXT |
(ivoffset << LDST_OFFSET_SHIFT));
}
/*
* Fill in ablkcipher job descriptor
*/
static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc = edesc->hw_desc;
u32 out_options = 0;
dma_addr_t dst_dma;
int len;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
pr_err("asked=%d, nbytes%d\n",
(int)edesc->src_nents > 1 ? 100 : req->nbytes, req->nbytes);
#endif
caam_dump_sg(KERN_ERR, "src @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
append_seq_in_ptr(desc, edesc->sec4_sg_dma, req->nbytes + ivsize,
LDST_SGF);
if (likely(req->src == req->dst)) {
dst_dma = edesc->sec4_sg_dma + sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
} else {
if (edesc->dst_nents == 1) {
dst_dma = sg_dma_address(req->dst);
} else {
dst_dma = edesc->sec4_sg_dma + (edesc->src_nents + 1) *
sizeof(struct sec4_sg_entry);
out_options = LDST_SGF;
}
}
append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options);
}
/*
* Fill in ablkcipher givencrypt job descriptor
*/
static void init_ablkcipher_giv_job(u32 *sh_desc, dma_addr_t ptr,
struct ablkcipher_edesc *edesc,
struct ablkcipher_request *req)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
u32 *desc = edesc->hw_desc;
u32 in_options;
dma_addr_t dst_dma, src_dma;
int len, sec4_sg_index = 0;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "presciv@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
#endif
caam_dump_sg(KERN_ERR, "src @" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
if (edesc->src_nents == 1) {
src_dma = sg_dma_address(req->src);
in_options = 0;
} else {
src_dma = edesc->sec4_sg_dma;
sec4_sg_index += edesc->src_nents;
in_options = LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, req->nbytes, in_options);
dst_dma = edesc->sec4_sg_dma + sec4_sg_index *
sizeof(struct sec4_sg_entry);
append_seq_out_ptr(desc, dst_dma, req->nbytes + ivsize, LDST_SGF);
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
int desc_bytes, bool *all_contig_ptr,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct aead_edesc *edesc;
int sec4_sg_index, sec4_sg_len, sec4_sg_bytes;
unsigned int authsize = ctx->authsize;
if (unlikely(req->dst != req->src)) {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen);
return ERR_PTR(src_nents);
}
dst_nents = sg_nents_for_len(req->dst, req->assoclen +
req->cryptlen +
(encrypt ? authsize :
(-authsize)));
if (unlikely(dst_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in dst S/G\n",
req->assoclen + req->cryptlen +
(encrypt ? authsize : (-authsize)));
return ERR_PTR(dst_nents);
}
} else {
src_nents = sg_nents_for_len(req->src, req->assoclen +
req->cryptlen +
(encrypt ? authsize : 0));
if (unlikely(src_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n",
req->assoclen + req->cryptlen +
(encrypt ? authsize : 0));
return ERR_PTR(src_nents);
}
}
if (likely(req->src == req->dst)) {
mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
} else {
/* Cover also the case of null (zero length) input data */
if (src_nents) {
mapped_src_nents = dma_map_sg(jrdev, req->src,
src_nents, DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
mapped_dst_nents = dma_map_sg(jrdev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
}
sec4_sg_len = mapped_src_nents > 1 ? mapped_src_nents : 0;
sec4_sg_len += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes,
GFP_DMA | flags);
if (!edesc) {
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg = (void *)edesc + sizeof(struct aead_edesc) +
desc_bytes;
*all_contig_ptr = !(mapped_src_nents > 1);
sec4_sg_index = 0;
if (mapped_src_nents > 1) {
sg_to_sec4_sg_last(req->src, mapped_src_nents,
edesc->sec4_sg + sec4_sg_index, 0);
sec4_sg_index += mapped_src_nents;
}
if (mapped_dst_nents > 1) {
sg_to_sec4_sg_last(req->dst, mapped_dst_nents,
edesc->sec4_sg + sec4_sg_index, 0);
}
if (!sec4_sg_bytes)
return edesc;
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
aead_unmap(jrdev, edesc, req);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->sec4_sg_bytes = sec4_sg_bytes;
return edesc;
}
static int gcm_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, GCM_DESC_JOB_IO_LEN, &all_contig, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
init_gcm_job(req, edesc, all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return gcm_encrypt(req);
}
static int aead_encrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN,
&all_contig, true);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
init_authenc_job(req, edesc, all_contig, true);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int gcm_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, GCM_DESC_JOB_IO_LEN, &all_contig, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_gcm_job(req, edesc, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
if (req->assoclen < 8)
return -EINVAL;
return gcm_decrypt(req);
}
static int aead_decrypt(struct aead_request *req)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
bool all_contig;
u32 *desc;
int ret = 0;
caam_dump_sg(KERN_ERR, "dec src@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
req->assoclen + req->cryptlen, 1);
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN,
&all_contig, false);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_authenc_job(req, edesc, all_contig, false);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "aead jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the ablkcipher extended descriptor for ablkcipher
*/
static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
*req, int desc_bytes)
{
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int dst_sg_idx, sec4_sg_ents, sec4_sg_bytes;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (unlikely(src_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n",
req->nbytes);
return ERR_PTR(src_nents);
}
if (req->dst != req->src) {
dst_nents = sg_nents_for_len(req->dst, req->nbytes);
if (unlikely(dst_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in dst S/G\n",
req->nbytes);
return ERR_PTR(dst_nents);
}
}
if (likely(req->src == req->dst)) {
mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(jrdev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
}
sec4_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = sec4_sg_ents;
sec4_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
sec4_sg_bytes = sec4_sg_ents * sizeof(struct sec4_sg_entry);
/*
* allocate space for base edesc and hw desc commands, link tables, IV
*/
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes + ivsize,
GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
edesc->sec4_sg = (struct sec4_sg_entry *)((u8 *)edesc->hw_desc +
desc_bytes);
edesc->iv_dir = DMA_TO_DEVICE;
/* Make sure IV is located in a DMAable area */
iv = (u8 *)edesc->hw_desc + desc_bytes + sec4_sg_bytes;
memcpy(iv, req->info, ivsize);
iv_dma = dma_map_single(jrdev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, iv_dma)) {
dev_err(jrdev, "unable to map IV\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
dma_to_sec4_sg_one(edesc->sec4_sg, iv_dma, ivsize, 0);
sg_to_sec4_sg_last(req->src, mapped_src_nents, edesc->sec4_sg + 1, 0);
if (mapped_dst_nents > 1) {
sg_to_sec4_sg_last(req->dst, mapped_dst_nents,
edesc->sec4_sg + dst_sg_idx, 0);
}
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher sec4_sg@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
sec4_sg_bytes, 1);
#endif
return edesc;
}
static int ablkcipher_encrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
static int ablkcipher_decrypt(struct ablkcipher_request *req)
{
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
struct device *jrdev = ctx->jrdev;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN * CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/*
* The crypto API expects us to set the IV (req->info) to the last
* ciphertext block when running in CBC mode.
*/
if ((ctx->cdata.algtype & OP_ALG_AAI_MASK) == OP_ALG_AAI_CBC)
scatterwalk_map_and_copy(req->info, req->src, req->nbytes -
ivsize, ivsize, 0);
/* Create and submit job descriptor*/
init_ablkcipher_job(ctx->sh_desc_dec, ctx->sh_desc_dec_dma, edesc, req);
desc = edesc->hw_desc;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
/*
* allocate and map the ablkcipher extended descriptor
* for ablkcipher givencrypt
*/
static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc(
struct skcipher_givcrypt_request *greq,
int desc_bytes)
{
struct ablkcipher_request *req = &greq->creq;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents, mapped_dst_nents;
struct ablkcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
int dst_sg_idx, sec4_sg_ents, sec4_sg_bytes;
src_nents = sg_nents_for_len(req->src, req->nbytes);
if (unlikely(src_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in src S/G\n",
req->nbytes);
return ERR_PTR(src_nents);
}
if (likely(req->src == req->dst)) {
mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
dst_nents = src_nents;
mapped_dst_nents = src_nents;
} else {
mapped_src_nents = dma_map_sg(jrdev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(jrdev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
dst_nents = sg_nents_for_len(req->dst, req->nbytes);
if (unlikely(dst_nents < 0)) {
dev_err(jrdev, "Insufficient bytes (%d) in dst S/G\n",
req->nbytes);
return ERR_PTR(dst_nents);
}
mapped_dst_nents = dma_map_sg(jrdev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(jrdev, "unable to map destination\n");
dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
}
sec4_sg_ents = mapped_src_nents > 1 ? mapped_src_nents : 0;
dst_sg_idx = sec4_sg_ents;
sec4_sg_ents += 1 + mapped_dst_nents;
/*
* allocate space for base edesc and hw desc commands, link tables, IV
*/
sec4_sg_bytes = sec4_sg_ents * sizeof(struct sec4_sg_entry);
edesc = kzalloc(sizeof(*edesc) + desc_bytes + sec4_sg_bytes + ivsize,
GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->sec4_sg_bytes = sec4_sg_bytes;
edesc->sec4_sg = (struct sec4_sg_entry *)((u8 *)edesc->hw_desc +
desc_bytes);
edesc->iv_dir = DMA_FROM_DEVICE;
/* Make sure IV is located in a DMAable area */
iv = (u8 *)edesc->hw_desc + desc_bytes + sec4_sg_bytes;
iv_dma = dma_map_single(jrdev, iv, ivsize, DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, iv_dma)) {
dev_err(jrdev, "unable to map IV\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
if (mapped_src_nents > 1)
sg_to_sec4_sg_last(req->src, mapped_src_nents, edesc->sec4_sg,
0);
dma_to_sec4_sg_one(edesc->sec4_sg + dst_sg_idx, iv_dma, ivsize, 0);
sg_to_sec4_sg_last(req->dst, mapped_dst_nents, edesc->sec4_sg +
dst_sg_idx + 1, 0);
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
dev_err(jrdev, "unable to map S/G table\n");
caam_unmap(jrdev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_FROM_DEVICE, 0, 0);
kfree(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->iv_dma = iv_dma;
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher sec4_sg@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
sec4_sg_bytes, 1);
#endif
return edesc;
}
static int ablkcipher_givencrypt(struct skcipher_givcrypt_request *creq)
{
struct ablkcipher_request *req = &creq->creq;
struct ablkcipher_edesc *edesc;
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *jrdev = ctx->jrdev;
u32 *desc;
int ret = 0;
/* allocate extended descriptor */
edesc = ablkcipher_giv_edesc_alloc(creq, DESC_JOB_IO_LEN * CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor*/
init_ablkcipher_giv_job(ctx->sh_desc_givenc, ctx->sh_desc_givenc_dma,
edesc, req);
#ifdef DEBUG
print_hex_dump(KERN_ERR,
"ablkcipher jobdesc@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
desc_bytes(edesc->hw_desc), 1);
#endif
desc = edesc->hw_desc;
ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
if (!ret) {
ret = -EINPROGRESS;
} else {
ablkcipher_unmap(jrdev, edesc, req);
kfree(edesc);
}
return ret;
}
#define template_aead template_u.aead
#define template_ablkcipher template_u.ablkcipher
struct caam_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
u32 type;
union {
struct ablkcipher_alg ablkcipher;
} template_u;
u32 class1_alg_type;
u32 class2_alg_type;
};
static struct caam_alg_template driver_algs[] = {
/* ablkcipher descriptor */
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-caam",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "chainiv",
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "rfc3686(ctr(aes))",
.driver_name = "rfc3686-ctr-aes-caam",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_GIVCIPHER,
.template_ablkcipher = {
.setkey = ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.givencrypt = ablkcipher_givencrypt,
.geniv = "<built-in>",
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CTR_MOD128,
},
{
.name = "xts(aes)",
.driver_name = "xts-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.template_ablkcipher = {
.setkey = xts_ablkcipher_setkey,
.encrypt = ablkcipher_encrypt,
.decrypt = ablkcipher_decrypt,
.geniv = "eseqiv",
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = GCM_RFC4106_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = GCM_RFC4543_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = gcm_encrypt,
.decrypt = gcm_decrypt,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
},
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-md5-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha1-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha224-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha256-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha384-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"ecb(cipher_null))",
.cra_driver_name = "authenc-hmac-sha512-"
"ecb-cipher_null-caam",
.cra_blocksize = NULL_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = NULL_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-caam",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-caam",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-md5-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(md5),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-md5-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha1),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha1-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc("
"hmac(sha224),rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha224-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha256),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha256-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha384),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha384-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"rfc3686(ctr(aes)))",
.cra_driver_name = "authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
},
},
{
.aead = {
.base = {
.cra_name = "seqiv(authenc(hmac(sha512),"
"rfc3686(ctr(aes))))",
.cra_driver_name = "seqiv-authenc-hmac-sha512-"
"rfc3686-ctr-aes-caam",
.cra_blocksize = 1,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.rfc3686 = true,
.geniv = true,
},
},
};
struct caam_crypto_alg {
struct crypto_alg crypto_alg;
struct list_head entry;
struct caam_alg_entry caam;
};
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
dma_addr_t dma_addr;
struct caam_drv_private *priv;
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
priv = dev_get_drvdata(ctx->jrdev->parent);
if (priv->era >= 6 && uses_dkp)
ctx->dir = DMA_BIDIRECTIONAL;
else
ctx->dir = DMA_TO_DEVICE;
dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_enc,
offsetof(struct caam_ctx,
sh_desc_enc_dma),
ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
if (dma_mapping_error(ctx->jrdev, dma_addr)) {
dev_err(ctx->jrdev, "unable to map key, shared descriptors\n");
caam_jr_free(ctx->jrdev);
return -ENOMEM;
}
ctx->sh_desc_enc_dma = dma_addr;
ctx->sh_desc_dec_dma = dma_addr + offsetof(struct caam_ctx,
sh_desc_dec);
ctx->sh_desc_givenc_dma = dma_addr + offsetof(struct caam_ctx,
sh_desc_givenc);
ctx->key_dma = dma_addr + offsetof(struct caam_ctx, key);
/* copy descriptor header template value */
ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
return 0;
}
static int caam_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct caam_crypto_alg *caam_alg =
container_of(alg, struct caam_crypto_alg, crypto_alg);
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam, false);
}
static int caam_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg =
container_of(alg, struct caam_aead_alg, aead);
struct caam_ctx *ctx = crypto_aead_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam,
alg->setkey == aead_setkey);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_enc_dma,
offsetof(struct caam_ctx, sh_desc_enc_dma),
ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
caam_jr_free(ctx->jrdev);
}
static void caam_cra_exit(struct crypto_tfm *tfm)
{
caam_exit_common(crypto_tfm_ctx(tfm));
}
static void caam_aead_exit(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
static void __exit caam_algapi_exit(void)
{
struct caam_crypto_alg *t_alg, *n;
int i;
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
if (!alg_list.next)
return;
list_for_each_entry_safe(t_alg, n, &alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
}
static struct caam_crypto_alg *caam_alg_alloc(struct caam_alg_template
*template)
{
struct caam_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg) {
pr_err("failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
alg = &t_alg->crypto_alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_cra_init;
alg->cra_exit = caam_cra_exit;
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_ctxsize = sizeof(struct caam_ctx);
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
template->type;
switch (template->type) {
case CRYPTO_ALG_TYPE_GIVCIPHER:
alg->cra_type = &crypto_givcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
case CRYPTO_ALG_TYPE_ABLKCIPHER:
alg->cra_type = &crypto_ablkcipher_type;
alg->cra_ablkcipher = template->template_ablkcipher;
break;
}
t_alg->caam.class1_alg_type = template->class1_alg_type;
t_alg->caam.class2_alg_type = template->class2_alg_type;
return t_alg;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_aead_init;
alg->exit = caam_aead_exit;
}
static int __init caam_algapi_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
struct caam_drv_private *priv;
int i = 0, err = 0;
u32 cha_vid, cha_inst, des_inst, aes_inst, md_inst;
unsigned int md_limit = SHA512_DIGEST_SIZE;
bool registered = false;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev) {
of_node_put(dev_node);
return -ENODEV;
}
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
of_node_put(dev_node);
/*
* If priv is NULL, it's probably because the caam driver wasn't
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
*/
if (!priv)
return -ENODEV;
INIT_LIST_HEAD(&alg_list);
/*
* Register crypto algorithms the device supports.
* First, detect presence and attributes of DES, AES, and MD blocks.
*/
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >> CHA_ID_LS_DES_SHIFT;
aes_inst = (cha_inst & CHA_ID_LS_AES_MASK) >> CHA_ID_LS_AES_SHIFT;
md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
/* If MD is present, limit digest size based on LP256 */
if (md_inst && ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256))
md_limit = SHA256_DIGEST_SIZE;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_crypto_alg *t_alg;
struct caam_alg_template *alg = driver_algs + i;
u32 alg_sel = alg->class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((alg_sel == OP_ALG_ALGSEL_3DES) ||
(alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES modes not available
* on LP devices.
*/
if ((cha_vid & CHA_ID_LS_AES_MASK) == CHA_ID_LS_AES_LP)
if ((alg->class1_alg_type & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_XTS)
continue;
t_alg = caam_alg_alloc(alg);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
pr_warn("%s alg allocation failed\n", alg->driver_name);
continue;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
continue;
}
list_add_tail(&t_alg->entry, &alg_list);
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
(c1_alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES algorithms not available
* on LP devices.
*/
if ((cha_vid & CHA_ID_LS_AES_MASK) == CHA_ID_LS_AES_LP)
if (alg_aai == OP_ALG_AAI_GCM)
continue;
/*
* Skip algorithms requiring message digests
* if MD or MD size is not supported by device.
*/
if (c2_alg_sel &&
(!md_inst || (t_alg->aead.maxauthsize > md_limit)))
continue;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->aead.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
pr_info("caam algorithms registered in /proc/crypto\n");
return err;
}
module_init(caam_algapi_init);
module_exit(caam_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");