c05564c4d8
Android 13
670 lines
17 KiB
C
Executable file
670 lines
17 KiB
C
Executable file
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* MediaTek UART APDMA driver.
|
|
*
|
|
* Copyright (c) 2019 MediaTek Inc.
|
|
* Author: Long Cheng <long.cheng@mediatek.com>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "../virt-dma.h"
|
|
|
|
/* The default number of virtual channel */
|
|
#define MTK_UART_APDMA_NR_VCHANS 8
|
|
|
|
#define VFF_EN_B BIT(0)
|
|
#define VFF_STOP_B BIT(0)
|
|
#define VFF_FLUSH_B BIT(0)
|
|
/* rx valid size >= vff thre */
|
|
#define VFF_RX_INT_EN_B (BIT(0) | BIT(1))
|
|
/* tx left size >= vff thre */
|
|
#define VFF_TX_INT_EN_B BIT(0)
|
|
#define VFF_WARM_RST_B BIT(0)
|
|
#define VFF_RX_INT_CLR_B (BIT(0) | BIT(1))
|
|
#define VFF_TX_INT_CLR_B 0
|
|
#define VFF_STOP_CLR_B 0
|
|
#define VFF_EN_CLR_B 0
|
|
#define VFF_INT_EN_CLR_B 0
|
|
#define VFF_4G_SUPPORT_CLR_B 0
|
|
#define VFF_ORI_ADDR_BITS_NUM 32
|
|
/*
|
|
* interrupt trigger level for tx
|
|
* if threshold is n, no polling is required to start tx.
|
|
* otherwise need polling VFF_FLUSH.
|
|
*/
|
|
#define VFF_TX_THRE(n) (n)
|
|
/* interrupt trigger level for rx */
|
|
#define VFF_RX_THRE(n) ((n) * 3 / 4)
|
|
|
|
#define VFF_RING_SIZE 0xffff
|
|
/* invert this bit when wrap ring head again */
|
|
#define VFF_RING_WRAP 0x10000
|
|
|
|
#define VFF_INT_FLAG 0x00
|
|
#define VFF_INT_EN 0x04
|
|
#define VFF_EN 0x08
|
|
#define VFF_RST 0x0c
|
|
#define VFF_STOP 0x10
|
|
#define VFF_FLUSH 0x14
|
|
#define VFF_ADDR 0x1c
|
|
#define VFF_LEN 0x24
|
|
#define VFF_THRE 0x28
|
|
#define VFF_WPT 0x2c
|
|
#define VFF_RPT 0x30
|
|
/* TX: the buffer size HW can read. RX: the buffer size SW can read. */
|
|
#define VFF_VALID_SIZE 0x3c
|
|
/* TX: the buffer size SW can write. RX: the buffer size HW can write. */
|
|
#define VFF_LEFT_SIZE 0x40
|
|
#define VFF_DEBUG_STATUS 0x50
|
|
#define VFF_4G_SUPPORT 0x54
|
|
|
|
struct mtk_uart_apdmadev {
|
|
struct dma_device ddev;
|
|
struct clk *clk;
|
|
unsigned int support_bits;
|
|
unsigned int dma_requests;
|
|
};
|
|
|
|
struct mtk_uart_apdma_desc {
|
|
struct virt_dma_desc vd;
|
|
|
|
dma_addr_t addr;
|
|
unsigned int avail_len;
|
|
};
|
|
|
|
struct mtk_chan {
|
|
struct virt_dma_chan vc;
|
|
struct dma_slave_config cfg;
|
|
struct mtk_uart_apdma_desc *desc;
|
|
enum dma_transfer_direction dir;
|
|
|
|
void __iomem *base;
|
|
unsigned int irq;
|
|
|
|
unsigned int rx_status;
|
|
};
|
|
|
|
static inline struct mtk_uart_apdmadev *
|
|
to_mtk_uart_apdma_dev(struct dma_device *d)
|
|
{
|
|
return container_of(d, struct mtk_uart_apdmadev, ddev);
|
|
}
|
|
|
|
static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct mtk_chan, vc.chan);
|
|
}
|
|
|
|
static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
|
|
(struct dma_async_tx_descriptor *t)
|
|
{
|
|
return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
|
|
}
|
|
|
|
static void mtk_uart_apdma_write(struct mtk_chan *c,
|
|
unsigned int reg, unsigned int val)
|
|
{
|
|
writel(val, c->base + reg);
|
|
}
|
|
|
|
static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
|
|
{
|
|
return readl(c->base + reg);
|
|
}
|
|
|
|
static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
|
|
{
|
|
struct dma_chan *chan = vd->tx.chan;
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
|
|
kfree(c->desc);
|
|
}
|
|
|
|
static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd =
|
|
to_mtk_uart_apdma_dev(c->vc.chan.device);
|
|
struct mtk_uart_apdma_desc *d = c->desc;
|
|
unsigned int wpt, vff_sz;
|
|
|
|
vff_sz = c->cfg.dst_port_window_size;
|
|
if (!mtk_uart_apdma_read(c, VFF_LEN)) {
|
|
mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
|
|
mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
|
|
mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
|
|
mtk_uart_apdma_write(c, VFF_WPT, 0);
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
|
|
|
|
if (mtkd->support_bits > VFF_ORI_ADDR_BITS_NUM)
|
|
mtk_uart_apdma_write(c, VFF_4G_SUPPORT,
|
|
upper_32_bits(d->addr));
|
|
}
|
|
|
|
mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
|
|
if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
|
|
dev_err(c->vc.chan.device->dev, "Enable TX fail\n");
|
|
|
|
if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
|
|
return;
|
|
}
|
|
|
|
wpt = mtk_uart_apdma_read(c, VFF_WPT);
|
|
|
|
wpt += c->desc->avail_len;
|
|
if ((wpt & VFF_RING_SIZE) == vff_sz)
|
|
wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;
|
|
|
|
/* Let DMA start moving data */
|
|
mtk_uart_apdma_write(c, VFF_WPT, wpt);
|
|
|
|
/* HW auto set to 0 when left size >= threshold */
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
|
|
if (!mtk_uart_apdma_read(c, VFF_FLUSH))
|
|
mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
|
|
}
|
|
|
|
static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd =
|
|
to_mtk_uart_apdma_dev(c->vc.chan.device);
|
|
struct mtk_uart_apdma_desc *d = c->desc;
|
|
unsigned int vff_sz;
|
|
|
|
vff_sz = c->cfg.src_port_window_size;
|
|
if (!mtk_uart_apdma_read(c, VFF_LEN)) {
|
|
mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
|
|
mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
|
|
mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
|
|
mtk_uart_apdma_write(c, VFF_RPT, 0);
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
|
|
|
|
if (mtkd->support_bits > VFF_ORI_ADDR_BITS_NUM)
|
|
mtk_uart_apdma_write(c, VFF_4G_SUPPORT,
|
|
upper_32_bits(d->addr));
|
|
}
|
|
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
|
|
mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
|
|
if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
|
|
dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
|
|
}
|
|
|
|
static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
|
|
{
|
|
struct mtk_uart_apdma_desc *d = c->desc;
|
|
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
|
|
mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
|
|
|
|
list_del(&d->vd.node);
|
|
vchan_cookie_complete(&d->vd);
|
|
}
|
|
|
|
static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
|
|
{
|
|
struct mtk_uart_apdma_desc *d = c->desc;
|
|
unsigned int len, wg, rg;
|
|
int cnt;
|
|
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
|
|
|
|
if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
|
|
return;
|
|
|
|
mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
|
|
|
|
len = c->cfg.src_port_window_size;
|
|
rg = mtk_uart_apdma_read(c, VFF_RPT);
|
|
wg = mtk_uart_apdma_read(c, VFF_WPT);
|
|
cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);
|
|
|
|
/*
|
|
* The buffer is ring buffer. If wrap bit different,
|
|
* represents the start of the next cycle for WPT
|
|
*/
|
|
if ((rg ^ wg) & VFF_RING_WRAP)
|
|
cnt += len;
|
|
|
|
c->rx_status = d->avail_len - cnt;
|
|
mtk_uart_apdma_write(c, VFF_RPT, wg);
|
|
|
|
list_del(&d->vd.node);
|
|
vchan_cookie_complete(&d->vd);
|
|
}
|
|
|
|
static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
|
|
{
|
|
struct dma_chan *chan = (struct dma_chan *)dev_id;
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&c->vc.lock, flags);
|
|
if (c->dir == DMA_DEV_TO_MEM)
|
|
mtk_uart_apdma_rx_handler(c);
|
|
else if (c->dir == DMA_MEM_TO_DEV)
|
|
mtk_uart_apdma_tx_handler(c);
|
|
spin_unlock_irqrestore(&c->vc.lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
unsigned int status;
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(mtkd->ddev.dev);
|
|
if (ret < 0) {
|
|
pm_runtime_put_noidle(chan->device->dev);
|
|
return ret;
|
|
}
|
|
|
|
mtk_uart_apdma_write(c, VFF_ADDR, 0);
|
|
mtk_uart_apdma_write(c, VFF_THRE, 0);
|
|
mtk_uart_apdma_write(c, VFF_LEN, 0);
|
|
mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);
|
|
|
|
ret = readx_poll_timeout(readl, c->base + VFF_EN,
|
|
status, !status, 10, 100);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
|
|
IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
|
|
if (ret < 0) {
|
|
dev_err(chan->device->dev, "Can't request dma IRQ\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mtkd->support_bits > VFF_ORI_ADDR_BITS_NUM)
|
|
mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
|
|
free_irq(c->irq, chan);
|
|
|
|
tasklet_kill(&c->vc.task);
|
|
|
|
vchan_free_chan_resources(&c->vc);
|
|
|
|
pm_runtime_put_sync(mtkd->ddev.dev);
|
|
}
|
|
|
|
static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
enum dma_status ret;
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (!txstate)
|
|
return ret;
|
|
|
|
dma_set_residue(txstate, c->rx_status);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* dmaengine_prep_slave_single will call the function. and sglen is 1.
|
|
* 8250 uart using one ring buffer, and deal with one sg.
|
|
*/
|
|
static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
|
|
(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sglen, enum dma_transfer_direction dir,
|
|
unsigned long tx_flags, void *context)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
struct mtk_uart_apdma_desc *d;
|
|
|
|
if (!is_slave_direction(dir) || sglen != 1)
|
|
return NULL;
|
|
|
|
/* Now allocate and setup the descriptor */
|
|
d = kzalloc(sizeof(*d), GFP_ATOMIC);
|
|
if (!d)
|
|
return NULL;
|
|
|
|
d->avail_len = sg_dma_len(sgl);
|
|
d->addr = sg_dma_address(sgl);
|
|
c->dir = dir;
|
|
|
|
return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
|
|
}
|
|
|
|
static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
struct virt_dma_desc *vd;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&c->vc.lock, flags);
|
|
if (vchan_issue_pending(&c->vc)) {
|
|
vd = vchan_next_desc(&c->vc);
|
|
c->desc = to_mtk_uart_apdma_desc(&vd->tx);
|
|
|
|
if (c->dir == DMA_DEV_TO_MEM)
|
|
mtk_uart_apdma_start_rx(c);
|
|
else if (c->dir == DMA_MEM_TO_DEV)
|
|
mtk_uart_apdma_start_tx(c);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&c->vc.lock, flags);
|
|
}
|
|
|
|
static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
|
|
memcpy(&c->cfg, config, sizeof(*config));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
unsigned long flags;
|
|
unsigned int status;
|
|
LIST_HEAD(head);
|
|
int ret;
|
|
|
|
mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
|
|
|
|
ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
|
|
status, status != VFF_FLUSH_B, 10, 100);
|
|
if (ret)
|
|
dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
|
|
mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
|
|
|
|
/*
|
|
* Stop need 3 steps.
|
|
* 1. set stop to 1
|
|
* 2. wait en to 0
|
|
* 3. set stop as 0
|
|
*/
|
|
mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
|
|
ret = readx_poll_timeout(readl, c->base + VFF_EN,
|
|
status, !status, 10, 100);
|
|
if (ret)
|
|
dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
|
|
mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
|
|
|
|
mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
|
|
|
|
if (c->dir == DMA_DEV_TO_MEM)
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
|
|
else if (c->dir == DMA_MEM_TO_DEV)
|
|
mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
|
|
|
|
synchronize_irq(c->irq);
|
|
|
|
spin_lock_irqsave(&c->vc.lock, flags);
|
|
vchan_get_all_descriptors(&c->vc, &head);
|
|
vchan_dma_desc_free_list(&c->vc, &head);
|
|
spin_unlock_irqrestore(&c->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
|
|
{
|
|
struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&c->vc.lock, flags);
|
|
|
|
mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
|
|
mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
|
|
|
|
synchronize_irq(c->irq);
|
|
|
|
spin_unlock_irqrestore(&c->vc.lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
|
|
{
|
|
while (!list_empty(&mtkd->ddev.channels)) {
|
|
struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
|
|
struct mtk_chan, vc.chan.device_node);
|
|
|
|
list_del(&c->vc.chan.device_node);
|
|
tasklet_kill(&c->vc.task);
|
|
}
|
|
}
|
|
|
|
static const struct of_device_id mtk_uart_apdma_match[] = {
|
|
{ .compatible = "mediatek,mt6577-uart-dma", },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);
|
|
|
|
static int mtk_uart_apdma_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct mtk_uart_apdmadev *mtkd;
|
|
int rc;
|
|
struct resource *res;
|
|
struct mtk_chan *c;
|
|
unsigned int i;
|
|
unsigned int addr_bits = VFF_ORI_ADDR_BITS_NUM;
|
|
|
|
mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
|
|
if (!mtkd)
|
|
return -ENOMEM;
|
|
|
|
mtkd->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(mtkd->clk)) {
|
|
dev_err(&pdev->dev, "No clock specified\n");
|
|
rc = PTR_ERR(mtkd->clk);
|
|
return rc;
|
|
}
|
|
|
|
if (of_property_read_u32(pdev->dev.of_node, "dma-bits", &addr_bits))
|
|
addr_bits = VFF_ORI_ADDR_BITS_NUM;
|
|
|
|
dev_info(&pdev->dev,
|
|
"DMA address bits: %d\n", addr_bits);
|
|
mtkd->support_bits = addr_bits;
|
|
|
|
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_bits));
|
|
if (rc)
|
|
return rc;
|
|
|
|
dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
|
|
mtkd->ddev.device_alloc_chan_resources =
|
|
mtk_uart_apdma_alloc_chan_resources;
|
|
mtkd->ddev.device_free_chan_resources =
|
|
mtk_uart_apdma_free_chan_resources;
|
|
mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
|
|
mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
|
|
mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
|
|
mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
|
|
mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
|
|
mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
|
|
mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
|
|
mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
|
|
mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
mtkd->ddev.dev = &pdev->dev;
|
|
INIT_LIST_HEAD(&mtkd->ddev.channels);
|
|
|
|
mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
|
|
if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
|
|
dev_info(&pdev->dev,
|
|
"Using %u as missing dma-requests property\n",
|
|
MTK_UART_APDMA_NR_VCHANS);
|
|
}
|
|
|
|
for (i = 0; i < mtkd->dma_requests; i++) {
|
|
c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
|
|
if (!c) {
|
|
rc = -ENODEV;
|
|
goto err_no_dma;
|
|
}
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
|
|
if (!res) {
|
|
rc = -ENODEV;
|
|
goto err_no_dma;
|
|
}
|
|
|
|
c->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(c->base)) {
|
|
rc = PTR_ERR(c->base);
|
|
goto err_no_dma;
|
|
}
|
|
c->vc.desc_free = mtk_uart_apdma_desc_free;
|
|
vchan_init(&c->vc, &mtkd->ddev);
|
|
|
|
rc = platform_get_irq(pdev, i);
|
|
if (rc < 0) {
|
|
dev_err(&pdev->dev, "failed to get IRQ[%d]\n", i);
|
|
goto err_no_dma;
|
|
}
|
|
c->irq = rc;
|
|
}
|
|
|
|
pm_runtime_enable(&pdev->dev);
|
|
pm_runtime_set_active(&pdev->dev);
|
|
|
|
rc = dma_async_device_register(&mtkd->ddev);
|
|
if (rc)
|
|
goto rpm_disable;
|
|
|
|
platform_set_drvdata(pdev, mtkd);
|
|
|
|
/* Device-tree DMA controller registration */
|
|
rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
|
|
if (rc)
|
|
goto dma_remove;
|
|
|
|
return rc;
|
|
|
|
dma_remove:
|
|
dma_async_device_unregister(&mtkd->ddev);
|
|
rpm_disable:
|
|
pm_runtime_disable(&pdev->dev);
|
|
err_no_dma:
|
|
mtk_uart_apdma_free(mtkd);
|
|
return rc;
|
|
}
|
|
|
|
static int mtk_uart_apdma_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
|
|
mtk_uart_apdma_free(mtkd);
|
|
|
|
dma_async_device_unregister(&mtkd->ddev);
|
|
|
|
pm_runtime_disable(&pdev->dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int mtk_uart_apdma_suspend(struct device *dev)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
|
|
|
|
if (!pm_runtime_suspended(dev))
|
|
clk_disable_unprepare(mtkd->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_uart_apdma_resume(struct device *dev)
|
|
{
|
|
int ret;
|
|
struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
|
|
|
|
if (!pm_runtime_suspended(dev)) {
|
|
ret = clk_prepare_enable(mtkd->clk);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
#ifdef CONFIG_PM
|
|
static int mtk_uart_apdma_runtime_suspend(struct device *dev)
|
|
{
|
|
struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(mtkd->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_uart_apdma_runtime_resume(struct device *dev)
|
|
{
|
|
int ret;
|
|
struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
|
|
|
|
ret = clk_prepare_enable(mtkd->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
|
|
SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
|
|
mtk_uart_apdma_runtime_resume, NULL)
|
|
};
|
|
|
|
static struct platform_driver mtk_uart_apdma_driver = {
|
|
.probe = mtk_uart_apdma_probe,
|
|
.remove = mtk_uart_apdma_remove,
|
|
.driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.pm = &mtk_uart_apdma_pm_ops,
|
|
.of_match_table = of_match_ptr(mtk_uart_apdma_match),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(mtk_uart_apdma_driver);
|
|
|
|
MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
|
|
MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
|
|
MODULE_LICENSE("GPL v2");
|