kernel_samsung_a34x-permissive/drivers/gpu/drm/i915/intel_guc.c
2024-04-28 15:49:01 +02:00

674 lines
19 KiB
C
Executable file

/*
* Copyright © 2014-2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
static void guc_init_ggtt_pin_bias(struct intel_guc *guc);
static void gen8_guc_raise_irq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
GEM_BUG_ON(i >= guc->send_regs.count);
return _MMIO(guc->send_regs.base + 4 * i);
}
void intel_guc_init_send_regs(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
enum forcewake_domains fw_domains = 0;
unsigned int i;
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;
for (i = 0; i < guc->send_regs.count; i++) {
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
guc_send_reg(guc, i),
FW_REG_READ | FW_REG_WRITE);
}
guc->send_regs.fw_domains = fw_domains;
}
void intel_guc_init_early(struct intel_guc *guc)
{
intel_guc_fw_init_early(guc);
intel_guc_ct_init_early(&guc->ct);
intel_guc_log_init_early(&guc->log);
mutex_init(&guc->send_mutex);
spin_lock_init(&guc->irq_lock);
guc->send = intel_guc_send_nop;
guc->handler = intel_guc_to_host_event_handler_nop;
guc->notify = gen8_guc_raise_irq;
}
static int guc_init_wq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
/*
* GuC log buffer flush work item has to do register access to
* send the ack to GuC and this work item, if not synced before
* suspend, can potentially get executed after the GFX device is
* suspended.
* By marking the WQ as freezable, we don't have to bother about
* flushing of this work item from the suspend hooks, the pending
* work item if any will be either executed before the suspend
* or scheduled later on resume. This way the handling of work
* item can be kept same between system suspend & rpm suspend.
*/
guc->log.relay.flush_wq =
alloc_ordered_workqueue("i915-guc_log",
WQ_HIGHPRI | WQ_FREEZABLE);
if (!guc->log.relay.flush_wq) {
DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
return -ENOMEM;
}
/*
* Even though both sending GuC action, and adding a new workitem to
* GuC workqueue are serialized (each with its own locking), since
* we're using mutliple engines, it's possible that we're going to
* issue a preempt request with two (or more - each for different
* engine) workitems in GuC queue. In this situation, GuC may submit
* all of them, which will make us very confused.
* Our preemption contexts may even already be complete - before we
* even had the chance to sent the preempt action to GuC!. Rather
* than introducing yet another lock, we can just use ordered workqueue
* to make sure we're always sending a single preemption request with a
* single workitem.
*/
if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
USES_GUC_SUBMISSION(dev_priv)) {
guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
WQ_HIGHPRI);
if (!guc->preempt_wq) {
destroy_workqueue(guc->log.relay.flush_wq);
DRM_ERROR("Couldn't allocate workqueue for GuC "
"preemption\n");
return -ENOMEM;
}
}
return 0;
}
static void guc_fini_wq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
USES_GUC_SUBMISSION(dev_priv))
destroy_workqueue(guc->preempt_wq);
destroy_workqueue(guc->log.relay.flush_wq);
}
int intel_guc_init_misc(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_i915(guc);
int ret;
guc_init_ggtt_pin_bias(guc);
ret = guc_init_wq(guc);
if (ret)
return ret;
intel_uc_fw_fetch(i915, &guc->fw);
return 0;
}
void intel_guc_fini_misc(struct intel_guc *guc)
{
intel_uc_fw_fini(&guc->fw);
guc_fini_wq(guc);
}
static int guc_shared_data_create(struct intel_guc *guc)
{
struct i915_vma *vma;
void *vaddr;
vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
if (IS_ERR(vma))
return PTR_ERR(vma);
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
i915_vma_unpin_and_release(&vma);
return PTR_ERR(vaddr);
}
guc->shared_data = vma;
guc->shared_data_vaddr = vaddr;
return 0;
}
static void guc_shared_data_destroy(struct intel_guc *guc)
{
i915_gem_object_unpin_map(guc->shared_data->obj);
i915_vma_unpin_and_release(&guc->shared_data);
}
int intel_guc_init(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
int ret;
ret = guc_shared_data_create(guc);
if (ret)
goto err_fetch;
GEM_BUG_ON(!guc->shared_data);
ret = intel_guc_log_create(&guc->log);
if (ret)
goto err_shared;
ret = intel_guc_ads_create(guc);
if (ret)
goto err_log;
GEM_BUG_ON(!guc->ads_vma);
/* We need to notify the guc whenever we change the GGTT */
i915_ggtt_enable_guc(dev_priv);
return 0;
err_log:
intel_guc_log_destroy(&guc->log);
err_shared:
guc_shared_data_destroy(guc);
err_fetch:
intel_uc_fw_fini(&guc->fw);
return ret;
}
void intel_guc_fini(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
i915_ggtt_disable_guc(dev_priv);
intel_guc_ads_destroy(guc);
intel_guc_log_destroy(&guc->log);
guc_shared_data_destroy(guc);
intel_uc_fw_fini(&guc->fw);
}
static u32 guc_ctl_debug_flags(struct intel_guc *guc)
{
u32 level = intel_guc_log_get_level(&guc->log);
u32 flags;
u32 ads;
ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
flags = ads << GUC_ADS_ADDR_SHIFT | GUC_ADS_ENABLED;
if (!GUC_LOG_LEVEL_IS_ENABLED(level))
flags |= GUC_LOG_DEFAULT_DISABLED;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct intel_guc *guc)
{
u32 flags = 0;
flags |= GUC_CTL_VCS2_ENABLED;
if (USES_GUC_SUBMISSION(guc_to_i915(guc)))
flags |= GUC_CTL_KERNEL_SUBMISSIONS;
else
flags |= GUC_CTL_DISABLE_SCHEDULER;
return flags;
}
static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
{
u32 flags = 0;
if (USES_GUC_SUBMISSION(guc_to_i915(guc))) {
u32 ctxnum, base;
base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
base >>= PAGE_SHIFT;
flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
}
return flags;
}
static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
{
u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
u32 flags;
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
#define UNIT SZ_1M
#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
#else
#define UNIT SZ_4K
#define FLAG 0
#endif
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
BUILD_BUG_ON(!DPC_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
BUILD_BUG_ON(!ISR_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
FLAG |
((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
#undef UNIT
#undef FLAG
return flags;
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
void intel_guc_init_params(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 params[GUC_CTL_MAX_DWORDS];
int i;
memset(params, 0, sizeof(params));
/*
* GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
* second. This ARAR is calculated by:
* Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
*/
params[GUC_CTL_ARAT_HIGH] = 0;
params[GUC_CTL_ARAT_LOW] = 100000000;
params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
/*
* All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
* they are power context saved so it's ok to release forcewake
* when we are done here and take it again at xfer time.
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);
I915_WRITE(SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
}
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
WARN(1, "Unexpected send: action=%#x\n", *action);
return -ENODEV;
}
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
WARN(1, "Unexpected event: no suitable handler\n");
}
/*
* This function implements the MMIO based host to GuC interface.
*/
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 status;
int i;
int ret;
GEM_BUG_ON(!len);
GEM_BUG_ON(len > guc->send_regs.count);
/* We expect only action code */
GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
/* If CT is available, we expect to use MMIO only during init/fini */
GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
mutex_lock(&guc->send_mutex);
intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);
for (i = 0; i < len; i++)
I915_WRITE(guc_send_reg(guc, i), action[i]);
POSTING_READ(guc_send_reg(guc, i - 1));
intel_guc_notify(guc);
/*
* No GuC command should ever take longer than 10ms.
* Fast commands should still complete in 10us.
*/
ret = __intel_wait_for_register_fw(dev_priv,
guc_send_reg(guc, 0),
INTEL_GUC_MSG_TYPE_MASK,
INTEL_GUC_MSG_TYPE_RESPONSE <<
INTEL_GUC_MSG_TYPE_SHIFT,
10, 10, &status);
/* If GuC explicitly returned an error, convert it to -EIO */
if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
ret = -EIO;
if (ret) {
DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
action[0], ret, status);
goto out;
}
if (response_buf) {
int count = min(response_buf_size, guc->send_regs.count - 1);
for (i = 0; i < count; i++)
response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
}
/* Use data from the GuC response as our return value */
ret = INTEL_GUC_MSG_TO_DATA(status);
out:
intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
mutex_unlock(&guc->send_mutex);
return ret;
}
void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 msg, val;
/*
* Sample the log buffer flush related bits & clear them out now
* itself from the message identity register to minimize the
* probability of losing a flush interrupt, when there are back
* to back flush interrupts.
* There can be a new flush interrupt, for different log buffer
* type (like for ISR), whilst Host is handling one (for DPC).
* Since same bit is used in message register for ISR & DPC, it
* could happen that GuC sets the bit for 2nd interrupt but Host
* clears out the bit on handling the 1st interrupt.
*/
disable_rpm_wakeref_asserts(dev_priv);
spin_lock(&guc->irq_lock);
val = I915_READ(SOFT_SCRATCH(15));
msg = val & guc->msg_enabled_mask;
I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
spin_unlock(&guc->irq_lock);
enable_rpm_wakeref_asserts(dev_priv);
intel_guc_to_host_process_recv_msg(guc, msg);
}
void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
{
/* Make sure to handle only enabled messages */
msg &= guc->msg_enabled_mask;
if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
intel_guc_log_handle_flush_event(&guc->log);
}
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 action[2];
action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
/* WaRsDisableCoarsePowerGating:skl,cnl */
if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
action[1] = 0;
else
/* bit 0 and 1 are for Render and Media domain separately */
action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
* @guc: intel_guc structure
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
*
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
* intel_huc_auth().
*
* Return: non-zero code on error
*/
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
u32 action[] = {
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
rsa_offset
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @guc: the guc
*/
int intel_guc_suspend(struct intel_guc *guc)
{
u32 data[] = {
INTEL_GUC_ACTION_ENTER_S_STATE,
GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
intel_guc_ggtt_offset(guc, guc->shared_data)
};
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_reset_engine() - ask GuC to reset an engine
* @guc: intel_guc structure
* @engine: engine to be reset
*/
int intel_guc_reset_engine(struct intel_guc *guc,
struct intel_engine_cs *engine)
{
u32 data[7];
GEM_BUG_ON(!guc->execbuf_client);
data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
data[1] = engine->guc_id;
data[2] = 0;
data[3] = 0;
data[4] = 0;
data[5] = guc->execbuf_client->stage_id;
data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @guc: the guc
*/
int intel_guc_resume(struct intel_guc *guc)
{
u32 data[] = {
INTEL_GUC_ACTION_EXIT_S_STATE,
GUC_POWER_D0,
intel_guc_ggtt_offset(guc, guc->shared_data)
};
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* DOC: GuC Address Space
*
* The layout of GuC address space is shown below:
*
* ::
*
* +==============> +====================+ <== GUC_GGTT_TOP
* ^ | |
* | | |
* | | DRAM |
* | | Memory |
* | | |
* GuC | |
* Address +========> +====================+ <== WOPCM Top
* Space ^ | HW contexts RSVD |
* | | | WOPCM |
* | | +==> +--------------------+ <== GuC WOPCM Top
* | GuC ^ | |
* | GGTT | | |
* | Pin GuC | GuC |
* | Bias WOPCM | WOPCM |
* | | Size | |
* | | | | |
* v v v | |
* +=====+=====+==> +====================+ <== GuC WOPCM Base
* | Non-GuC WOPCM |
* | (HuC/Reserved) |
* +====================+ <== WOPCM Base
*
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
* to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
* actual GuC WOPCM size.
*/
/**
* guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
* @guc: intel_guc structure.
*
* This function will calculate and initialize the ggtt_pin_bias value based on
* overall WOPCM size and GuC WOPCM size.
*/
static void guc_init_ggtt_pin_bias(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_i915(guc);
GEM_BUG_ON(!i915->wopcm.size);
GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);
guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
}
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create(dev_priv, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, &dev_priv->ggtt.vm, NULL);
if (IS_ERR(vma))
goto err;
ret = i915_vma_pin(vma, 0, PAGE_SIZE,
PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return vma;
err:
i915_gem_object_put(obj);
return vma;
}