kernel_samsung_a34x-permissive/drivers/gpu/drm/mediatek/mtk_dp.c
2024-04-28 15:49:01 +02:00

3965 lines
102 KiB
C
Executable file

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/arm-smccc.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/of_gpio.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/component.h>
#include <linux/of_device.h>
#include <linux/extcon.h>
#include <../../../extcon/extcon.h>
#include <linux/kthread.h>
#include <linux/errno.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_dp_helper.h>
#include <drm/mediatek_drm.h>
#include "mtk_dp.h"
#include "mtk_dp_hal.h"
#include "mtk_drm_drv.h"
#include "mtk_dp_api.h"
#include "mtk_dp_reg.h"
#ifdef DPTX_HDCP_ENABLE
#include "mtk_dp_hdcp1x.h"
#include "mtk_dp_hdcp2.h"
#include "ca/tlcDpHdcp.h"
#endif
static struct mtk_dp *g_mtk_dp;
static bool fakecablein;
static int fakeres = FAKE_DEFAULT_RES;
static int fakebpc = DP_COLOR_DEPTH_8BIT;
struct mutex dp_lock;
static bool g_hdcp_on = 1;
static const struct drm_display_mode dptx_est_modes[] = {
/* 2160x3840@60Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 3860, 3860,
3880, 0, 2160, 2180, 2180, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, },
/* 2160x3840@30Hz */
{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 3860, 3860,
3880, 0, 2160, 2180, 2180, 2200, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, },
/* 1080x1920@60Hz */
{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
148500, 1920, 1940, 1940, 1980, 0, 1080, 1120, 1120, 1220, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60,},
/* 1280x720@60Hz */
{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1300, 1300,
1320, 0, 720, 740, 740, 760, 0,
DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, }
};
enum DPTX_STATE {
DPTX_STATE_NO_DEVICE,
DPTX_STATE_ACTIVE,
};
struct notify_dev {
const char *name;
struct device *dev;
int index;
int state;
ssize_t (*print_name)(struct notify_dev *sdev, char *buf);
ssize_t (*print_state)(struct notify_dev *sdev, char *buf);
};
struct extcon_dev *dptx_extcon;
static const unsigned int dptx_cable[] = {
EXTCON_DISP_HDMI,// audio framework not support DP
EXTCON_NONE,
};
struct notify_dev dptx_notify_data;
struct class *switch_class;
static atomic_t device_count;
static ssize_t state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
struct notify_dev *sdev = (struct notify_dev *)
dev_get_drvdata(dev);
if (sdev->print_state) {
ret = sdev->print_state(sdev, buf);
if (ret >= 0)
return ret;
}
return sprintf(buf, "%d\n", sdev->state);
}
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int ret;
struct notify_dev *sdev = (struct notify_dev *)
dev_get_drvdata(dev);
if (sdev->print_name) {
ret = sdev->print_name(sdev, buf);
if (ret >= 0)
return ret;
}
return sprintf(buf, "%s\n", sdev->name);
}
static DEVICE_ATTR(state, 0444, state_show, NULL);
static DEVICE_ATTR(name, 0444, name_show, NULL);
static int create_switch_class(void)
{
if (!switch_class) {
switch_class = class_create(THIS_MODULE, "switch");
if (IS_ERR(switch_class))
return PTR_ERR(switch_class);
atomic_set(&device_count, 0);
}
return 0;
}
int dptx_uevent_dev_register(struct notify_dev *sdev)
{
int ret;
if (!switch_class) {
ret = create_switch_class();
if (ret == 0)
DPTXMSG("create_switch_class susesess\n");
else {
DPTXERR("create_switch_class fail\n");
return ret;
}
}
sdev->index = atomic_inc_return(&device_count);
sdev->dev = device_create(switch_class, NULL,
MKDEV(0, sdev->index), NULL, sdev->name);
if (sdev->dev) {
DPTXMSG("device create ok,index:0x%x\n", sdev->index);
ret = 0;
} else {
DPTXERR("device create fail,index:0x%x\n", sdev->index);
ret = -1;
}
ret = device_create_file(sdev->dev, &dev_attr_state);
if (ret < 0) {
device_destroy(switch_class, MKDEV(0, sdev->index));
DPTXERR("switch: Failed to register driver %s\n",
sdev->name);
}
ret = device_create_file(sdev->dev, &dev_attr_name);
if (ret < 0) {
device_remove_file(sdev->dev, &dev_attr_state);
DPTXERR("switch: Failed to register driver %s\n",
sdev->name);
}
dev_set_drvdata(sdev->dev, sdev);
sdev->state = 0;
return ret;
}
int notify_uevent_user(struct notify_dev *sdev, int state)
{
char *envp[3];
char name_buf[120];
char state_buf[120];
if (sdev == NULL)
return -1;
if (sdev->state != state)
sdev->state = state;
snprintf(name_buf, sizeof(name_buf), "SWITCH_NAME=%s", sdev->name);
envp[0] = name_buf;
snprintf(state_buf, sizeof(state_buf), "SWITCH_STATE=%d", sdev->state);
envp[1] = state_buf;
envp[2] = NULL;
DPTXMSG("uevent name:%s ,state:%s\n", envp[0], envp[1]);
kobject_uevent_env(&sdev->dev->kobj, KOBJ_CHANGE, envp);
return 0;
}
bool mdrv_DPTx_AuxWrite_Bytes(struct mtk_dp *mtk_dp, u8 ubCmd,
u32 usDPCDADDR, size_t ubLength, BYTE *pData)
{
bool bReplyStatus = false;
u8 ubRetryLimit = 0x7;
if (!mtk_dp->training_info.bCablePlugIn ||
((mtk_dp->training_info.usPHY_STS & (HPD_DISCONNECT)) != 0x0)) {
if (!mtk_dp->training_info.bDPTxAutoTest_EN)
mtk_dp->training_state = DPTX_NTSTATE_CHECKCAP;
return false;
}
do {
bReplyStatus = mhal_DPTx_AuxWrite_Bytes(mtk_dp, ubCmd,
usDPCDADDR, ubLength, pData);
ubRetryLimit--;
if (!bReplyStatus) {
udelay(50);
DPTXFUNC("Retry Num = %d\n", ubRetryLimit);
} else
return true;
} while (ubRetryLimit > 0);
DPTXERR("Aux Write Fail: cmd = %d, addr = 0x%x, len = %d\n",
ubCmd, usDPCDADDR, ubLength);
return false;
}
bool mdrv_DPTx_AuxWrite_DPCD(struct mtk_dp *mtk_dp, u8 ubCmd,
u32 usDPCDADDR, size_t ubLength, BYTE *pData)
{
bool bRet = true;
size_t times = 0;
size_t remain = 0;
size_t loop = 0;
if (ubLength > DP_AUX_MAX_PAYLOAD_BYTES) {
times = ubLength / DP_AUX_MAX_PAYLOAD_BYTES;
remain = ubLength % DP_AUX_MAX_PAYLOAD_BYTES;
for (loop = 0; loop < times; loop++)
bRet &= mdrv_DPTx_AuxWrite_Bytes(mtk_dp,
ubCmd,
usDPCDADDR + (loop * DP_AUX_MAX_PAYLOAD_BYTES),
DP_AUX_MAX_PAYLOAD_BYTES,
pData + (loop * DP_AUX_MAX_PAYLOAD_BYTES));
if (remain > 0)
bRet &= mdrv_DPTx_AuxWrite_Bytes(mtk_dp,
ubCmd,
usDPCDADDR + (times * DP_AUX_MAX_PAYLOAD_BYTES),
remain,
pData + (times * DP_AUX_MAX_PAYLOAD_BYTES));
} else
bRet &= mdrv_DPTx_AuxWrite_Bytes(mtk_dp,
ubCmd,
usDPCDADDR,
ubLength,
pData);
if (mtk_dp_debug_get()) {
DPTXDBG("Aux write cmd = %d, addr = 0x%x, len = %d, %s\n",
ubCmd, usDPCDADDR, ubLength, bRet ? "Success" : "Fail");
for (loop = 0; loop < ubLength; loop++)
DPTXDBG("DPCD%x:0x%x", usDPCDADDR + loop, pData[loop]);
}
return bRet;
}
bool mdrv_DPTx_AuxRead_Bytes(struct mtk_dp *mtk_dp, u8 ubCmd,
u32 usDPCDADDR, size_t ubLength, BYTE *pData)
{
bool bReplyStatus = false;
u8 ubRetryLimit = 7;
if (!mtk_dp->training_info.bCablePlugIn ||
((mtk_dp->training_info.usPHY_STS & (HPD_DISCONNECT)) != 0x0)) {
if (!mtk_dp->training_info.bDPTxAutoTest_EN)
mtk_dp->training_state = DPTX_NTSTATE_CHECKCAP;
return false;
}
do {
bReplyStatus = mhal_DPTx_AuxRead_Bytes(mtk_dp, ubCmd,
usDPCDADDR, ubLength, pData);
if (!bReplyStatus) {
udelay(50);
DPTXFUNC("Retry Num = %d\n", ubRetryLimit);
} else
return true;
ubRetryLimit--;
} while (ubRetryLimit > 0);
DPTXERR("Aux Read Fail: cmd = %d, addr = 0x%x, len = %d\n",
ubCmd, usDPCDADDR, ubLength);
return false;
}
bool mdrv_DPTx_AuxRead_DPCD(struct mtk_dp *mtk_dp, u8 ubCmd,
u32 usDPCDADDR, size_t ubLength, BYTE *pRxBuf)
{
bool bRet = true;
size_t times = 0;
size_t remain = 0;
size_t loop = 0;
memset(pRxBuf, 0, ubLength);
if (ubLength > DP_AUX_MAX_PAYLOAD_BYTES) {
times = ubLength / DP_AUX_MAX_PAYLOAD_BYTES;
remain = ubLength % DP_AUX_MAX_PAYLOAD_BYTES;
for (loop = 0; loop < times; loop++)
bRet &= mdrv_DPTx_AuxRead_Bytes(mtk_dp,
ubCmd,
usDPCDADDR + (loop * DP_AUX_MAX_PAYLOAD_BYTES),
DP_AUX_MAX_PAYLOAD_BYTES,
pRxBuf + (loop * DP_AUX_MAX_PAYLOAD_BYTES));
if (remain > 0)
bRet &= mdrv_DPTx_AuxRead_Bytes(mtk_dp,
ubCmd,
usDPCDADDR + (times * DP_AUX_MAX_PAYLOAD_BYTES),
remain,
pRxBuf + (times * DP_AUX_MAX_PAYLOAD_BYTES));
} else
bRet &= mdrv_DPTx_AuxRead_Bytes(mtk_dp,
ubCmd,
usDPCDADDR,
ubLength,
pRxBuf);
if (mtk_dp_debug_get()) {
DPTXDBG("Aux Read cmd = %d, addr = 0x%x, len = %d, %s\n",
ubCmd, usDPCDADDR, ubLength, bRet ? "Success" : "Fail");
for (loop = 0; loop < ubLength; loop++)
DPTXDBG("DPCD%x:0x%x", usDPCDADDR + loop, pRxBuf[loop]);
}
return bRet;
}
void mdrv_DPTx_deinit(struct mtk_dp *mtk_dp)
{
mdrv_DPTx_VideoMute(mtk_dp, true);
mdrv_DPTx_AudioMute(mtk_dp, true);
mhal_DPTx_VideoMuteSW(mtk_dp, true);
cancel_work(&mtk_dp->hdcp_work);
mtk_dp->training_info.ucCheckCapTimes = 0;
mtk_dp->video_enable = false;
mtk_dp->dp_ready = false;
mhal_DPTx_PHY_SetIdlePattern(mtk_dp, true);
if (mtk_dp->has_fec) {
mhal_DPTx_EnableFEC(mtk_dp, false);
mtk_dp->has_fec = false;
}
if (mtk_dp->edid != NULL) {
kfree(mtk_dp->edid);
mtk_dp->edid = NULL;
}
}
void mdrv_DPTx_InitVariable(struct mtk_dp *mtk_dp)
{
DPTXFUNC();
mtk_dp->training_info.ubDPSysVersion = DP_VERSION_14;
mtk_dp->training_info.ubLinkRate = DP_LINKRATE_HBR3;
mtk_dp->training_info.ubLinkLaneCount = DP_LANECOUNT_2;
mtk_dp->training_info.bSinkEXTCAP_En = false;
mtk_dp->training_info.bSinkSSC_En = false;
mtk_dp->training_info.bTPS3 = true;
mtk_dp->training_info.bTPS4 = true;
mtk_dp->training_info.usPHY_STS = HPD_INITIAL_STATE;
mtk_dp->training_info.bCablePlugIn = false;
mtk_dp->training_info.bCableStateChange = false;
mtk_dp->training_state = DPTX_NTSTATE_STARTUP;
mtk_dp->training_state_pre = DPTX_NTSTATE_STARTUP;
mtk_dp->state = DPTXSTATE_INITIAL;
mtk_dp->state_pre = DPTXSTATE_INITIAL;
mtk_dp->info.input_src = DPTX_SRC_DPINTF;
mtk_dp->info.format = DP_COLOR_FORMAT_RGB_444;
mtk_dp->info.depth = DP_COLOR_DEPTH_8BIT;
if (!mtk_dp->info.bPatternGen)
mtk_dp->info.resolution = SINK_1920_1080;
mtk_dp->info.bSetAudioMute = false;
mtk_dp->info.bSetVideoMute = false;
memset(&mtk_dp->info.DPTX_OUTBL, 0,
sizeof(struct DPTX_TIMING_PARAMETER));
mtk_dp->info.DPTX_OUTBL.FrameRate = 60;
mtk_dp->bPowerOn = false;
mtk_dp->video_enable = false;
mtk_dp->dp_ready = false;
mtk_dp->has_dsc = false;
mtk_dp->has_fec = false;
mtk_dp->dsc_enable = false;
if (!mtk_dp->training_info.set_max_linkrate)
mdrv_DPTx_CheckMaxLinkRate(mtk_dp);
}
void mdrv_DPTx_SetSDP_DownCntinit(struct mtk_dp *mtk_dp,
u16 Sram_Read_Start)
{
u16 SDP_Down_Cnt_Init = 0x0000;
u8 ucDCOffset;
if (mtk_dp->info.DPTX_OUTBL.PixRateKhz > 0)
SDP_Down_Cnt_Init = (Sram_Read_Start *
mtk_dp->training_info.ubLinkRate * 2700 * 8)
/ (mtk_dp->info.DPTX_OUTBL.PixRateKhz * 4);
switch (mtk_dp->training_info.ubLinkLaneCount) {
case DP_LANECOUNT_1:
SDP_Down_Cnt_Init = (SDP_Down_Cnt_Init > 0x1A) ?
SDP_Down_Cnt_Init : 0x1A; //26
break;
case DP_LANECOUNT_2:
// case for LowResolution && High Audio Sample Rate
ucDCOffset = (mtk_dp->info.DPTX_OUTBL.Vtt <= 525) ?
0x04 : 0x00;
SDP_Down_Cnt_Init = (SDP_Down_Cnt_Init > 0x10) ?
SDP_Down_Cnt_Init : 0x10 + ucDCOffset; //20 or 16
break;
case DP_LANECOUNT_4:
SDP_Down_Cnt_Init = (SDP_Down_Cnt_Init > 0x06) ?
SDP_Down_Cnt_Init : 0x06; //6
break;
default:
SDP_Down_Cnt_Init = (SDP_Down_Cnt_Init > 0x06) ?
SDP_Down_Cnt_Init : 0x06;
break;
}
DPTXMSG("PixRateKhz = %d SDP_DC_Init = %x\n",
mtk_dp->info.DPTX_OUTBL.PixRateKhz, SDP_Down_Cnt_Init);
mhal_DPTx_SetSDP_DownCntinit(mtk_dp, SDP_Down_Cnt_Init);
}
void mdrv_DPTx_SetSDP_DownCntinitInHblanking(struct mtk_dp *mtk_dp)
{
int PixClkMhz;
u8 ucDCOffset;
PixClkMhz = (mtk_dp->info.format == DP_COLOR_FORMAT_YUV_420) ?
mtk_dp->info.DPTX_OUTBL.PixRateKhz/2000 :
mtk_dp->info.DPTX_OUTBL.PixRateKhz/1000;
switch (mtk_dp->training_info.ubLinkLaneCount) {
case DP_LANECOUNT_1:
mhal_DPTx_SetSDP_DownCntinitInHblanking(mtk_dp, 0x0020);
break;
case DP_LANECOUNT_2:
ucDCOffset = (mtk_dp->info.DPTX_OUTBL.Vtt <= 525) ? 0x14 : 0x00;
mhal_DPTx_SetSDP_DownCntinitInHblanking(mtk_dp,
0x0018 + ucDCOffset);
break;
case DP_LANECOUNT_4:
ucDCOffset = (mtk_dp->info.DPTX_OUTBL.Vtt <= 525) ? 0x08 : 0x00;
if (PixClkMhz > (mtk_dp->training_info.ubLinkRate * 27)) {
mhal_DPTx_SetSDP_DownCntinitInHblanking(mtk_dp, 0x0008);
DPTXMSG("Pixclk > LinkRateChange\n");
} else {
mhal_DPTx_SetSDP_DownCntinitInHblanking(mtk_dp,
0x0010 + ucDCOffset);
}
break;
}
}
void mdrv_DPTx_SetTU(struct mtk_dp *mtk_dp)
{
int TU_size = 0;
int NValue = 0;
int FValue = 0;
int PixRateMhz = 0;
u8 ColorBpp;
u16 Sram_Read_Start = DPTX_TBC_BUF_ReadStartAdrThrd;
ColorBpp = mhal_DPTx_GetColorBpp(mtk_dp);
PixRateMhz = mtk_dp->info.DPTX_OUTBL.PixRateKhz/1000;
TU_size = (640*(PixRateMhz)*ColorBpp)/
(mtk_dp->training_info.ubLinkRate * 27 *
mtk_dp->training_info.ubLinkLaneCount * 8);
NValue = TU_size / 10;
FValue = TU_size-NValue * 10;
DPTXDBG("TU_size %d,\n", TU_size);
if (mtk_dp->training_info.ubLinkLaneCount > 0) {
Sram_Read_Start = mtk_dp->info.DPTX_OUTBL.Hde /
(mtk_dp->training_info.ubLinkLaneCount*4*2*2);
Sram_Read_Start =
(Sram_Read_Start < DPTX_TBC_BUF_ReadStartAdrThrd) ?
Sram_Read_Start : DPTX_TBC_BUF_ReadStartAdrThrd;
mhal_DPTx_SetTU_SramRdStart(mtk_dp, Sram_Read_Start);
}
mhal_DPTx_SetTU_SetEncoder(mtk_dp);
mdrv_DPTx_SetSDP_DownCntinitInHblanking(mtk_dp);
mdrv_DPTx_SetSDP_DownCntinit(mtk_dp, Sram_Read_Start);
}
void mdrv_DPTx_CalculateMN(struct mtk_dp *mtk_dp)
{
int ubTargetFrameRate = 60;
int ulTargetPixelclk = 148500000; // default set FHD
if (mtk_dp->info.DPTX_OUTBL.FrameRate > 0) {
ubTargetFrameRate = mtk_dp->info.DPTX_OUTBL.FrameRate;
ulTargetPixelclk = (int)mtk_dp->info.DPTX_OUTBL.Htt*
(int)mtk_dp->info.DPTX_OUTBL.Vtt*ubTargetFrameRate;
} else if (mtk_dp->info.DPTX_OUTBL.PixRateKhz > 0) {
ulTargetPixelclk = mtk_dp->info.DPTX_OUTBL.PixRateKhz * 1000;
} else {
ulTargetPixelclk = (int)mtk_dp->info.DPTX_OUTBL.Htt *
(int)mtk_dp->info.DPTX_OUTBL.Vtt * ubTargetFrameRate;
}
if (ulTargetPixelclk > 0)
mtk_dp->info.DPTX_OUTBL.PixRateKhz = ulTargetPixelclk / 1000;
}
void mdrv_DPTx_Set_MISC(struct mtk_dp *mtk_dp)
{
u8 format, depth;
union MISC_T DPTX_MISC;
format = mtk_dp->info.format;
depth = mtk_dp->info.depth;
// MISC 0/1 refernce to spec 1.4a p143 Table 2-96
// MISC0[7:5] color depth
switch (depth) {
case DP_COLOR_DEPTH_6BIT:
case DP_COLOR_DEPTH_8BIT:
case DP_COLOR_DEPTH_10BIT:
case DP_COLOR_DEPTH_12BIT:
case DP_COLOR_DEPTH_16BIT:
default:
DPTX_MISC.dp_misc.color_depth = depth;
break;
}
// MISC0[3]: 0->RGB, 1->YUV
// MISC0[2:1]: 01b->4:2:2, 10b->4:4:4
switch (format) {
case DP_COLOR_FORMAT_YUV_444:
DPTX_MISC.dp_misc.color_format = 0x1; //01'b
break;
case DP_COLOR_FORMAT_YUV_422:
DPTX_MISC.dp_misc.color_format = 0x2; //10'b
break;
case DP_COLOR_FORMAT_YUV_420:
//not support
break;
case DP_COLOR_FORMAT_RAW:
DPTX_MISC.dp_misc.color_format = 0x1;
DPTX_MISC.dp_misc.spec_def2 = 0x1;
break;
case DP_COLOR_FORMAT_YONLY:
DPTX_MISC.dp_misc.color_format = 0x0;
DPTX_MISC.dp_misc.spec_def2 = 0x1;
break;
case DP_COLOR_FORMAT_RGB_444:
default:
break;
}
mhal_DPTx_SetMISC(mtk_dp, DPTX_MISC.ucMISC);
}
void mdrv_DPTx_SetDPTXOut(struct mtk_dp *mtk_dp)
{
mhal_DPTx_EnableBypassMSA(mtk_dp, false);
mdrv_DPTx_CalculateMN(mtk_dp);
switch (mtk_dp->info.input_src) {
case DPTX_SRC_PG:
mhal_DPTx_VideoClock(true, mtk_dp->info.resolution);
mhal_DPTx_PGEnable(mtk_dp, true);
mhal_DPTx_Set_MVIDx2(mtk_dp, false);
DPTXMSG("Set Pattern Gen output\n");
break;
case DPTX_SRC_DPINTF:
mhal_DPTx_PGEnable(mtk_dp, false);
DPTXMSG("Set dpintf output\n");
break;
default:
mhal_DPTx_PGEnable(mtk_dp, true);
break;
}
mdrv_DPTx_SetTU(mtk_dp);
}
bool mdrv_DPTx_CheckSinkLock(struct mtk_dp *mtk_dp, u8 *pDPCD20x, u8 *pDPCD200C)
{
bool bLocked = true;
if (mtk_dp->training_info.bSinkEXTCAP_En) {
switch (mtk_dp->training_info.ubLinkLaneCount) {
case DP_LANECOUNT_1:
if ((pDPCD200C[0] & 0x07) != 0x07) {
bLocked = false;
DPTXMSG("2L Lose LCOK\n");
}
break;
case DP_LANECOUNT_2:
if ((pDPCD200C[0] & 0x77) != 0x77) {
bLocked = false;
DPTXMSG("2L Lose LCOK\n");
}
break;
case DP_LANECOUNT_4:
if ((pDPCD200C[0] != 0x77) || (pDPCD200C[1] != 0x77)) {
bLocked = false;
DPTXMSG("4L Lose LCOK\n");
}
break;
}
if ((pDPCD200C[2]&BIT0) == 0) {
bLocked = false;
DPTXMSG("Interskew Lose LCOK\n");
}
} else {
switch (mtk_dp->training_info.ubLinkLaneCount) {
case DP_LANECOUNT_1:
if ((pDPCD20x[2] & 0x07) != 0x07) {
bLocked = false;
DPTXMSG("1L Lose LCOK\n");
}
break;
case DP_LANECOUNT_2:
if ((pDPCD20x[2] & 0x77) != 0x77) {
bLocked = false;
DPTXMSG("2L Lose LCOK\n");
}
break;
case DP_LANECOUNT_4:
if (((pDPCD20x[2] != 0x77) || (pDPCD20x[3] != 0x77))) {
bLocked = false;
DPTXMSG("4L Lose LCOK\n");
}
break;
}
if ((pDPCD20x[4]&BIT0) == 0) {
bLocked = false;
DPTXMSG("Interskew Lose LCOK\n");
}
}
if (!bLocked) {
if (!mtk_dp->dp_ready)
mtk_dp->training_state = DPTX_NTSTATE_CHECKCAP;
else if (mtk_dp->training_state > DPTX_NTSTATE_TRAINING_PRE)
mtk_dp->training_state = DPTX_NTSTATE_TRAINING_PRE;
}
return bLocked;
}
void mdrv_DPTx_CheckSinkESI(struct mtk_dp *mtk_dp, u8 *pDPCD20x, u8 *pDPCD2002)
{
u8 ubTempValue;
if ((pDPCD20x[0x1]&BIT1) || (pDPCD2002[0x1]&BIT1)) {
#if (DPTX_AutoTest_ENABLE == 0x1)
if (!mdrv_DPTx_PHY_AutoTest(mtk_dp,
pDPCD20x[0x1] | pDPCD2002[0x1])) {
if (mtk_dp->training_state > DPTX_NTSTATE_TRAINING_PRE)
mtk_dp->training_state
= DPTX_NTSTATE_TRAINING_PRE;
}
#endif
}
if (pDPCD20x[0x1]&BIT0) { // not support, clrear it.
ubTempValue = BIT0;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00201, &ubTempValue, 0x1);
}
#ifdef DPTX_HDCP_ENABLE
if (!(pDPCD20x[0x1]&BIT2) && !(pDPCD2002[0x1]&BIT2))
return;
if (mtk_dp->info.hdcp2_info.bEnable)
mdrv_DPTx_HDCP2_irq(mtk_dp);
else if (mtk_dp->info.hdcp1x_info.bEnable)
mdrv_DPTx_HDCP1X_irq(mtk_dp);
#endif
}
#if (DPTX_AutoTest_ENABLE == 1)
bool mdrv_DPTx_CheckSSC(struct mtk_dp *mtk_dp)
{
#if (ENABLE_DPTX_SSC_OUTPUT == 0x1)
BYTE ubTempBuffer[0x2];
drm_dp_dpcd_read(&mtk_dp->aux,
DPCD_00003 + DPCD_02200*mtk_dp->training_info.bSinkEXTCAP_En,
ubTempBuffer, 0x1);
if (ubTempBuffer[0x0] & 0x1) {
ubTempBuffer[0x0] = 0x10;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00107, ubTempBuffer, 0x1);
mtk_dp->info.bSinkSSC_En = true;
mhal_DPTx_SSCOnOffSetting(mtk_dp, true);
} else {
mtk_dp->info.bSinkSSC_En = false;
mhal_DPTx_SSCOnOffSetting(mtk_dp, false);
}
#endif
return true;
}
#endif
#if (DPTX_AutoTest_ENABLE == 0x1) && (DPTX_PHY_TEST_PATTERN_EN == 0x1)
bool mdrv_DPTx_PHY_AdjustSwingPre(struct mtk_dp *mtk_dp, BYTE ubLaneCount)
{
BYTE ubSwingValue;
BYTE ubPreemphasis;
BYTE ubTempBuf1[0x2];
BYTE ubDPCP_Buffer1[0x4];
bool bReplyStatus = false;
memset(ubDPCP_Buffer1, 0x0, sizeof(ubDPCP_Buffer1));
bReplyStatus = drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00206,
ubTempBuf1, 0x2);
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00103, ubDPCP_Buffer1, 0x4);
if (bReplyStatus) {
if (ubLaneCount >= 0x1) {
ubSwingValue = (ubTempBuf1[0x0]&0x3);
ubPreemphasis = ((ubTempBuf1[0x0]&0x0C)>>2);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE0,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done,
//notify Sink Side
ubDPCP_Buffer1[0x0] =
ubSwingValue | (ubPreemphasis << 3);
//MAX_SWING_REACHED
if (ubSwingValue == DPTx_SWING3)
ubDPCP_Buffer1[0x0] |= BIT(2);
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x0] |= BIT(5);
}
if (ubLaneCount >= 0x2) {
ubSwingValue = (ubTempBuf1[0x0]&0x30) >> 4;
ubPreemphasis = ((ubTempBuf1[0x0]&0xC0)>>6);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE1,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done,
//notify Sink Side
ubDPCP_Buffer1[0x1] =
ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x1] |= BIT(2);
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x1] |= BIT(5);
}
if (ubLaneCount == 0x4) {
ubSwingValue = (ubTempBuf1[0x1]&0x3);
ubPreemphasis = ((ubTempBuf1[0x1]&0x0C)>>2);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE2,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done,
//notify Sink Side
ubDPCP_Buffer1[0x2] =
ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x2] |= BIT(2);
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x2] |= BIT(5);
ubSwingValue = (ubTempBuf1[0x1]&0x30) >> 4;
ubPreemphasis = ((ubTempBuf1[0x1]&0xC0)>>6);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE3,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done,
//notify Sink Side
ubDPCP_Buffer1[0x3] =
ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x3] |= BIT(2);
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x3] |= BIT(5);
}
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00103,
ubDPCP_Buffer1, 0x4);
}
return true;
}
bool mdrv_DPTx_PHY_PatternSetting(struct mtk_dp *mtk_dp, BYTE ubPatternType,
BYTE ubTEST_LANE_COUNT)
{
BYTE i;
BYTE PGdata[5] = {0x1F, 0x7C, 0xF0, 0xC1, 0x07};
mhal_DPTx_DataLanePNSwap(mtk_dp, false);
mhal_DPTx_PHY_ResetPattern(mtk_dp);
switch (ubPatternType) {
case PATTERN_NONE:
//Disable U02 patch code, add interskew for test pattern,
//lane1/2/3 select lane0 pipe delay
break;
case PATTERN_D10_2:
mhal_DPTx_SetTxTrainingPattern(mtk_dp, BIT(4));
mhal_DPTx_SetTxLane(mtk_dp, (ubTEST_LANE_COUNT/2));
break;
case PATTERN_SYMBOL_ERR:
break;
case PATTERN_PRBS7:
mhal_DPTx_DataLanePNSwap(mtk_dp, true);
mhal_DPTx_ProgramPatternEnable(mtk_dp, true);
mhal_DPTx_PRBSEnable(mtk_dp, true);
mhal_DPTx_ProgramPatternEnable(mtk_dp, true);
mhal_DPTx_PRBSEnable(mtk_dp, true);
mhal_DPTx_PatternSelect(mtk_dp, DPTx_PG_PRBS7);
break;
case PATTERN_80B:
for (i = 0x0; i < 4; i++)
mhal_DPTx_SetProgramPattern(mtk_dp, i, PGdata);
mhal_DPTx_ProgramPatternEnable(mtk_dp, true);
mhal_DPTx_PatternSelect(mtk_dp, DPTx_PG_80bit);
break;
case PATTERN_HBR2_COM_EYE:
mhal_DPTx_ComplianceEyeEnSetting(mtk_dp, true);
break;
};
return true;
}
struct DP_CTS_AUTO_REQ cts_req;
bool mdrv_DPTx_Video_PG_AutoTest(struct mtk_dp *mtk_dp)//, BYTE ubDPCD_201)
{
BYTE i;
BYTE dpcd22x[16]; //220~22F
BYTE dpcd23x[5]; //230~234
BYTE dpcd27x[10]; //220~22F
BYTE ucMISC[2] = {0x00};
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00220, dpcd22x, 16);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00230, dpcd23x, 5);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00271, dpcd27x, 10);
for (i = 0; i < 10; i++)
DPTXMSG("dpcd27%d = 0x%x\n", i+1, dpcd27x[i]);
cts_req.test_aduio_channel_count = (((dpcd27x[0]) & 0xF0) >> 4) + 1;
cts_req.test_aduio_samling_rate = ((dpcd27x[0]) & 0x0F) + 1;
DPTXMSG("channel = %d, sr = %d\n",
cts_req.test_aduio_channel_count,
cts_req.test_aduio_samling_rate);
cts_req.test_pattern = (dpcd22x[1]);
cts_req.test_h_total = ((dpcd22x[2]<<8) + (dpcd22x[3]));
cts_req.test_v_total = ((dpcd22x[4]<<8) + (dpcd22x[5]));
cts_req.test_h_start = ((dpcd22x[6]<<8) + (dpcd22x[7]));
cts_req.test_v_start = ((dpcd22x[8]<<8) + (dpcd22x[9]));
cts_req.test_hsync_polarity = ((dpcd22x[0xa] & 0x80)>>7);
cts_req.test_hsync_width =
(((dpcd22x[0xa] & 0x7f)<<8) + (dpcd22x[0xb]));
cts_req.test_vsync_polarity = ((dpcd22x[0xc] & 0x80)>>7);
cts_req.test_vsync_width =
(((dpcd22x[0xc] & 0x7f)<<8) + (dpcd22x[0xd]));
cts_req.test_h_width = ((dpcd22x[0xe]<<8) + (dpcd22x[0xf]));
cts_req.test_v_height = ((dpcd23x[0]<<8) + (dpcd23x[1]));
cts_req.test_sync_clk = (dpcd23x[2] & 0x1);
cts_req.test_color_fmt = ((dpcd23x[2] & 0x6)>>1);
cts_req.test_dynamic_range = ((dpcd23x[2] & 0x8)>>3);
cts_req.test_YCbCr_coefficient = ((dpcd23x[2] & 0x10)>>4);
cts_req.test_bit_depth = ((dpcd23x[2] & 0xe0)>>5);
cts_req.test_refresh_denominator = (dpcd23x[3] & 0x1);
cts_req.test_interlaced = ((dpcd23x[3] & 0x2)>>1);
cts_req.test_refresh_rate_numerator = (dpcd23x[4]);
DPTXMSG("[DPTXCTS] test request:\n");
DPTXMSG("req.test_pattern = %d\n", cts_req.test_pattern);
DPTXMSG("req.test_h_total = %d\n", cts_req.test_h_total);
DPTXMSG("req.test_v_total = %d\n", cts_req.test_v_total);
DPTXMSG("req.test_h_start = %d\n", cts_req.test_h_start);
DPTXMSG("req.test_v_start = %d\n", cts_req.test_v_start);
DPTXMSG("req.test_hsync_polarity = %d\n",
cts_req.test_hsync_polarity);
DPTXMSG("req.test_hsync_width = d\n",
cts_req.test_hsync_width);
DPTXMSG("req.test_vsync_polarity = %d\n",
cts_req.test_vsync_polarity);
DPTXMSG("req.test_vsync_width = %d\n",
cts_req.test_vsync_width);
DPTXMSG("req.test_h_width = %d\n", cts_req.test_h_width);
DPTXMSG("req.test_v_height = %d\n", cts_req.test_v_height);
DPTXMSG("req.test_sync_clk = %d\n", cts_req.test_sync_clk);
DPTXMSG("req.test_color_fmt = %d\n", cts_req.test_color_fmt);
DPTXMSG("req.test_dynamic_range = %d\n",
cts_req.test_dynamic_range);
DPTXMSG("req.test_YCbCr_coefficient = %d\n",
cts_req.test_YCbCr_coefficient);
DPTXMSG("req.test_bit_depth = %d\n", cts_req.test_bit_depth);
DPTXMSG("req.test_refresh_denominator = %d\n",
cts_req.test_refresh_denominator);
DPTXMSG("req.test_interlaced = %d\n",
cts_req.test_interlaced);
DPTXMSG("req.test_refresh_rate_numerator = %d\n",
cts_req.test_refresh_rate_numerator);
mtk_dp->info.DPTX_OUTBL.Htt = cts_req.test_h_total;
mtk_dp->info.DPTX_OUTBL.Hde = cts_req.test_h_width;
mtk_dp->info.DPTX_OUTBL.Hfp = cts_req.test_h_total
- cts_req.test_h_start - cts_req.test_h_width;
mtk_dp->info.DPTX_OUTBL.Hsw = cts_req.test_hsync_width;
mtk_dp->info.DPTX_OUTBL.bHsp = cts_req.test_hsync_polarity;
mtk_dp->info.DPTX_OUTBL.Hbp = cts_req.test_h_start
- cts_req.test_hsync_width;
mtk_dp->info.DPTX_OUTBL.Vtt = cts_req.test_v_total;
mtk_dp->info.DPTX_OUTBL.Vde = cts_req.test_v_height;
mtk_dp->info.DPTX_OUTBL.Vfp = cts_req.test_v_total
- cts_req.test_v_start - cts_req.test_v_height;
mtk_dp->info.DPTX_OUTBL.Vsw = cts_req.test_vsync_width;
mtk_dp->info.DPTX_OUTBL.bVsp = cts_req.test_vsync_polarity;
mtk_dp->info.DPTX_OUTBL.Vbp = cts_req.test_v_start
- cts_req.test_vsync_width;
mtk_dp->info.DPTX_OUTBL.Hbk = cts_req.test_h_total
- cts_req.test_h_width;
mtk_dp->info.DPTX_OUTBL.FrameRate = cts_req.test_refresh_rate_numerator;
mtk_dp->info.DPTX_OUTBL.PixRateKhz = 0;
mtk_dp->info.DPTX_OUTBL.Video_ip_mode = DPTX_VIDEO_PROGRESSIVE;
if (cts_req.test_interlaced)
DPTXMSG("Warning: not support interlace\n");
//Clear MISC1&0 except [2:1]Colorfmt & [7:5]ColorDepth
mhal_DPTx_SetMISC(mtk_dp, ucMISC);
mtk_dp->info.format = cts_req.test_color_fmt;
mtk_dp->info.depth = cts_req.test_bit_depth;
//mtk_dp->info.DPTX_MISC.dp_misc.spec_def1 = cts_req.test_dynamic_range;
mhal_DPTx_SetColorFormat(mtk_dp, mtk_dp->info.format);
mhal_DPTx_SetColorDepth(mtk_dp, mtk_dp->info.depth);
mhal_DPTx_SetMSA(mtk_dp);
mdrv_DPTx_SetDPTXOut(mtk_dp);
mdrv_DPTx_VideoMute(mtk_dp, false);
return 0;
}
void mdrv_DPTx_Audio_PG_AutoTest(struct mtk_dp *mtk_dp)
{
BYTE SDP_DB[32] = {0};
BYTE SDP_HB[4] = {0};
BYTE ucWordlength = WL_24bit;
mhal_DPTx_Audio_SDP_Setting(mtk_dp, cts_req.test_aduio_channel_count);
mhal_DPTx_Audio_Ch_Status_Set(mtk_dp, cts_req.test_aduio_channel_count,
cts_req.test_aduio_samling_rate, ucWordlength);
mdrv_DPTx_I2S_Audio_Enable(mtk_dp, false);
SDP_HB[1] = DP_SPEC_SDPTYP_AINFO;
SDP_HB[2] = 0x1B;
SDP_HB[3] = 0x48;
mdrv_DPTx_SPKG_SDP(mtk_dp, 1, 4, SDP_HB, SDP_DB);
}
bool mdrv_DPTx_PHY_AutoTest(struct mtk_dp *mtk_dp, BYTE ubDPCD_201)
{
bool bAutoTestIRQ = false;
BYTE ubDPCD_218 = 0x0;
BYTE ubTempBuffer[0x10];
#if DPTX_PHY_TEST_PATTERN_EN
BYTE ubDPCD_248;
#if (DPTX_TEST_SYMBERR_EN)
WORD usSYMERRCNT_N; // for sym Error Count
#endif
#if (DPTX_TEST_SYMBERR_EN | DPTX_TEST_PRBS7_EN | DPTX_TEST_HBR2EYE_EN | \
DPTX_TEST_PHY80B_EN)
// for 1.sym Error Count (DPCD0210-0217) / 2.PHY 80b(DPCD_0250-0259)
BYTE ubDPCDRDBUF[10];
#endif
#endif
BYTE ubTEST_LINK_RATE; // DPCD_219
BYTE ubTEST_LANE_COUNT; // DPCD_220
memset(ubTempBuffer, 0x0, sizeof(ubTempBuffer));
DPTXMSG("PHY_AutoTest Start\n");
DPTXMSG("DPCD 201 = 0x%x\n", ubDPCD_201);
if (ubDPCD_201 & BIT(1)) {
bAutoTestIRQ = true;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00201, &ubDPCD_201, 0x1);
mdelay(1);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00218, &ubDPCD_218, 0x1);
DPTXMSG("DPCD 218 = 0x%x\n", ubDPCD_218);
switch (ubDPCD_218 & 0xFF) {
case BIT0://TEST_LINK_TRAINING:
#if DPTX_TEST_LINK_TRAINING_EN
DPTXMSG("TEST_LINK_TRAINING\n");
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00219,
&ubTEST_LINK_RATE, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00220,
&ubTEST_LANE_COUNT, 0x1);
mtk_dp->training_info.bDPTxAutoTest_EN = true;
if ((ubTEST_LINK_RATE != 0x0) &&
(ubTEST_LANE_COUNT != 0x0)) {
mtk_dp->training_info.ubLinkRate
= ubTEST_LINK_RATE;
mtk_dp->training_info.ubLinkLaneCount =
ubTEST_LANE_COUNT;
ubTempBuffer[0x0] = 0x0;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00102,
ubTempBuffer, 0x1);
ubTempBuffer[0x0] = 0x2;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00600,
ubTempBuffer, 0x1);
mdrv_DPTx_SetTrainingStart(mtk_dp);
}
return true;
#endif
break;
case BIT1: //TEST_VIDEO_PATTERN
#if DPTX_TEST_PATTERN_EN
DPTXMSG("TEST_PATTERN\n");
mtk_dp->training_info.bDPTxAutoTest_EN = true;
mdrv_DPTx_Video_PG_AutoTest(mtk_dp);
/*
* ubTempBuffer[0x0] = 0x01;
* drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
* ubTempBuffer, 0x1);
*/
return true;
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case (BIT1 | BIT5)://(TEST_VIDEO_PATTERN | TEST_AUDIO_PATTERN)
DPTXMSG("TEST VIDEO/AUDIO PATTERN\n");
mtk_dp->training_info.bDPTxAutoTest_EN = true;
mdrv_DPTx_Video_PG_AutoTest(mtk_dp);
mdrv_DPTx_Audio_PG_AutoTest(mtk_dp);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
return true;
case BIT2: //TEST_EDID_READ
#if DPTX_TEST_EDID_READ_EN
DPTXMSG("TEST_EDID_R\n");
if (mtk_dp->edid)
kfree(mtk_dp->edid)
mtk_dp->edid = mtk_dp_handle_edid(mtk_dp);
mdelay(10);
ubTempBuffer[0x0] = mtk_dp->edid->checksum;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00261,
ubTempBuffer[0x0] = 0x05;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
return true;
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case BIT3://TEST_PHY_PATTERN
#if DPTX_PHY_TEST_PATTERN_EN
DPTXMSG("PHY_TEST_PATTERN");
drm_dp_dpcd_read(&mtk_dp->aux, 0x00248,
&ubDPCD_248, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, 0x00220,
&ubTEST_LANE_COUNT, 0x1);
mdrv_DPTx_PHY_AdjustSwingPre(mtk_dp, ubTEST_LANE_COUNT);
switch (ubDPCD_248&0x07) {
case PATTERN_NONE:
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_NONE, ubTEST_LANE_COUNT);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux,
DPCD_00260, ubTempBuffer, 0x1);
break;
case PATTERN_D10_2:
#if DPTX_TEST_D10_2_EN
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_D10_2, ubTEST_LANE_COUNT);
mdelay(2);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
DPTXMSG("NOT SUPPORT D10.2\n");
#endif
break;
case PATTERN_SYMBOL_ERR:
#if DPTX_TEST_SYMBERR_EN
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_SYMBOL_ERR, ubTEST_LANE_COUNT);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
usSYMERRCNT_N = 0x0005;
mdelay(1000);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00210,
ubDPCDRDBUF, 8);
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case PATTERN_PRBS7:
#if DPTX_TEST_PRBS7_EN
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_PRBS7, ubTEST_LANE_COUNT);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
mdelay(1000);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00210,
ubDPCDRDBUF, 8);
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case PATTERN_80B:
#if DPTX_TEST_PHY80B_EN
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_80B, ubTEST_LANE_COUNT);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00250,
ubDPCDRDBUF, 10);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case PATTERN_HBR2_COM_EYE:
#if DPTX_TEST_HBR2EYE_EN
mdrv_DPTx_PHY_PatternSetting(mtk_dp,
PATTERN_HBR2_COM_EYE,
ubTEST_LANE_COUNT);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00210,
ubDPCDRDBUF, 8);
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
case CP2520_PATTERN3:
#if DPTX_TEST_CP2520_P3_EN
mhal_DPTx_SetTxTrainingPattern(mtk_dp, BIT(7));
mhal_DPTx_SetTxLane(mtk_dp,
ubTEST_LANE_COUNT / 2);
#else
ubTempBuffer[0x0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00260,
ubTempBuffer, 0x1);
#endif
break;
default:
break;
};
#endif
break;
default:
DPTXMSG("DPCD 218 Not support\n");
return false;
}
} else {
bAutoTestIRQ = false;
return false;
}
mdelay(1);
mdrv_DPTx_CheckSSC(mtk_dp);
return true;
}
#endif
uint8_t mdrv_DPTx_getSinkCount(struct mtk_dp *mtk_dp)
{
uint8_t temp;
if (mtk_dp->training_info.bSinkEXTCAP_En)
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_02002, &temp, 0x1);
else
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00200, &temp, 0x1);
DPTXMSG("Sink Count = %d\n", DP_GET_SINK_COUNT(temp));
return DP_GET_SINK_COUNT(temp);
}
void mdrv_DPTx_CheckSinkHPDEvent(struct mtk_dp *mtk_dp)
{
u8 ubDPCD20x[6];
u8 ubDPCD2002[2];
u8 ubDPCD200C[4];
u8 sink_cnt = 0;
bool ret;
memset(ubDPCD20x, 0x0, sizeof(ubDPCD20x));
memset(ubDPCD2002, 0x0, sizeof(ubDPCD2002));
memset(ubDPCD200C, 0x0, sizeof(ubDPCD200C));
if (mtk_dp->training_info.bSinkEXTCAP_En) {
ret = drm_dp_dpcd_read(&mtk_dp->aux, DPCD_02002,
ubDPCD2002, 0x2);
if (!ret) {
DPTXMSG("Read DPCD_02002 Fail\n");
return;
}
ret = drm_dp_dpcd_read(&mtk_dp->aux, DPCD_0200C,
ubDPCD200C, 0x4);
if (!ret) {
DPTXMSG("Read DPCD_0200C Fail\n");
return;
}
}
ret = drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00200, ubDPCD20x, 0x6);
if (!ret) {
DPTXMSG("Read DPCD200 Fail\n");
return;
}
sink_cnt = mdrv_DPTx_getSinkCount(mtk_dp);
if ((sink_cnt != mtk_dp->training_info.ubSinkCountNum) ||
(ubDPCD200C[0x2] & BIT6 || ubDPCD20x[0x4] & BIT6)) {
DPTXMSG("New Branch Device Detection!!\n");
if (!mtk_dp->bUeventToHwc) {
mtk_dp->disp_status = DPTX_DISP_NONE;
mtk_dp_hotplug_uevent(0);
mtk_dp->bUeventToHwc = true;
}
mdrv_DPTx_deinit(mtk_dp);
mtk_dp->training_info.ubSinkCountNum = sink_cnt;
mtk_dp->training_state = DPTX_NTSTATE_STARTUP;
mdelay(20);
return;
}
if (sink_cnt == 0) {
mtk_dp->training_state = DPTX_NTSTATE_STARTUP;
mdelay(200);
return;
}
mdrv_DPTx_CheckSinkLock(mtk_dp, ubDPCD20x, ubDPCD200C);
mdrv_DPTx_CheckSinkESI(mtk_dp, ubDPCD20x, ubDPCD2002);
}
void mdrv_DPTx_CheckMaxLinkRate(struct mtk_dp *mtk_dp)
{
switch (mtk_dp->training_info.ubDPSysVersion) {
case DP_VERSION_11:
mtk_dp->training_info.ubSysMaxLinkRate = DP_LINKRATE_HBR;
break;
case DP_VERSION_12:
mtk_dp->training_info.ubSysMaxLinkRate = DP_LINKRATE_HBR2;
break;
case DP_VERSION_14:
mtk_dp->training_info.ubSysMaxLinkRate = DP_LINKRATE_HBR3;
break;
default:
mtk_dp->training_info.ubSysMaxLinkRate = DP_LINKRATE_HBR2;
break;
}
}
void mdrv_DPTx_DisconnetInit(struct mtk_dp *mtk_dp)
{
mdrv_DPTx_CheckMaxLinkRate(mtk_dp);
}
void mdrv_DPTx_SPKG_SDP(struct mtk_dp *mtk_dp, bool bEnable, u8 ucSDPType,
u8 *pHB, u8 *pDB)
{
mhal_DPTx_SPKG_SDP(mtk_dp, bEnable, ucSDPType, pHB, pDB);
}
void mdrv_DPTx_PatternSet(bool enable, int resolution)
{
g_mtk_dp->info.bPatternGen = enable;
g_mtk_dp->info.resolution = resolution;
}
void mdrv_DPTx_set_maxlinkrate(bool enable, int maxlinkrate)
{
g_mtk_dp->training_info.set_max_linkrate = enable;
g_mtk_dp->training_info.ubSysMaxLinkRate = maxlinkrate;
}
void mdrv_DPTx_PatternGenTypeSel(struct mtk_dp *mtk_dp, int patternType,
BYTE BGR, DWORD ColorDepth, BYTE Location)
{
WORD Hde, Vde;
Hde = mtk_dp->info.DPTX_OUTBL.Hde;
Vde = mtk_dp->info.DPTX_OUTBL.Vde;
switch (patternType) {
case DPTX_PG_PURE_COLOR:
mhal_DPTx_PG_Pure_Color(mtk_dp, BGR, ColorDepth);
break;
case DPTX_PG_VERTICAL_RAMPING:
mhal_DPTx_PG_VerticalRamping(mtk_dp, BGR, ColorDepth, Location);
break;
case DPTX_PG_HORIZONTAL_RAMPING:
mhal_DPTx_PG_HorizontalRamping(mtk_dp, BGR,
ColorDepth, Location);
break;
case DPTX_PG_VERTICAL_COLOR_BAR:
mhal_DPTx_PG_VerticalColorBar(mtk_dp, Location);
break;
case DPTX_PG_HORIZONTAL_COLOR_BAR:
mhal_DPTx_PG_HorizontalColorBar(mtk_dp, Location);
break;
case DPTX_PG_CHESSBOARD_PATTERN:
mhal_DPTx_PG_Chessboard(mtk_dp, Location, Hde, Vde);
break;
case DPTX_PG_SUB_PIXEL_PATTERN:
mhal_DPTx_PG_SubPixel(mtk_dp, Location);
break;
case DPTX_PG_FRAME_PATTERN:
mhal_DPTx_PG_Frame(mtk_dp, Location, Hde, Vde);
break;
default:
break;
}
}
void mdrv_DPTx_StopSentSDP(struct mtk_dp *mtk_dp)
{
u8 ubPkgType;
for (ubPkgType = DPTx_SDPTYP_ACM ; ubPkgType < DPTx_SDPTYP_MAX_NUM;
ubPkgType++)
mhal_DPTx_SPKG_SDP(mtk_dp, false, ubPkgType, NULL, NULL);
mhal_DPTx_SPKG_VSC_EXT_VESA(mtk_dp, false, 0x00, NULL);
mhal_DPTx_SPKG_VSC_EXT_CEA(mtk_dp, false, 0x00, NULL);
DPTXFUNC();
}
int mdrv_DPTx_HPD_HandleInThread(struct mtk_dp *mtk_dp)
{
int ret = DPTX_NOERR;
if (mtk_dp->training_info.bCableStateChange) {
bool ubCurrentHPD = mhal_DPTx_GetHPDPinLevel(mtk_dp);
mtk_dp->training_info.bCableStateChange = false;
if (mtk_dp->training_info.bCablePlugIn && ubCurrentHPD) {
DPTXMSG("HPD_CON\n");
} else {
DPTXMSG("HPD_DISCON\n");
mdrv_DPTx_VideoMute(mtk_dp, true);
mdrv_DPTx_AudioMute(mtk_dp, true);
if (mtk_dp->bUeventToHwc) {
mtk_dp_hotplug_uevent(0);
mtk_dp->bUeventToHwc = false;
mtk_dp->disp_status = DPTX_DISP_NONE;
} else
DPTXMSG("Skip uevent(0)\n");
cancel_work(&mtk_dp->hdcp_work);
#ifdef DPTX_HDCP_ENABLE
if (mtk_dp->info.hdcp2_info.bEnable)
mdrv_DPTx_HDCP2_SetStartAuth(mtk_dp, false);
else if (mtk_dp->info.hdcp1x_info.bEnable)
mdrv_DPTx_HDCP1X_SetStartAuth(mtk_dp, false);
tee_removeDevice();
#endif
mdrv_DPTx_InitVariable(mtk_dp);
mhal_DPTx_PHY_SetIdlePattern(mtk_dp, true);
if (mtk_dp->has_fec)
mhal_DPTx_EnableFEC(mtk_dp, false);
mdrv_DPTx_StopSentSDP(mtk_dp);
mhal_DPTx_AnalogPowerOnOff(mtk_dp, false);
DPTXMSG("Power OFF %d", mtk_dp->bPowerOn);
clk_disable_unprepare(mtk_dp->dp_tx_clk);
if (mtk_dp->info.bPatternGen)
mhal_DPTx_VideoClock(false,
mtk_dp->info.resolution);
fakecablein = false;
fakeres = FAKE_DEFAULT_RES;
fakebpc = DP_COLOR_DEPTH_8BIT;
kfree(mtk_dp->edid);
mtk_dp->edid = NULL;
ret = DPTX_PLUG_OUT;
}
}
if (mtk_dp->training_info.usPHY_STS & HPD_INT_EVNET) {
DPTXMSG("HPD_INT_EVNET\n");
mtk_dp->training_info.usPHY_STS &= ~HPD_INT_EVNET;
mdrv_DPTx_CheckSinkHPDEvent(mtk_dp);
}
return ret;
}
void mdrv_DPTx_VideoMute(struct mtk_dp *mtk_dp, bool bENABLE)
{
mtk_dp->info.bVideoMute = (mtk_dp->info.bSetVideoMute) ?
true : bENABLE;
mhal_DPTx_VideoMute(mtk_dp, mtk_dp->info.bVideoMute);
}
void mdrv_DPTx_AudioMute(struct mtk_dp *mtk_dp, bool bENABLE)
{
mtk_dp->info.bAudioMute = (mtk_dp->info.bSetAudioMute) ?
true : bENABLE;
mhal_DPTx_AudioMute(mtk_dp, mtk_dp->info.bAudioMute);
}
bool mdrv_DPTx_TrainingCheckSwingPre(struct mtk_dp *mtk_dp,
u8 ubTargetLaneCount, u8 *ubDPCP202_x, u8 *ubDPCP_Buffer1)
{
u8 ubSwingValue;
u8 ubPreemphasis;
if (ubTargetLaneCount >= 0x1) { //lane0
ubSwingValue = (ubDPCP202_x[0x4]&0x3);
ubPreemphasis = ((ubDPCP202_x[0x4]&0x0C)>>2);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE0,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done, notify Sink Side
ubDPCP_Buffer1[0x0] = ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x0] |= BIT2;
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x0] |= BIT5;
}
if (ubTargetLaneCount >= 0x2) { //lane1
ubSwingValue = (ubDPCP202_x[0x4]&0x30) >> 4;
ubPreemphasis = ((ubDPCP202_x[0x4]&0xC0)>>6);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE1,
ubSwingValue, ubPreemphasis);
//Adjust the swing and pre-emphasis done, notify Sink Side
ubDPCP_Buffer1[0x1] = ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x1] |= BIT2;
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x1] |= BIT5;
}
if (ubTargetLaneCount == 0x4) { //lane 2,3
ubSwingValue = (ubDPCP202_x[0x5]&0x3);
ubPreemphasis = ((ubDPCP202_x[0x5]&0x0C)>>2);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE2,
(ubDPCP202_x[0x5]&0x3), ((ubDPCP202_x[0x5]&0x0C)>>2));
//Adjust the swing and pre-emphasis done, notify Sink Side
ubDPCP_Buffer1[0x2] = ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x2] |= BIT2;
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x2] |= BIT5;
ubSwingValue = (ubDPCP202_x[0x5]&0x30) >> 4;
ubPreemphasis = ((ubDPCP202_x[0x5]&0xC0)>>6);
//Adjust the swing and pre-emphasis
mhal_DPTx_SetSwingtPreEmphasis(mtk_dp, DPTx_LANE3,
((ubDPCP202_x[0x5]&0x30)>>4),
((ubDPCP202_x[0x5]&0xC0)>>6));
//Adjust the swing and pre-emphasis done, notify Sink Side
ubDPCP_Buffer1[0x3] = ubSwingValue | (ubPreemphasis << 3);
if (ubSwingValue == DPTx_SWING3) { //MAX_SWING_REACHED
ubDPCP_Buffer1[0x3] |= BIT2;
}
//MAX_PRE-EMPHASIS_REACHED
if (ubPreemphasis == DPTx_PREEMPHASIS3)
ubDPCP_Buffer1[0x3] |= BIT5;
}
//Wait signal stable enough
mdelay(2);
return true;
}
void mdrv_DPTx_Print_TrainingState(u8 state)
{
switch (state) {
case DPTX_NTSTATE_STARTUP:
DPTXMSG("NTSTATE_STARTUP!\n");
break;
case DPTX_NTSTATE_CHECKCAP:
DPTXMSG("NTSTATE_CHECKCAP!\n");
break;
case DPTX_NTSTATE_CHECKEDID:
DPTXMSG("NTSTATE_CHECKEDID!\n");
break;
case DPTX_NTSTATE_TRAINING_PRE:
DPTXMSG("NTSTATE_TRAINING_PRE!\n");
break;
case DPTX_NTSTATE_TRAINING:
DPTXMSG("NTSTATE_TRAINING!\n");
break;
case DPTX_NTSTATE_CHECKTIMING:
DPTXMSG("NTSTATE_CHECKTIMING!\n");
break;
case DPTX_NTSTATE_NORMAL:
DPTXMSG("NTSTATE_NORMAL!\n");
break;
case DPTX_NTSTATE_POWERSAVE:
DPTXMSG("NTSTATE_POWERSAVE!\n");
break;
case DPTX_NTSTATE_DPIDLE:
DPTXMSG("NTSTATE_DPIDLE!\n");
break;
}
}
int mdrv_DPTx_TrainingFlow(struct mtk_dp *mtk_dp, u8 ubLaneRate, u8 ubLaneCount)
{
u8 ubTempValue[0x6];
u8 ubDPCD200C[0x3];
u8 ubTargetLinkRate = ubLaneRate;
u8 ubTargetLaneCount = ubLaneCount;
u8 ubDPCP_Buffer1[0x4];
u8 bPassTPS1 = false;
u8 bPassTPS2_3 = false;
u8 ubTrainRetryTimes;
u8 ubStatusControl;
u8 ubIterationCount;
u8 ubDPCD206;
memset(ubTempValue, 0x0, sizeof(ubTempValue));
memset(ubDPCP_Buffer1, 0x0, sizeof(ubDPCP_Buffer1));
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00600, ubTempValue, 0x1);
if (ubTempValue[0] != 0x01) {
ubTempValue[0] = 0x01;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00600, ubTempValue, 0x1);
mdelay(1);
}
ubTempValue[0] = ubTargetLinkRate;
ubTempValue[1] = ubTargetLaneCount | DPTX_AUX_SET_ENAHNCED_FRAME;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00100, ubTempValue, 0x2);
if (mtk_dp->training_info.bSinkSSC_En) {
ubTempValue[0x0] = 0x10;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00107, ubTempValue, 0x1);
}
ubTrainRetryTimes = 0x0;
ubStatusControl = 0x0;
ubIterationCount = 0x1;
ubDPCD206 = 0xFF;
mhal_DPTx_SetTxLane(mtk_dp, ubTargetLaneCount/2);
mhal_DPTx_SetTxRate(mtk_dp, ubTargetLinkRate);
do {
ubTrainRetryTimes++;
if (!mtk_dp->training_info.bCablePlugIn ||
((mtk_dp->training_info.usPHY_STS & HPD_DISCONNECT)
!= 0x0)) {
DPTXMSG("Training Abort! HPD is low\n");
return DPTX_PLUG_OUT;
}
if (mtk_dp->training_info.usPHY_STS & HPD_INT_EVNET)
mdrv_DPTx_HPD_HandleInThread(mtk_dp);
if (mtk_dp->training_state < DPTX_NTSTATE_TRAINING)
return DPTX_RETRANING;
if (!bPassTPS1) {
DPTXMSG("CR Training START\n");
mhal_DPTx_SetScramble(mtk_dp, false);
if (ubStatusControl == 0x0) {
mhal_DPTx_SetTxTrainingPattern(mtk_dp, BIT4);
ubStatusControl = 0x1;
ubTempValue[0] = 0x21;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00102,
ubTempValue, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00206,
(ubTempValue+4), 0x2);
ubIterationCount++;
mdrv_DPTx_TrainingCheckSwingPre(mtk_dp,
ubTargetLaneCount, ubTempValue,
ubDPCP_Buffer1);
}
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00103,
ubDPCP_Buffer1, ubTargetLaneCount);
drm_dp_link_train_clock_recovery_delay(mtk_dp->rx_cap);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00202,
ubTempValue, 0x6);
if (mtk_dp->training_info.bSinkEXTCAP_En) {
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_0200C,
ubDPCD200C, 0x3);
ubTempValue[0] = ubDPCD200C[0];
ubTempValue[1] = ubDPCD200C[1];
ubTempValue[2] = ubDPCD200C[2];
}
if (drm_dp_clock_recovery_ok(ubTempValue,
ubTargetLaneCount)) {
DPTXMSG("CR Training Success\n");
mtk_dp->training_info.cr_done = true;
bPassTPS1 = true;
ubTrainRetryTimes = 0x0;
ubIterationCount = 0x1;
} else {
//request swing & emp is the same eith last time
if (ubDPCD206 == ubTempValue[0x4]) {
ubIterationCount++;
if (ubDPCD206&0x3)
ubIterationCount =
DPTX_TRAIN_MAX_ITERATION;
} else {
ubDPCD206 = ubTempValue[0x4];
}
DPTXMSG("CR Training Fail\n");
}
} else if (bPassTPS1 && !bPassTPS2_3) {
DPTXMSG("EQ Training START\n");
if (ubStatusControl == 0x1) {
if (mtk_dp->training_info.bTPS4) {
mhal_DPTx_SetTxTrainingPattern(mtk_dp,
BIT7);
DPTXMSG("LT TPS4\n");
} else if (mtk_dp->training_info.bTPS3) {
mhal_DPTx_SetTxTrainingPattern(mtk_dp,
BIT6);
DPTXMSG("LT TP3\n");
} else {
mhal_DPTx_SetTxTrainingPattern(mtk_dp,
BIT5);
DPTXMSG("LT TPS2\n");
}
if (mtk_dp->training_info.bTPS4) {
ubTempValue[0] = 0x07;
drm_dp_dpcd_write(&mtk_dp->aux,
DPCD_00102, ubTempValue, 0x1);
} else if (mtk_dp->training_info.bTPS3) {
ubTempValue[0] = 0x23;
drm_dp_dpcd_write(&mtk_dp->aux,
DPCD_00102, ubTempValue, 0x1);
} else {
ubTempValue[0] = 0x22;
drm_dp_dpcd_write(&mtk_dp->aux,
DPCD_00102, ubTempValue, 0x1);
}
ubStatusControl = 0x2;
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00206,
(ubTempValue+4), 0x2);
ubIterationCount++;
mdrv_DPTx_TrainingCheckSwingPre(mtk_dp,
ubTargetLaneCount, ubTempValue,
ubDPCP_Buffer1);
}
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00103,
ubDPCP_Buffer1, ubTargetLaneCount);
drm_dp_link_train_channel_eq_delay(mtk_dp->rx_cap);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00202,
ubTempValue, 0x6);
if (mtk_dp->training_info.bSinkEXTCAP_En) {
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_0200C,
ubDPCD200C, 0x3);
ubTempValue[0] |= ubDPCD200C[0];
ubTempValue[1] |= ubDPCD200C[1];
ubTempValue[2] |= ubDPCD200C[2];
}
if (!drm_dp_clock_recovery_ok(ubTempValue,
ubTargetLaneCount)) {
mtk_dp->training_info.cr_done = false;
mtk_dp->training_info.eq_done = false;
break;
}
if (drm_dp_channel_eq_ok(ubTempValue,
ubTargetLaneCount)) {
mtk_dp->training_info.eq_done = true;
bPassTPS2_3 = true;
DPTXMSG("EQ Training Success\n");
break;
} else
DPTXMSG("EQ Training Fail\n");
if (ubDPCD206 == ubTempValue[0x4])
ubIterationCount++;
else
ubDPCD206 = ubTempValue[0x4];
}
mdrv_DPTx_TrainingCheckSwingPre(mtk_dp, ubTargetLaneCount,
ubTempValue, ubDPCP_Buffer1);
DPTXMSG("ubTrainRetryTimes = %d, ubIterationCount = %d\n",
ubTrainRetryTimes, ubIterationCount);
} while ((ubTrainRetryTimes < DPTX_TRAIN_RETRY_LIMIT) &&
(ubIterationCount < DPTX_TRAIN_MAX_ITERATION));
ubTempValue[0] = 0x0;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00102, ubTempValue, 0x1);
mhal_DPTx_SetTxTrainingPattern(mtk_dp, 0);
if (bPassTPS2_3) {
mtk_dp->training_info.ubLinkRate = ubTargetLinkRate;
mtk_dp->training_info.ubLinkLaneCount = ubTargetLaneCount;
mhal_DPTx_SetScramble(mtk_dp, true);
ubTempValue[0] = ubTargetLaneCount
| DPTX_AUX_SET_ENAHNCED_FRAME;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00101, ubTempValue, 0x1);
mhal_DPTx_SetEF_Mode(mtk_dp, ENABLE_DPTX_EF_MODE);
DPTXMSG("Link Training PASS\n");
return DPTX_NOERR;
}
DPTXMSG("Link Training Fail\n");
return DPTX_TRANING_FAIL;
}
bool mdrv_DPTx_CheckSinkCap(struct mtk_dp *mtk_dp)
{
u8 bTempBuffer[0x10];
if (!mhal_DPTx_GetHPDPinLevel(mtk_dp))
return false;
memset(bTempBuffer, 0x0, sizeof(bTempBuffer));
bTempBuffer[0x0] = 0x1;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00600, bTempBuffer, 0x1);
mdelay(2);
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00000, bTempBuffer, 0x10);
mtk_dp->training_info.bSinkEXTCAP_En = (bTempBuffer[0x0E]&BIT7) ?
true : false;
if (mtk_dp->training_info.bSinkEXTCAP_En)
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_02200, bTempBuffer, 0x10);
mtk_dp->training_info.ubDPCD_REV = bTempBuffer[0x0];
DPTXMSG("SINK DPCD version:0x%x\n", mtk_dp->training_info.ubDPCD_REV);
memcpy(mtk_dp->rx_cap, bTempBuffer, 0x10);
mtk_dp->rx_cap[0xe] &= 0x7F;
if (mtk_dp->training_info.ubDPCD_REV >= 0x14) {
mdrv_DPTx_FEC_Ready(mtk_dp, FEC_BIT_ERROR_COUNT);
mdrv_DPTx_DSC_Support(mtk_dp);
}
if (!mtk_dp->has_dsc || !mtk_dp->has_fec)
mtk_dp_enable_4k60(false);
else
mtk_dp_enable_4k60(true);
#if !ENABLE_DPTX_FIX_LRLC
mtk_dp->training_info.ubLinkRate =
(bTempBuffer[0x1] >= mtk_dp->training_info.ubSysMaxLinkRate) ?
mtk_dp->training_info.ubSysMaxLinkRate : bTempBuffer[0x1];
mtk_dp->training_info.ubLinkLaneCount =
((bTempBuffer[0x2]&0x1F) >= MAX_LANECOUNT) ?
MAX_LANECOUNT : (bTempBuffer[0x2]&0x1F);
#endif
#if ENABLE_DPTX_FIX_TPS2
mtk_dp->training_info.bTPS3 = 0;
mtk_dp->training_info.bTPS4 = 0;
#else
mtk_dp->training_info.bTPS3 = (bTempBuffer[0x2]&BIT6)>>0x6;
mtk_dp->training_info.bTPS4 = (bTempBuffer[0x3]&BIT7)>>0x7;
#endif
mtk_dp->training_info.bDWN_STRM_PORT_PRESENT
= (bTempBuffer[0x5] & BIT0);
#if (ENABLE_DPTX_SSC_OUTPUT == 0x1)
if ((bTempBuffer[0x3] & BIT0) == 0x1) {
mtk_dp->training_info.bSinkSSC_En = true;
DPTXMSG("SINK SUPPORT SSC!\n");
} else {
mtk_dp->training_info.bSinkSSC_En = false;
DPTXMSG("SINK NOT SUPPORT SSC!\n");
}
#endif
#if ENABLE_DPTX_SSC_FORCEON
DPTXMSG("FORCE SSC ON !!!\n");
mtk_dp->training_info.bSinkSSC_En = true;
#endif
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00021, bTempBuffer, 0x1);
mtk_dp->training_info.bDPMstCAP = (bTempBuffer[0x0] & BIT0);
mtk_dp->training_info.bDPMstBranch = false;
if (mtk_dp->training_info.bDPMstCAP == BIT0) {
if (mtk_dp->training_info.bDWN_STRM_PORT_PRESENT == 0x1)
mtk_dp->training_info.bDPMstBranch = true;
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_02003, bTempBuffer, 0x1);
if (bTempBuffer[0x0] != 0x0)
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_02003,
bTempBuffer, 0x1);
}
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00600, bTempBuffer, 0x1);
if (bTempBuffer[0x0] != 0x1) {
bTempBuffer[0x0] = 0x1;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00600, bTempBuffer, 0x1);
}
mtk_dp->training_info.ubSinkCountNum = mdrv_DPTx_getSinkCount(mtk_dp);
//if (mtk_dp->training_info.ubSinkCountNum == 0)
// return false;
if (!mtk_dp->training_info.bDPMstBranch) {
u8 ubDPCD_201;
drm_dp_dpcd_read(&mtk_dp->aux, DPCD_00201, &ubDPCD_201, 1);
if (ubDPCD_201 & BIT1) {
#if (DPTX_AutoTest_ENABLE == 0x1)
mdrv_DPTx_PHY_AutoTest(mtk_dp, ubDPCD_201);
#endif
}
}
return true;
}
unsigned int force_ch, force_fs, force_len;
unsigned int mdrv_DPTx_getAudioCaps(struct mtk_dp *mtk_dp)
{
struct cea_sad *sads;
int sad_count, i, j;
unsigned int caps = 0;
if (mtk_dp->edid == NULL) {
DPTXERR("EDID not found!\n");
return 0;
}
sad_count = drm_edid_to_sad(mtk_dp->edid, &sads);
if (sad_count <= 0) {
DPTXMSG("The SADs is NULL\n");
return 0;
}
for (i = 0; i < sad_count; i++) {
if (sads[i].format == 0x01) {
for (j = 0; j < sads[i].channels; j++)
caps |= ((1 << j) <<
DP_CAPABILITY_CHANNEL_SFT) &
(DP_CAPABILITY_CHANNEL_MASK <<
DP_CAPABILITY_CHANNEL_SFT);
caps |= (sads[i].freq << DP_CAPABILITY_SAMPLERATE_SFT) &
(DP_CAPABILITY_SAMPLERATE_MASK <<
DP_CAPABILITY_SAMPLERATE_SFT);
caps |= (sads[i].byte2 << DP_CAPABILITY_BITWIDTH_SFT) &
(DP_CAPABILITY_BITWIDTH_MASK <<
DP_CAPABILITY_BITWIDTH_SFT);
}
}
DPTXMSG("audio caps:0x%x", caps);
return caps;
}
bool mdrv_DPTx_TrainingChangeMode(struct mtk_dp *mtk_dp)
{
mhal_DPTx_PHYD_Reset(mtk_dp);
mhal_DPTx_ResetSwingtPreEmphasis(mtk_dp);
mhal_DPTx_SSCOnOffSetting(mtk_dp, mtk_dp->training_info.bSinkSSC_En);
mdelay(2);
return true;
}
int mdrv_DPTx_SetTrainingStart(struct mtk_dp *mtk_dp)
{
u8 ret = DPTX_NOERR;
u8 ubLaneCount;
u8 ubLinkRate;
u8 ubTemp[16];
u8 ubTrainTimeLimits;
#if !ENABLE_DPTX_FIX_LRLC
u8 maxLinkRate;
#endif
if (!mhal_DPTx_GetHPDPinLevel(mtk_dp)) {
DPTXMSG("Start Training Abort!=> HPD low !\n");
ubTrainTimeLimits = 6;
while (ubTrainTimeLimits > 6) {
if (mhal_DPTx_GetHPDPinLevel(mtk_dp))
break;
ubTrainTimeLimits--;
mdelay(1);
}
if (ubTrainTimeLimits == 0) {
mtk_dp->training_state = DPTX_NTSTATE_DPIDLE;
return DPTX_PLUG_OUT;
}
}
if (!mtk_dp->training_info.bDPTxAutoTest_EN) {
ubTemp[0] = 0x1;
drm_dp_dpcd_write(&mtk_dp->aux, DPCD_00600, ubTemp, 0x1);
ubLinkRate = mtk_dp->rx_cap[1];
ubLaneCount = mtk_dp->rx_cap[2] & 0x1F;
DPTXMSG("RX support ubLinkRate = 0x%x,ubLaneCount = %x",
ubLinkRate, ubLaneCount);
#if !ENABLE_DPTX_FIX_LRLC
mtk_dp->training_info.ubLinkRate =
(ubLinkRate >= mtk_dp->training_info.ubSysMaxLinkRate) ?
mtk_dp->training_info.ubSysMaxLinkRate : ubLinkRate;
mtk_dp->training_info.ubLinkLaneCount =
(ubLaneCount >= MAX_LANECOUNT) ?
MAX_LANECOUNT : ubLaneCount;
#endif
}
ubLinkRate = mtk_dp->training_info.ubLinkRate;
ubLaneCount = mtk_dp->training_info.ubLinkLaneCount;
switch (ubLinkRate) {
case DP_LINKRATE_RBR:
case DP_LINKRATE_HBR:
case DP_LINKRATE_HBR2:
case DP_LINKRATE_HBR25:
case DP_LINKRATE_HBR3:
break;
default:
mtk_dp->training_info.ubLinkRate = DP_LINKRATE_HBR3;
break;
};
#if !ENABLE_DPTX_FIX_LRLC
maxLinkRate = ubLinkRate;
ubTrainTimeLimits = 0x6;
#endif
do {
DPTXMSG("LinkRate:0x%x, LaneCount:%x", ubLinkRate, ubLaneCount);
mtk_dp->training_info.cr_done = false;
mtk_dp->training_info.eq_done = false;
mdrv_DPTx_TrainingChangeMode(mtk_dp);
ret = mdrv_DPTx_TrainingFlow(mtk_dp, ubLinkRate, ubLaneCount);
if (ret == DPTX_PLUG_OUT || ret == DPTX_RETRANING)
return ret;
if (!mtk_dp->training_info.cr_done) {
#if !ENABLE_DPTX_FIX_LRLC
switch (ubLinkRate) {
case DP_LINKRATE_RBR:
ubLaneCount = ubLaneCount/2;
ubLinkRate = maxLinkRate;
if (ubLaneCount == 0x0) {
mtk_dp->training_state
= DPTX_NTSTATE_DPIDLE;
return DPTX_TRANING_FAIL;
}
break;
case DP_LINKRATE_HBR:
ubLinkRate = DP_LINKRATE_RBR;
break;
case DP_LINKRATE_HBR2:
ubLinkRate = DP_LINKRATE_HBR;
break;
case DP_LINKRATE_HBR3:
ubLinkRate = DP_LINKRATE_HBR2;
break;
default:
return DPTX_TRANING_FAIL;
};
#endif
ubTrainTimeLimits--;
} else if (!mtk_dp->training_info.eq_done) {
#if !ENABLE_DPTX_FIX_LRLC
if (ubLaneCount == DP_LANECOUNT_4)
ubLaneCount = DP_LANECOUNT_2;
else if (ubLaneCount == DP_LANECOUNT_2)
ubLaneCount = DP_LANECOUNT_1;
else
return DPTX_TRANING_FAIL;
#endif
ubTrainTimeLimits--;
} else
return DPTX_NOERR;
} while (ubTrainTimeLimits > 0);
return DPTX_TRANING_FAIL;
}
int mdrv_DPTx_Training_Handler(struct mtk_dp *mtk_dp)
{
int ret = DPTX_NOERR;
if (!mtk_dp->training_info.bCablePlugIn)
return DPTX_PLUG_OUT;
if (mtk_dp->training_state == DPTX_NTSTATE_NORMAL)
return ret;
if (mtk_dp->training_state_pre != mtk_dp->training_state) {
mdrv_DPTx_Print_TrainingState(mtk_dp->training_state);
mtk_dp->training_state_pre = mtk_dp->training_state;
}
switch (mtk_dp->training_state) {
case DPTX_NTSTATE_STARTUP:
mtk_dp->training_state = DPTX_NTSTATE_CHECKCAP;
break;
case DPTX_NTSTATE_CHECKCAP:
if (mdrv_DPTx_CheckSinkCap(mtk_dp)) {
mtk_dp->training_info.ucCheckCapTimes = 0;
mtk_dp->training_state = DPTX_NTSTATE_CHECKEDID;
} else {
BYTE uaCheckTimes = 0;
mtk_dp->training_info.ucCheckCapTimes++;
uaCheckTimes = mtk_dp->training_info.ucCheckCapTimes;
if (uaCheckTimes > DPTX_CheckSinkCap_TimeOutCnt) {
mtk_dp->training_info.ucCheckCapTimes = 0;
DPTXMSG("CheckCap Fail %d times",
DPTX_CheckSinkCap_TimeOutCnt);
mtk_dp->training_state = DPTX_NTSTATE_DPIDLE;
ret = DPTX_TIMEOUT;
} else
DPTXMSG("CheckCap Fail %d times", uaCheckTimes);
}
break;
case DPTX_NTSTATE_CHECKEDID:
mtk_dp->edid = mtk_dp_handle_edid(mtk_dp);
if (mtk_dp->edid) {
DPTXMSG("READ EDID done!\n");
if (mtk_dp_debug_get()) {
u8 *raw_edid = (u8 *)mtk_dp->edid;
DPTXMSG("Raw EDID:\n");
print_hex_dump(KERN_NOTICE,
"\t", DUMP_PREFIX_NONE, 16, 1,
raw_edid, EDID_LENGTH, false);
if ((raw_edid[0x7E] & 0x01) == 0x01) {
print_hex_dump(KERN_NOTICE,
"\t", DUMP_PREFIX_NONE, 16, 1,
(raw_edid + 128), EDID_LENGTH,
false);
}
}
mtk_dp->info.audio_caps
= mdrv_DPTx_getAudioCaps(mtk_dp);
} else
DPTXMSG("Read EDID Fail!\n");
mtk_dp->training_state = DPTX_NTSTATE_TRAINING_PRE;
break;
case DPTX_NTSTATE_TRAINING_PRE:
mtk_dp->training_state = DPTX_NTSTATE_TRAINING;
break;
case DPTX_NTSTATE_TRAINING:
ret = mdrv_DPTx_SetTrainingStart(mtk_dp);
if (ret == DPTX_NOERR) {
mdrv_DPTx_VideoMute(mtk_dp, true);
mdrv_DPTx_AudioMute(mtk_dp, true);
mtk_dp->training_state = DPTX_NTSTATE_CHECKTIMING;
mtk_dp->dp_ready = true;
mhal_DPTx_EnableFEC(mtk_dp, mtk_dp->has_fec);
} else if (ret == DPTX_RETRANING) {
ret = DPTX_NOERR;
} else
DPTXERR("Handle Training Fail 6 times\n");
break;
case DPTX_NTSTATE_CHECKTIMING:
mtk_dp->training_state = DPTX_NTSTATE_NORMAL;
if (mtk_dp->training_info.ubSinkCountNum == 0) {
DPTXMSG("no sink count, skip uevent\n");
break;
}
if (mtk_dp->bUeventToHwc) {
mtk_dp_hotplug_uevent(1);
mtk_dp->bUeventToHwc = false;
} else
DPTXMSG("Skip Uevent(1)\n");
break;
case DPTX_NTSTATE_NORMAL:
break;
case DPTX_NTSTATE_POWERSAVE:
break;
case DPTX_NTSTATE_DPIDLE:
break;
default:
break;
}
return ret;
}
#ifdef DPTX_HDCP_ENABLE
void mdrv_DPTx_reAuthentication(struct mtk_dp *mtk_dp)
{
if (!mtk_dp->training_info.bCablePlugIn || !mtk_dp->dp_ready)
return;
queue_work(mtk_dp->dptx_wq, &mtk_dp->hdcp_work);
}
void mdrv_DPTx_CheckHDCPVersion(struct mtk_dp *mtk_dp, bool only_hdcp1x)
{
if (g_hdcp_on) {
if (!only_hdcp1x && mdrv_DPTx_HDCP2_Support(mtk_dp))
return;
if (mdrv_DPTx_HDCP1x_Support(mtk_dp))
return;
} else
DPTXMSG("Not enable HDCP Function!\n");
if (tee_addDevice(HDCP_NONE) != RET_SUCCESS)
mtk_dp->info.bAuthStatus = AUTH_FAIL;
}
static void mdrv_DPTx_hdcp_handle(struct work_struct *data)
{
struct mtk_dp *mtk_dp = container_of(data, struct mtk_dp, hdcp_work);
if (!mtk_dp->training_info.bCablePlugIn || !mtk_dp->dp_ready)
return;
if (mtk_dp->info.bAuthStatus == AUTH_ZERO) {
mdrv_DPTx_CheckHDCPVersion(mtk_dp, false);
if (mtk_dp->info.hdcp2_info.bEnable)
mdrv_DPTx_HDCP2_SetStartAuth(mtk_dp, true);
else if (mtk_dp->info.hdcp1x_info.bEnable)
mdrv_DPTx_HDCP1X_SetStartAuth(mtk_dp, true);
}
if (mtk_dp->info.hdcp2_info.bEnable) {
HDCPTx_Hdcp2FSM(mtk_dp);
if (mtk_dp->info.bAuthStatus == AUTH_FAIL) {
tee_removeDevice();
mdrv_DPTx_CheckHDCPVersion(mtk_dp, true);
if (mtk_dp->info.hdcp1x_info.bEnable) {
mtk_dp->info.hdcp2_info.bEnable = false;
mdrv_DPTx_HDCP1X_SetStartAuth(mtk_dp, true);
}
}
}
if (mtk_dp->info.hdcp1x_info.bEnable)
mdrv_DPTx_HDCP1X_FSM(mtk_dp);
if ((mtk_dp->info.hdcp1x_info.bEnable
|| mtk_dp->info.hdcp2_info.bEnable)
&& (mtk_dp->info.bAuthStatus != AUTH_FAIL)
&& (mtk_dp->info.bAuthStatus != AUTH_PASS))
queue_work(mtk_dp->dptx_wq, &mtk_dp->hdcp_work);
}
#else
static void mdrv_DPTx_hdcp_handle(struct work_struct *data)
{
DPTXMSG("No Support HDCP function\n");
}
#endif
bool mdrv_DPTx_done(struct mtk_dp *mtk_dp)
{
if (mtk_dp->state != DPTXSTATE_NORMAL)
return false;
if (mtk_dp->training_state != DPTX_NTSTATE_NORMAL)
return false;
return true;
}
int mdrv_DPTx_Handle(struct mtk_dp *mtk_dp)
{
int ret = DPTX_NOERR;
if (!mtk_dp->training_info.bCablePlugIn)
return DPTX_PLUG_OUT;
if (mtk_dp->state != mtk_dp->state_pre) {
DPTXMSG("m_DPTXState %d, m_DPTXStateTemp %d\n",
mtk_dp->state, mtk_dp->state_pre);
mtk_dp->state_pre = mtk_dp->state;
}
switch (mtk_dp->state) {
case DPTXSTATE_INITIAL:
mdrv_DPTx_VideoMute(mtk_dp, true);
mdrv_DPTx_AudioMute(mtk_dp, true);
mtk_dp->state = DPTXSTATE_IDLE;
break;
case DPTXSTATE_IDLE:
if (mtk_dp->training_state == DPTX_NTSTATE_NORMAL)
mtk_dp->state = DPTXSTATE_PREPARE;
break;
case DPTXSTATE_PREPARE:
if (mtk_dp->video_enable) {
mtk_dp_video_config(mtk_dp);
mdrv_DPTx_Video_Enable(mtk_dp, true);
}
if (mtk_dp->audio_enable && (mtk_dp->info.audio_caps != 0)) {
mdrv_DPTx_I2S_Audio_Config(mtk_dp);
mdrv_DPTx_I2S_Audio_Enable(mtk_dp, true);
}
mtk_dp->state = DPTXSTATE_NORMAL;
break;
case DPTXSTATE_NORMAL:
if (mtk_dp->training_state != DPTX_NTSTATE_NORMAL) {
mdrv_DPTx_VideoMute(mtk_dp, true);
mdrv_DPTx_AudioMute(mtk_dp, true);
mdrv_DPTx_StopSentSDP(mtk_dp);
mtk_dp->state = DPTXSTATE_IDLE;
DPTXMSG("DPTX Link Status Change!\n");
}
break;
default:
break;
}
return ret;
}
void mdrv_DPTx_HPD_HandleInISR(struct mtk_dp *mtk_dp)
{
bool ubCurrentHPD = mhal_DPTx_GetHPDPinLevel(mtk_dp);
if (mtk_dp->training_info.usPHY_STS == HPD_INITIAL_STATE)
return;
if ((mtk_dp->training_info.usPHY_STS & (HPD_CONNECT|HPD_DISCONNECT))
== (HPD_CONNECT|HPD_DISCONNECT)) {
if (ubCurrentHPD)
mtk_dp->training_info.usPHY_STS &= ~HPD_DISCONNECT;
else
mtk_dp->training_info.usPHY_STS &= ~HPD_CONNECT;
}
if ((mtk_dp->training_info.usPHY_STS & (HPD_INT_EVNET|HPD_DISCONNECT))
== (HPD_INT_EVNET|HPD_DISCONNECT)) {
if (ubCurrentHPD)
mtk_dp->training_info.usPHY_STS &= ~HPD_DISCONNECT;
}
#if 0
if (mtk_dp->training_info.bCablePlugIn)
mtk_dp->training_info.usPHY_STS &= ~HPD_CONNECT;
else
mtk_dp->training_info.usPHY_STS &= ~HPD_DISCONNECT;
#endif
if (mtk_dp->training_info.usPHY_STS & HPD_CONNECT) {
mtk_dp->training_info.usPHY_STS &= ~HPD_CONNECT;
mtk_dp->training_info.bCablePlugIn = true;
mtk_dp->training_info.bCableStateChange = true;
DPTXMSG(" HPD_CON_ISR\n");
}
if (mtk_dp->training_info.usPHY_STS & HPD_DISCONNECT) {
mtk_dp->training_info.usPHY_STS &= ~HPD_DISCONNECT;
mtk_dp->training_info.bCablePlugIn = false;
mtk_dp->training_info.bCableStateChange = true;
DPTXMSG("HPD_DISCON_ISR\n");
}
}
void mdrv_DPTx_USBC_HPD_Event(u16 ubSWStatus)
{
struct mtk_dp *mtk_dp = g_mtk_dp;
mtk_dp->training_info.usPHY_STS |= ubSWStatus;
DPTXMSG("SW status = 0x%x, usPHY_STS = 0x%x\n",
ubSWStatus,
mtk_dp->training_info.usPHY_STS);
mdrv_DPTx_HPD_HandleInISR(mtk_dp);
if (mtk_dp->training_info.bCableStateChange
|| ubSWStatus == HPD_INT_EVNET)
queue_work(mtk_dp->dptx_wq, &mtk_dp->dptx_work);
}
void mdrv_DPTx_HPD_ISREvent(struct mtk_dp *mtk_dp)
{
u8 ubIsrEnable = 0xF1;
u8 ubHWStatus_undefine = mhal_DPTx_GetHPDIRQStatus(mtk_dp);
u8 ubHWStatus = ubHWStatus_undefine&(~ubIsrEnable);
mtk_dp->training_info.usPHY_STS |= ubHWStatus;
DPTXMSG("HW status = 0x%x\n", ubHWStatus);
mdrv_DPTx_HPD_HandleInISR(mtk_dp);
if (ubHWStatus)
mhal_DPTx_HPDInterruptClr(mtk_dp, ubHWStatus);
if (mtk_dp->training_info.bCableStateChange
|| ubHWStatus == HPD_INT_EVNET)
queue_work(mtk_dp->dptx_wq, &mtk_dp->dptx_work);
}
void mdrv_DPTx_ISR(struct mtk_dp *mtk_dp)
{
mhal_DPTx_ISR(mtk_dp);
}
void mdrv_DPTx_InitPort(struct mtk_dp *mtk_dp)
{
mhal_DPTx_PHY_SetIdlePattern(mtk_dp, true);
mdrv_DPTx_InitVariable(mtk_dp);
mhal_DPTx_InitialSetting(mtk_dp);
mhal_DPTx_AuxSetting(mtk_dp);
mhal_DPTx_DigitalSetting(mtk_dp);
mhal_DPTx_AnalogPowerOnOff(mtk_dp, true);
mhal_DPTx_PHYSetting(mtk_dp);
mhal_DPTx_HPDDetectSetting(mtk_dp);
mhal_DPTx_DigitalSwReset(mtk_dp);
mhal_DPTx_Set_Efuse_Value(mtk_dp);
}
void mdrv_DPTx_Video_Enable(struct mtk_dp *mtk_dp, bool bEnable)
{
DPTXMSG("Output Video %s!\n", bEnable ? "enable" : "disable");
if (bEnable) {
mdrv_DPTx_SetDPTXOut(mtk_dp);
mdrv_DPTx_VideoMute(mtk_dp, false);
mhal_DPTx_Verify_Clock(mtk_dp);
} else
mdrv_DPTx_VideoMute(mtk_dp, true);
}
void mdrv_DPTx_Set_Color_Format(struct mtk_dp *mtk_dp, u8 ucColorFormat)
{
DPTXMSG("Set Color Format = 0x%x\n", ucColorFormat);
mtk_dp->info.format = ucColorFormat;
mhal_DPTx_SetColorFormat(mtk_dp, ucColorFormat);
}
void mdrv_DPTx_Set_Color_Depth(struct mtk_dp *mtk_dp, u8 ucColorDepth)
{
DPTXMSG("Set Color Depth = %d (1~4=6/8/10/12bpp)\n", ucColorDepth + 1);
mtk_dp->info.depth = ucColorDepth;
mhal_DPTx_SetColorDepth(mtk_dp, ucColorDepth);
}
void mdrv_DPTx_I2S_Audio_Enable(struct mtk_dp *mtk_dp, bool bEnable)
{
if (bEnable) {
mdrv_DPTx_AudioMute(mtk_dp, false);
DPTXMSG("I2S Audio Enable!\n");
} else {
mdrv_DPTx_AudioMute(mtk_dp, true);
DPTXMSG("I2S Audio Disable!\n");
}
}
void mdrv_DPTx_I2S_Audio_Set_MDiv(struct mtk_dp *mtk_dp, u8 ucDiv)
{
char bTable[7][5] = {"X2", "X4", "X8", "N/A", "/2", "/4", "/8"};
DPTXMSG("I2S Set Audio M Divider = %s\n", bTable[ucDiv-1]);
mhal_DPTx_Audio_M_Divider_Setting(mtk_dp, ucDiv);
}
void mdrv_DPTx_I2S_Audio_Config(struct mtk_dp *mtk_dp)
{
u8 ucChannel, ucFs, ucWordlength;
unsigned int tmp = mtk_dp->info.audio_config;
if (!mtk_dp->dp_ready) {
DPTXERR("%s, DP is not ready!\n", __func__);
return;
}
if (fakecablein) {
ucChannel = BIT(force_ch);
ucFs = BIT(force_fs);
ucWordlength = BIT(force_len);
} else {
ucChannel = (tmp >> DP_CAPABILITY_CHANNEL_SFT)
& DP_CAPABILITY_CHANNEL_MASK;
ucFs = (tmp >> DP_CAPABILITY_SAMPLERATE_SFT)
& DP_CAPABILITY_SAMPLERATE_MASK;
ucWordlength = (tmp >> DP_CAPABILITY_BITWIDTH_SFT)
& DP_CAPABILITY_BITWIDTH_MASK;
}
switch (ucChannel) {
case DP_CHANNEL_2:
ucChannel = 2;
break;
case DP_CHANNEL_8:
ucChannel = 8;
break;
default:
ucChannel = 2;
break;
}
switch (ucFs) {
case DP_SAMPLERATE_32:
ucFs = FS_32K;
break;
case DP_SAMPLERATE_44:
ucFs = FS_44K;
break;
case DP_SAMPLERATE_48:
ucFs = FS_48K;
break;
case DP_SAMPLERATE_96:
ucFs = FS_96K;
break;
case DP_SAMPLERATE_192:
ucFs = FS_192K;
break;
default:
ucFs = FS_48K;
break;
}
switch (ucWordlength) {
case DP_BITWIDTH_16:
ucWordlength = WL_16bit;
break;
case DP_BITWIDTH_20:
ucWordlength = WL_20bit;
break;
case DP_BITWIDTH_24:
ucWordlength = WL_24bit;
break;
default:
ucWordlength = WL_24bit;
break;
}
mdrv_DPTx_I2S_Audio_SDP_Channel_Setting(mtk_dp, ucChannel,
ucFs, ucWordlength);
mdrv_DPTx_I2S_Audio_Ch_Status_Set(mtk_dp, ucChannel,
ucFs, ucWordlength);
mhal_DPTx_Audio_PG_EN(mtk_dp, ucChannel, ucFs, false);
mdrv_DPTx_I2S_Audio_Set_MDiv(mtk_dp, 5);
}
void mdrv_DPTx_I2S_Audio_SDP_Channel_Setting(struct mtk_dp *mtk_dp,
u8 ucChannel, u8 ucFs, u8 ucWordlength)
{
u8 SDP_DB[32] = {0};
u8 SDP_HB[4] = {0};
SDP_HB[1] = DP_SPEC_SDPTYP_AINFO;
SDP_HB[2] = 0x1B;
SDP_HB[3] = 0x48;
SDP_DB[0x0] = 0x10 | (ucChannel-1); //L-PCM[7:4], channel-1[2:0]
SDP_DB[0x1] = ucFs << 2 | ucWordlength; // fs[4:2], len[1:0]
SDP_DB[0x2] = 0x0;
if (ucChannel == 8)
SDP_DB[0x3] = 0x13;
else
SDP_DB[0x3] = 0x00;
mhal_DPTx_Audio_SDP_Setting(mtk_dp, ucChannel);
DPTXMSG("I2S Set Audio Channel = %d\n", ucChannel);
mdrv_DPTx_SPKG_SDP(mtk_dp, true, DPTx_SDPTYP_AUI, SDP_HB, SDP_DB);
}
void mdrv_DPTx_I2S_Audio_Ch_Status_Set(struct mtk_dp *mtk_dp, u8 ucChannel,
u8 ucFs, u8 ucWordlength)
{
mhal_DPTx_Audio_Ch_Status_Set(mtk_dp, ucChannel, ucFs, ucWordlength);
}
void mdrv_DPTx_DSC_SetParam(struct mtk_dp *mtk_dp, u8 slice_num, u16 chunk_num)
{
u8 r8, r16;
u8 q16[16] = {0x6, 0x01, 0x01, 0x03, 0x03, 0x05, 0x05, 0x07,
0x07, 0x00, 0x00, 0x02, 0x02, 0x04, 0x04, 0x06};
u8 q8[8] = {0x6, 0x01, 0x03, 0x05, 0x07, 0x00, 0x02, 0x04};
u8 hde_last_num, hde_num_even;
DPTXMSG("lane count = %d\n", mtk_dp->training_info.ubLinkLaneCount);
if (mtk_dp->training_info.ubLinkLaneCount == DP_LANECOUNT_2) {
if (chunk_num % 2)
//r16 = (int) ceil((chunk_num + 1 + 2) *
//slice_num / 3) % 16;
r16 = ((chunk_num + 1 + 2) * slice_num / 3) % 16;
else
//r16 = (int) ceil((chunk_num + 2) *
//slice_num / 3) % 16;
r16 = ((chunk_num + 2) * slice_num / 3) % 16;
DPTXMSG("r16 = %d\n", r16);
//r16 = 1; //test for 1080p
hde_last_num = (q16[r16] & (BIT1|BIT2)) >> 1;
hde_num_even = q16[r16] & BIT0;
} else {
//r8 = (int) ceil((chunk_num + 1) * slice_num / 3) % 8;
r8 = ((chunk_num + 1) * slice_num / 3) % 8;
DPTXMSG("r8 = %d\n", r8);
//r8 = 1; //test for 1080p
hde_last_num = (q8[r8] & (BIT1|BIT2)) >> 1;
hde_num_even = q8[r8] & BIT0;
}
mhal_DPTx_SetChunkSize(mtk_dp, slice_num-1, chunk_num, chunk_num%12,
mtk_dp->training_info.ubLinkLaneCount,
hde_last_num, hde_num_even);
}
void mdrv_DPTx_DSC_SetPPS(struct mtk_dp *mtk_dp, u8 *PPS, bool enable)
{
u8 HB[4] = {0x0, 0x10, 0x7F, 0x0};
mdrv_DPTx_SPKG_SDP(mtk_dp, enable, DPTx_SDPTYP_PPS0, HB, PPS + 0);
mdrv_DPTx_SPKG_SDP(mtk_dp, enable, DPTx_SDPTYP_PPS1, HB, PPS + 32);
mdrv_DPTx_SPKG_SDP(mtk_dp, enable, DPTx_SDPTYP_PPS2, HB, PPS + 64);
mdrv_DPTx_SPKG_SDP(mtk_dp, enable, DPTx_SDPTYP_PPS3, HB, PPS + 96);
}
void mdrv_DPTx_DSC_Support(struct mtk_dp *mtk_dp)
{
#if DPTX_SUPPORT_DSC
u8 Data[3];
drm_dp_dpcd_read(&mtk_dp->aux, 0x60, Data, 1);
if (Data[0] & BIT0)
mtk_dp->has_dsc = true;
else
mtk_dp->has_dsc = false;
DPTXMSG("Sink has_dsc = %d\n", mtk_dp->has_dsc);
#endif
}
void mdrv_DPTx_FEC_Ready(struct mtk_dp *mtk_dp, u8 err_cnt_sel)
{
u8 i, Data[3];
drm_dp_dpcd_read(&mtk_dp->aux, 0x90, Data, 0x1);
/* FEC error count select 120[3:1]: *
* 000b: FEC_ERROR_COUNT_DIS *
* 001b: UNCORRECTED_BLOCK_ERROR_COUNT *
* 010b: CORRECTED_BLOCK_ERROR_COUNT *
* 011b: BIT_ERROR_COUNT *
* 100b: PARITY_BLOCK_ERROR_COUNT *
* 101b: PARITY_BIT_ERROR_COUNT *
*/
if (Data[0] & BIT0) {
mtk_dp->has_fec = true;
Data[0] = (err_cnt_sel << 1) | 0x1; //FEC Ready
drm_dp_dpcd_write(&mtk_dp->aux, 0x120, Data, 0x1);
drm_dp_dpcd_read(&mtk_dp->aux, 0x280, Data, 0x3);
for (i = 0; i < 3; i++)
DPTXDBG("FEC status & error Count: 0x%x\n", Data[i]);
}
DPTXMSG("SINK has fec (%d)\n", mtk_dp->has_fec);
}
DWORD getTimeDiff(DWORD dwPreTime)
{
DWORD dwPostTime = getSystemTime();
if (dwPreTime > dwPostTime)
return ((1000000 - dwPreTime) + dwPostTime);
else
return (dwPostTime - dwPreTime);
}
DWORD getSystemTime(void)
{
DWORD tms = (DWORD)((sched_clock() / 1000000) % 1000000);
return tms;
}
static void mdrv_DPTx_main_handle(struct work_struct *data)
{
struct mtk_dp *mtk_dp = container_of(data, struct mtk_dp, dptx_work);
unsigned long long starttime = sched_clock();
do {
if (abs(sched_clock() - starttime) > 5000000000ULL) {
DPTXERR("Handle time over 5s\n");
break;
}
if (mdrv_DPTx_HPD_HandleInThread(mtk_dp) != DPTX_NOERR)
break;
if (mdrv_DPTx_Training_Handler(mtk_dp) != DPTX_NOERR)
break;
if (mdrv_DPTx_Handle(mtk_dp) != DPTX_NOERR)
break;
} while (!mdrv_DPTx_done(mtk_dp));
}
u8 PPS_4k60[128] = {
0x12, 0x00, 0x00, 0x8d, 0x30, 0x80, 0x08, 0x70, 0x0f, 0x00, 0x00, 0x08,
0x07, 0x80, 0x07, 0x80, 0x02, 0x00, 0x04, 0xc0, 0x00, 0x20, 0x01, 0x1e,
0x00, 0x1a, 0x00, 0x0c, 0x0d, 0xb7, 0x03, 0x94, 0x18, 0x00, 0x10, 0xf0,
0x03, 0x0c, 0x20, 0x00, 0x06, 0x0b, 0x0b, 0x33, 0x0e, 0x1c, 0x2a, 0x38,
0x46, 0x54, 0x62, 0x69, 0x70, 0x77, 0x79, 0x7b, 0x7d, 0x7e, 0x01, 0x02,
0x01, 0x00, 0x09, 0x40, 0x09, 0xbe, 0x19, 0xfc, 0x19, 0xfa, 0x19, 0xf8,
0x1a, 0x38, 0x1a, 0x78, 0x22, 0xb6, 0x2a, 0xb6, 0x2a, 0xf6, 0x2a, 0xf4,
0x43, 0x34, 0x63, 0x74, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
void mtk_dp_video_config(struct mtk_dp *mtk_dp)
{
struct DPTX_TIMING_PARAMETER *DPTX_TBL = &mtk_dp->info.DPTX_OUTBL;
u32 mvid = 0;
bool overwrite = false;
if (!mtk_dp->dp_ready) {
DPTXERR("%s, DP is not ready!\n", __func__);
return;
}
if (mtk_dp->info.resolution >= SINK_MAX) {
DPTXERR("DPTX doesn't support this resolution(%d)!\n",
mtk_dp->info.resolution);
return;
}
if (fakecablein) {
if (mtk_dp->info.resolution == SINK_1280_720) {
// patch for LLCTS 4.4.4.5
switch (mtk_dp->training_info.ubLinkRate) {
case DP_LINKRATE_RBR:
mvid = 0x3AAB;
break;
case DP_LINKRATE_HBR:
mvid = 0x2333;
break;
case DP_LINKRATE_HBR2:
mvid = 0x1199;
break;
case DP_LINKRATE_HBR3:
mvid = 0xBBB;
break;
}
overwrite = true;
}
mtk_dp->info.depth = fakebpc;
}
switch (mtk_dp->info.resolution) {
case SINK_7680_4320:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 8040; DPTX_TBL->Hbp = 240; DPTX_TBL->Hsw = 96;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 24; DPTX_TBL->Hde = 7680;
DPTX_TBL->Vtt = 4381; DPTX_TBL->Vbp = 6; DPTX_TBL->Vsw = 8;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 47; DPTX_TBL->Vde = 4320;
break;
case SINK_3840_2160:
DPTX_TBL->FrameRate = 60;
mtk_dp->dsc_enable = true;
DPTX_TBL->Htt = 4400; DPTX_TBL->Hbp = 296; DPTX_TBL->Hsw = 88;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 176; DPTX_TBL->Hde = 3840;
DPTX_TBL->Vtt = 2250; DPTX_TBL->Vbp = 72; DPTX_TBL->Vsw = 10;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 8; DPTX_TBL->Vde = 2160;
break;
case SINK_3840_2160_30:
DPTX_TBL->FrameRate = 30;
DPTX_TBL->Htt = 4400; DPTX_TBL->Hbp = 296; DPTX_TBL->Hsw = 88;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 176; DPTX_TBL->Hde = 3840;
DPTX_TBL->Vtt = 2250; DPTX_TBL->Vbp = 72; DPTX_TBL->Vsw = 10;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 8; DPTX_TBL->Vde = 2160;
break;
case SINK_2560_1600:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 2720; DPTX_TBL->Hbp = 80; DPTX_TBL->Hsw = 32;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 48; DPTX_TBL->Hde = 2560;
DPTX_TBL->Vtt = 1646; DPTX_TBL->Vbp = 3; DPTX_TBL->Vsw = 6;
DPTX_TBL->bVsp = 1; DPTX_TBL->Vfp = 37; DPTX_TBL->Vde = 1600;
break;
case SINK_1920_1440:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 2600; DPTX_TBL->Hbp = 344; DPTX_TBL->Hsw = 208;
DPTX_TBL->bHsp = 1; DPTX_TBL->Hfp = 128; DPTX_TBL->Hde = 1920;
DPTX_TBL->Vtt = 1500; DPTX_TBL->Vbp = 56; DPTX_TBL->Vsw = 3;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 1; DPTX_TBL->Vde = 1440;
break;
case SINK_1920_1200:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 2080; DPTX_TBL->Hbp = 80; DPTX_TBL->Hsw = 32;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 48; DPTX_TBL->Hde = 1920;
DPTX_TBL->Vtt = 1235; DPTX_TBL->Vbp = 26; DPTX_TBL->Vsw = 6;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 3; DPTX_TBL->Vde = 1200;
break;
case SINK_1920_1080:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 2200; DPTX_TBL->Hbp = 148; DPTX_TBL->Hsw = 44;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 88; DPTX_TBL->Hde = 1920;
DPTX_TBL->Vtt = 1125; DPTX_TBL->Vbp = 36; DPTX_TBL->Vsw = 5;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 4; DPTX_TBL->Vde = 1080;
break;
case SINK_1080_2460:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 1172; DPTX_TBL->Hbp = 30; DPTX_TBL->Hsw = 32;
DPTX_TBL->bHsp = 1; DPTX_TBL->Hfp = 30; DPTX_TBL->Hde = 1080;
DPTX_TBL->Vtt = 2476; DPTX_TBL->Vbp = 5; DPTX_TBL->Vsw = 2;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 9; DPTX_TBL->Vde = 2460;
break;
case SINK_1280_1024:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 1560; DPTX_TBL->Hbp = 148; DPTX_TBL->Hsw = 44;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 88; DPTX_TBL->Hde = 1280;
DPTX_TBL->Vtt = 1069; DPTX_TBL->Vbp = 36; DPTX_TBL->Vsw = 5;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 4; DPTX_TBL->Vde = 1024;
break;
case SINK_1280_960:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 1800; DPTX_TBL->Hbp = 312; DPTX_TBL->Hsw = 112;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 96; DPTX_TBL->Hde = 1280;
DPTX_TBL->Vtt = 1000; DPTX_TBL->Vbp = 36; DPTX_TBL->Vsw = 3;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 1; DPTX_TBL->Vde = 960;
break;
case SINK_1280_720:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 1650; DPTX_TBL->Hbp = 220; DPTX_TBL->Hsw = 40;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 110; DPTX_TBL->Hde = 1280;
DPTX_TBL->Vtt = 750; DPTX_TBL->Vbp = 20; DPTX_TBL->Vsw = 5;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 5; DPTX_TBL->Vde = 720;
break;
case SINK_800_600:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 1056; DPTX_TBL->Hbp = 88; DPTX_TBL->Hsw = 128;
DPTX_TBL->bHsp = 0; DPTX_TBL->Hfp = 40; DPTX_TBL->Hde = 800;
DPTX_TBL->Vtt = 628; DPTX_TBL->Vbp = 23; DPTX_TBL->Vsw = 4;
DPTX_TBL->bVsp = 0; DPTX_TBL->Vfp = 16; DPTX_TBL->Vde = 600;
break;
case SINK_640_480:
default:
DPTX_TBL->FrameRate = 60;
DPTX_TBL->Htt = 800; DPTX_TBL->Hbp = 48; DPTX_TBL->Hsw = 96;
DPTX_TBL->bHsp = 1; DPTX_TBL->Hfp = 16; DPTX_TBL->Hde = 640;
DPTX_TBL->Vtt = 525; DPTX_TBL->Vbp = 33; DPTX_TBL->Vsw = 2;
DPTX_TBL->bVsp = 1; DPTX_TBL->Vfp = 10; DPTX_TBL->Vde = 480;
break;
}
if (mtk_dp->info.resolution == SINK_3840_2160) {
// patch for 4k@60 with DSC 3 times compress
switch (mtk_dp->training_info.ubLinkRate) {
case DP_LINKRATE_HBR3:
mvid = 0x5DDE;
break;
case DP_LINKRATE_HBR2:
mvid = 0x8CCD;
break;
}
overwrite = true;
}
mhal_DPTx_OverWrite_MN(mtk_dp, overwrite, mvid, 0x8000);
if (mtk_dp->has_dsc) {
uint8_t Data[1];
Data[0] = (u8) mtk_dp->dsc_enable;
drm_dp_dpcd_write(&mtk_dp->aux, 0x160, Data, 0x1);
}
//interlace not support
DPTX_TBL->Video_ip_mode = DPTX_VIDEO_PROGRESSIVE;
mhal_DPTx_SetMSA(mtk_dp);
mdrv_DPTx_Set_MISC(mtk_dp);
if (mtk_dp->info.bPatternGen)
mdrv_DPTx_PatternGenTypeSel(mtk_dp,
DPTX_PG_HORIZONTAL_COLOR_BAR,
DPTX_PG_PURECOLOR_BLUE,
0xFFF,
DPTX_PG_LOCATION_ALL);
if (!mtk_dp->dsc_enable) {
mdrv_DPTx_Set_Color_Depth(mtk_dp, mtk_dp->info.depth);
mdrv_DPTx_Set_Color_Format(mtk_dp, mtk_dp->info.format);
} else {
mtk_dp_dsc_pps_send(PPS_4k60);
mhal_DPTx_EnableDSC(mtk_dp, true);
}
}
void mtk_dp_fec_enable(unsigned int status)
{
if (status)
mhal_DPTx_EnableFEC(g_mtk_dp, true);
else
mhal_DPTx_EnableFEC(g_mtk_dp, false);
}
void mtk_dp_power_save(unsigned int status)
{
u8 data;
g_mtk_dp->training_info.bCableStateChange = true;
if (status == 1) {
fakecablein = false;
data = 0x1;
drm_dp_dpcd_write(&g_mtk_dp->aux, DPCD_00600, &data, 1);
g_mtk_dp->training_info.bCablePlugIn = true;
mhal_DPTx_Fake_Plugin(g_mtk_dp, true);
} else if (status == 0) {
fakecablein = true;
data = 0x2;
drm_dp_dpcd_write(&g_mtk_dp->aux, DPCD_00600, &data, 1);
g_mtk_dp->training_info.bCablePlugIn = false;
mhal_DPTx_Fake_Plugin(g_mtk_dp, false);
}
queue_work(g_mtk_dp->dptx_wq, &g_mtk_dp->dptx_work);
}
atomic_t dp_comm_event = ATOMIC_INIT(0);
void mtk_dp_video_trigger(int res)
{
DPTXFUNC("0x%x\n", res);
atomic_set(&dp_comm_event, res);
wake_up_interruptible(&g_mtk_dp->control_wq);
}
static int mtk_dp_control_kthread(void *data)
{
struct mtk_dp *mtk_dp = data;
unsigned int videomute = 0;
unsigned int res = 0;
init_waitqueue_head(&mtk_dp->control_wq);
while (!kthread_should_stop()) {
wait_event_interruptible(mtk_dp->control_wq,
atomic_read(&dp_comm_event));
videomute = atomic_read(&dp_comm_event) >> 16;
res = atomic_read(&dp_comm_event) & 0xff;
atomic_set(&dp_comm_event, 0);
if (videomute & video_unmute) {
if (!fakecablein && mtk_dp->state > DPTXSTATE_PREPARE)
mtk_dp->state = DPTXSTATE_PREPARE;
mtk_dp->video_enable = true;
mtk_dp->info.resolution = res;
queue_work(mtk_dp->dptx_wq, &mtk_dp->dptx_work);
queue_work(mtk_dp->dptx_wq, &mtk_dp->hdcp_work);
} else if (videomute & video_mute) {
mtk_dp->video_enable = false;
if (!mtk_dp->dp_ready)
continue;
mdrv_DPTx_Video_Enable(mtk_dp, false);
}
}
return 0;
}
int mtk_drm_dp_get_dev_info(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct mtk_dispif_info *info = data;
struct mtk_dp *mtk_dp = g_mtk_dp;
info->display_id = mtk_dp->id;
info->displayFormat = mtk_dp->info.format;
info->displayHeight = mtk_dp->info.DPTX_OUTBL.Vde;
info->displayWidth = mtk_dp->info.DPTX_OUTBL.Hde;
info->displayMode = DISPIF_MODE_VIDEO;
info->displayType = DISPLAYPORT;
info->isConnected = (mtk_dp->state == DPTXSTATE_NORMAL) ? true : false;
info->isHwVsyncAvailable = true;
info->vsyncFPS = g_mtk_dp->info.DPTX_OUTBL.FrameRate * 100;
DPTXMSG("%s, %d, fake %d\n", __func__, __LINE__, fakecablein);
return 0;
}
int mtk_drm_dp_audio_enable(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct mtk_dp *mtk_dp = g_mtk_dp;
mtk_dp->audio_enable = *(bool *)data;
DPTXMSG("audio_enable = %d\n", mtk_dp->audio_enable);
if (!mtk_dp->dp_ready) {
DPTXERR("%s, DP is not ready!\n", __func__);
return 0;
}
mdrv_DPTx_I2S_Audio_Enable(mtk_dp, mtk_dp->audio_enable);
return 0;
}
int mtk_drm_dp_audio_config(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct mtk_dp *mtk_dp = g_mtk_dp;
mtk_dp->info.audio_config = *(unsigned int *)data;
DPTXMSG("audio_config = 0x%x\n", mtk_dp->info.audio_config);
if (!mtk_dp->dp_ready) {
DPTXERR("%s, DP is not ready!\n", __func__);
return 0;
}
mdrv_DPTx_I2S_Audio_Config(mtk_dp);
return 0;
}
int mtk_drm_dp_get_cap(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
unsigned int ch[7] = {2, 3, 4, 5, 6, 7, 8};
unsigned int fs[5] = {32, 44, 48, 96, 192};
unsigned int len[3] = {16, 20, 24};
unsigned int *dp_cap = data;
if (fakecablein) {
DPTXMSG("force audio format %dCH, %dkHz, %dbit\n",
ch[force_ch], fs[force_fs], len[force_len]);
*dp_cap = ((BIT(force_ch) << DP_CAPABILITY_CHANNEL_SFT)
| (BIT(force_fs) << DP_CAPABILITY_SAMPLERATE_SFT)
| (BIT(force_len) << DP_CAPABILITY_BITWIDTH_SFT));
return 0;
}
if (g_mtk_dp->dp_ready)
*dp_cap = g_mtk_dp->info.audio_caps;
if (*dp_cap == 0)
*dp_cap = ((DP_CHANNEL_2 << DP_CAPABILITY_CHANNEL_SFT)
| (DP_SAMPLERATE_192 << DP_CAPABILITY_SAMPLERATE_SFT)
| (DP_BITWIDTH_24 << DP_CAPABILITY_BITWIDTH_SFT));
return 0;
}
int mtk_drm_dp_get_info(struct drm_device *dev,
struct drm_mtk_session_info *info)
{
DPTXDBG("%s, %d\n", __func__, __LINE__);
info->physicalWidthUm = 900;
info->physicalHeightUm = 1000;
info->vsyncFPS = g_mtk_dp->info.DPTX_OUTBL.FrameRate * 100;
return 0;
}
void mtk_dp_get_dsc_capability(u8 *dsc_cap)
{
if (!g_mtk_dp->dp_ready) {
DPTXMSG("%s, DP is not ready!\n", __func__);
return;
}
drm_dp_dpcd_read(&g_mtk_dp->aux, DPCD_00060, dsc_cap, 16);
}
void mtk_dp_dsc_pps_send(u8 *PPS_128)
{
u8 dsc_cap[16];
u16 chunk_size = PPS_128[14] << 8 | PPS_128[15];
u16 pic_width = PPS_128[8] << 8 | PPS_128[9];
u16 slice_width = PPS_128[12] << 8 | PPS_128[13];
if (!g_mtk_dp->dp_ready) {
DPTXMSG("%s, DP is not ready!\n", __func__);
return;
}
mtk_dp_get_dsc_capability(dsc_cap);
PPS_128[0x0]
= ((dsc_cap[0x1] & 0xf) << 4) | ((dsc_cap[0x1] & 0xf0) >> 4);
if (dsc_cap[0x6] & BIT(0))
PPS_128[0x4] |= (0x1 << 5);
else
PPS_128[0x4] &= ~(0x1 << 5);
mdrv_DPTx_DSC_SetPPS(g_mtk_dp, PPS_128, true);
mdrv_DPTx_DSC_SetParam(g_mtk_dp, pic_width/slice_width, chunk_size);
}
struct edid *mtk_dp_handle_edid(struct mtk_dp *mtk_dp)
{
struct drm_connector *connector = &mtk_dp->conn;
/* use cached edid if we have one */
if (mtk_dp->edid) {
/* invalid edid */
if (IS_ERR(mtk_dp->edid))
return NULL;
DPTXMSG("%s, duplicate edid from mtk_dp->edid!\n");
return drm_edid_duplicate(mtk_dp->edid);
}
DPTXMSG("Get edid from RX!\n");
return drm_get_edid(connector, &mtk_dp->aux.ddc);
}
irqreturn_t mtk_dp_hpd_event(int hpd, void *dev)
{
struct mtk_dp *mtk_dp = dev;
mdrv_DPTx_ISR(mtk_dp);
return IRQ_HANDLED;
}
void mtk_dp_phy_param_init(struct mtk_dp *mtk_dp, uint32_t *buffer, int size)
{
int i = 0;
uint8_t mask = 0x3F;
if (buffer == NULL || size != DPTX_PHY_REG_COUNT) {
DPTXERR("invalid param\n");
return;
}
for (i = 0; i < DPTX_PHY_LEVEL_COUNT; i++) {
mtk_dp->phy_params[i].C0 = (buffer[i/4] >> (8*(i%4))) & mask;
mtk_dp->phy_params[i].CP1
= (buffer[i/4 + 3] >> (8*(i%4))) & mask;
}
}
static int mtk_dp_dt_parse_pdata(struct mtk_dp *mtk_dp,
struct platform_device *pdev)
{
struct resource regs;
struct device *dev = &pdev->dev;
int ret = 0;
uint32_t phy_params_int[DPTX_PHY_REG_COUNT] = {
0x20181410, 0x20241e18, 0x00003028,
0x10080400, 0x000c0600, 0x00000008
};
uint32_t phy_params_dts[DPTX_PHY_REG_COUNT];
if (of_address_to_resource(dev->of_node, 0, &regs) != 0)
dev_err(dev, "Missing reg in %s node\n",
dev->of_node->full_name);
mtk_dp->regs = of_iomap(dev->of_node, 0);
mtk_dp->dp_tx_clk = devm_clk_get(dev, "dp_tx_faxi");
if (IS_ERR(mtk_dp->dp_tx_clk)) {
ret = PTR_ERR(mtk_dp->dp_tx_clk);
dev_err(dev, "Failed to get dptx clock: %d\n", ret);
goto error;
}
ret = of_property_read_u32_array(dev->of_node, "dptx,phy_params",
phy_params_dts, ARRAY_SIZE(phy_params_dts));
if (ret) {
DPTXMSG("get phy_params fail, use default val, ret %d\n", ret);
mtk_dp_phy_param_init(mtk_dp,
phy_params_int, ARRAY_SIZE(phy_params_int));
} else
mtk_dp_phy_param_init(mtk_dp,
phy_params_dts, ARRAY_SIZE(phy_params_dts));
DPTXMSG("reg and clock get success!\n");
error:
return 0;
}
static inline struct mtk_dp *mtk_dp_ctx_from_conn(struct drm_connector *c)
{
return container_of(c, struct mtk_dp, conn);
}
static enum drm_connector_status mtk_dp_conn_detect(struct drm_connector *conn,
bool force)
{
struct mtk_dp *mtk_dp = mtk_dp_ctx_from_conn(conn);
DPTXFUNC("fakecablein %d\n", fakecablein);
if (fakecablein)
return connector_status_connected;
return ((mtk_dp->dp_ready) ? connector_status_connected :
connector_status_disconnected);
}
static void mtk_dp_conn_destroy(struct drm_connector *conn)
{
drm_connector_cleanup(conn);
}
static const struct drm_connector_funcs mtk_dp_connector_funcs = {
.detect = mtk_dp_conn_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = mtk_dp_conn_destroy,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int mtk_dp_conn_get_modes(struct drm_connector *conn)
{
struct mtk_dp *mtk_dp = mtk_dp_ctx_from_conn(conn);
int ret;
struct drm_display_mode *mode;
struct drm_device *dev = conn->dev;
DPTXFUNC("fakecablein %d, res %d\n", fakecablein, fakeres);
if (fakecablein) {
conn->display_info.width_mm = 900;
conn->display_info.height_mm = 1100;
/* driver figures it out in this case */
conn->display_info.bpc = 8;
conn->display_info.color_formats = DRM_COLOR_FORMAT_RGB444;
conn->display_info.cea_rev = 0;
conn->display_info.max_tmds_clock = 0;
conn->display_info.dvi_dual = false;
if (fakeres == SINK_3840_2160)
mode = drm_mode_duplicate(dev, &dptx_est_modes[0]);
else if (fakeres == SINK_3840_2160_30)
mode = drm_mode_duplicate(dev, &dptx_est_modes[1]);
else if (fakeres == SINK_1920_1080)
mode = drm_mode_duplicate(dev, &dptx_est_modes[2]);
else if (fakeres == SINK_1280_720)
mode = drm_mode_duplicate(dev, &dptx_est_modes[3]);
else
mode = drm_mode_duplicate(dev, &dptx_est_modes[4]);
drm_mode_set_name(mode);
mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
drm_mode_probed_add(conn, mode);
return 1;
}
if (mtk_dp->edid) {
drm_mode_connector_update_edid_property(&mtk_dp->conn,
mtk_dp->edid);
ret = drm_add_edid_modes(&mtk_dp->conn, mtk_dp->edid);
drm_edid_to_eld(&mtk_dp->conn, mtk_dp->edid);
DPTXMSG("%s modes = %d\n", __func__, ret);
if (ret)
return ret;
} else {
drm_mode_connector_update_edid_property(&mtk_dp->conn, NULL);
DPTXMSG("%s NULL EDID\n", __func__);
}
return 0;
}
struct drm_display_limit_mode {
int hdisplay;
int vdisplay;
int vrefresh;
int clock;
int valid;
};
static struct drm_display_limit_mode dp_plat_limit[] = {
{3840, 2160, 60, 594000, 1},
{3840, 2160, 30, 297000, 1},
{1080, 2460, 60, 174110, 1},
{1920, 1200, 60, 152128, 1},
{1920, 1080, 60, 148500, 1},
{1280, 720, 60, 74250, 1},
{ 640, 480, 60, 25200, 1},
};
void mtk_dp_enable_4k60(int enable)
{
#if DPTX_SUPPORT_DSC
if (enable > 0)
dp_plat_limit[0].valid = 1;
else
dp_plat_limit[0].valid = 0;
#else
dp_plat_limit[0].valid = 0;
#endif
DPTXFUNC("enable = %d\n", dp_plat_limit[0].valid);
}
static enum drm_mode_status mtk_dp_conn_mode_valid(struct drm_connector *conn,
struct drm_display_mode *mode)
{
int plat_limit_array = ARRAY_SIZE(dp_plat_limit);
int i;
struct mtk_dp *mtk_dp = mtk_dp_ctx_from_conn(conn);
int bandwidth = mtk_dp->training_info.ubLinkLaneCount *
mtk_dp->training_info.ubLinkRate * 27000 * 8 / 24;
if (mode->hdisplay == 3840 && mode->vdisplay == 2160 &&
mode->vrefresh == 60 && mtk_dp->has_dsc)
bandwidth = bandwidth * 594 * 10 / 2025;
if (fakecablein == true)
bandwidth = dp_plat_limit[0].clock;
DPTXDBG("Hde:%d,Vde:%d,fps:%d,clk:%d,bandwidth:%d,4k60:%d\n",
mode->hdisplay, mode->vdisplay, mode->vrefresh, mode->clock,
bandwidth, dp_plat_limit[0].valid);
if (mode->clock > (dp_plat_limit[0].clock + 50000))
return MODE_CLOCK_HIGH;
if (mode->clock < (dp_plat_limit[plat_limit_array-1].clock - 5000))
return MODE_CLOCK_LOW;
for (i = 0; i < plat_limit_array; i++) {
if (mode->hdisplay == 640 && mode->vdisplay == 480)
break;
if (mode->vrefresh == 0 && mode->htotal != 0
&& mode->vtotal != 0)
mode->vrefresh
= mode->clock / mode->htotal / mode->vtotal;
if (mode->clock == 0)
mode->clock
= mode->htotal * mode->vtotal * mode->vrefresh;
if ((abs(dp_plat_limit[i].vrefresh - mode->vrefresh) <= 1)
&& (mode->vdisplay == dp_plat_limit[i].vdisplay)
&& (mode->hdisplay == dp_plat_limit[i].hdisplay)
&& (dp_plat_limit[i].clock < bandwidth)) {
if (dp_plat_limit[i].valid)
break;
return MODE_BAD_VSCAN;
}
}
if (i >= plat_limit_array)
return MODE_BAD_VSCAN;
DPTXDBG("%s xres=%d, yres=%d, refresh=%d, clock=%d\n",
__func__, mode->hdisplay, mode->vdisplay,
mode->vrefresh,
mode->clock);
return drm_mode_validate_size(mode, 0x1fff, 0x1fff);
}
static const struct drm_connector_helper_funcs mtk_dp_connector_helper_funcs = {
.get_modes = mtk_dp_conn_get_modes,
.mode_valid = mtk_dp_conn_mode_valid,
};
static void mtk_dp_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs mtk_dp_enc_funcs = {
.destroy = mtk_dp_encoder_destroy,
};
static ssize_t mtk_dp_aux_transfer(struct drm_dp_aux *mtk_aux,
struct drm_dp_aux_msg *msg)
{
u8 ubCmd;
void *pData;
size_t ubLength, ret = 0;
u32 usADDR;
bool mot, ack = false;
struct mtk_dp *mtk_dp;
mtk_dp = container_of(mtk_aux, struct mtk_dp, aux);
mot = (msg->request & DP_AUX_I2C_MOT) ? true : false;
ubCmd = msg->request;
usADDR = msg->address;
ubLength = msg->size;
pData = msg->buffer;
switch (ubCmd) {
case DP_AUX_I2C_MOT:
case DP_AUX_I2C_WRITE:
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE | DP_AUX_I2C_MOT:
ubCmd &= ~DP_AUX_I2C_WRITE_STATUS_UPDATE;
ack = mdrv_DPTx_AuxWrite_DPCD(mtk_dp, ubCmd,
usADDR, ubLength, pData);
break;
case DP_AUX_I2C_READ:
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ | DP_AUX_I2C_MOT:
ack = mdrv_DPTx_AuxRead_DPCD(mtk_dp, ubCmd,
usADDR, ubLength, pData);
break;
default:
DPTXERR("invalid aux cmd = %d\n", ubCmd);
ret = -EINVAL;
break;
}
if (ack) {
msg->reply = DP_AUX_NATIVE_REPLY_ACK | DP_AUX_I2C_REPLY_ACK;
ret = ubLength;
} else {
msg->reply = DP_AUX_NATIVE_REPLY_NACK | DP_AUX_I2C_REPLY_NACK;
ret = -EAGAIN;
}
return ret;
}
static void mtk_dp_aux_init(struct mtk_dp *mtk_dp)
{
drm_dp_aux_init(&mtk_dp->aux);
DPTXMSG("aux hw_mutex = 0x%x\n", &mtk_dp->aux.hw_mutex);
mtk_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-MTK");
mtk_dp->aux.transfer = mtk_dp_aux_transfer;
}
void mtk_dp_test(unsigned int status)
{
DPTXMSG("g_mtk_dp = 0x%x\n", g_mtk_dp);
mhal_DPTx_SWInterruptEnable(g_mtk_dp, true);
mhal_DPTx_SWInterruptSet(g_mtk_dp, status);
}
void mtk_dp_hdcp_enable(bool enable)
{
g_hdcp_on = enable;
}
void mtk_dp_force_hdcp1x(bool enable)
{
g_mtk_dp->info.bForceHDCP1x = enable;
}
static char *mtk_hdcp_version(void)
{
#ifdef DPTX_HDCP_ENABLE
if (g_mtk_dp->info.hdcp2_info.bEnable) {
if (g_mtk_dp->info.hdcp2_info.bRepeater)
return "DP_HDCP2X_REPEATER";
else
return "DP_HDCP2X";
} else if (g_mtk_dp->info.hdcp1x_info.bEnable) {
if (g_mtk_dp->info.hdcp1x_info.bRepeater)
return "DP_HDCP1X_REAPEATER";
else
return "DP_HDCP1X";
}
#endif
return "DP_HDCP_NONE";
}
static char *mtk_hdcp_status(void)
{
#ifdef DPTX_HDCP_ENABLE
if (g_mtk_dp->info.bAuthStatus == AUTH_PASS)
return "DP_AUTH_STATUS_PASS";
else if (g_mtk_dp->info.bAuthStatus == AUTH_FAIL)
return "DP_AUTH_STATUS_FAIL";
else if (g_mtk_dp->info.bAuthStatus != AUTH_ZERO)
return "DP_AUTH_STATUS_DOING";
#endif
return "DP_AUTH_STATUS_NONE";
}
int mtk_dp_hdcp_getInfo(char *buffer, int size)
{
int ret = 0;
if (!g_hdcp_on)
ret = snprintf(buffer, size,
"HDCP Function is disable!\n");
else if (g_mtk_dp->info.bForceHDCP1x)
ret = snprintf(buffer, size,
"Force HDCP1x is enable, not support HDCP2x!\n"
"HDCP INFO:%s, %s\n",
mtk_hdcp_version(), mtk_hdcp_status());
else
ret = snprintf(buffer, size, "HDCP HINFO:%s, %s\n",
mtk_hdcp_version(), mtk_hdcp_status());
return ret;
}
int mtk_dp_phy_getInfo(char *buffer, int size)
{
int len = 0;
int i = 0;
char *phy_names[10] = {
"L0P0", "L0P1", "L0P2", "L0P3", "L1P0",
"L1P1", "L1P2", "L2P0", "L2P1", "L3P0"};
len = snprintf(buffer, size, "PHY INFO:\n");
for (i = 0; i < DPTX_PHY_LEVEL_COUNT; i++)
len += snprintf(buffer + len, size - len,
"#%d(%s):C0 = %#04X(%2d), CP1 = %#04X(%2d)\n", i,
phy_names[i],
g_mtk_dp->phy_params[i].C0, g_mtk_dp->phy_params[i].C0,
g_mtk_dp->phy_params[i].CP1,
g_mtk_dp->phy_params[i].CP1);
return len;
}
void mtk_dp_set_adjust_phy(uint8_t index, uint8_t c0, uint8_t cp1)
{
if (index >= 10) {
DPTXERR("index(%d) must < 10!", index);
return;
}
g_mtk_dp->phy_params[index].C0 = c0;
g_mtk_dp->phy_params[index].CP1 = cp1;
}
void mtk_dp_hotplug_uevent(unsigned int event)
{
if (g_mtk_dp->info.bPatternGen)
return;
DPTXFUNC("fake:%d, event:%d\n", fakecablein, event);
notify_uevent_user(&dptx_notify_data,
event > 0 ? DPTX_STATE_ACTIVE : DPTX_STATE_NO_DEVICE);
if (g_mtk_dp->info.audio_caps != 0)
extcon_set_state_sync(dptx_extcon, EXTCON_DISP_HDMI,
event > 0 ? true : false);
}
void mtk_dp_force_audio(unsigned int ch, unsigned int fs, unsigned int len)
{
if (ch != 0xff)
force_ch = ch;
if (fs != 0xff)
force_fs = fs;
if (len != 0xff)
force_len = len;
fakecablein = true;
}
void mtk_dp_force_res(unsigned int res, unsigned int bpc)
{
DPTXMSG("status:0x%x->0x%x; bpc:0x%x->0x%x\n",
fakeres, res, fakebpc, bpc);
fakeres = res;
fakebpc = bpc;
}
void mtk_dp_fake_plugin(unsigned int status, unsigned int bpc)
{
if (g_mtk_dp->bPowerOn) {
mdrv_DPTx_VideoMute(g_mtk_dp, true);
mdrv_DPTx_AudioMute(g_mtk_dp, true);
}
fakeres = FAKE_DEFAULT_RES;
fakebpc = DP_COLOR_DEPTH_8BIT;
mtk_dp_hotplug_uevent(0x0);
kfree(g_mtk_dp->edid);
g_mtk_dp->edid = NULL;
if (fakeres == SINK_3840_2160)
mtk_dp_enable_4k60(true);
else
mtk_dp_enable_4k60(false);
msleep(100);
mtk_dp_force_res(status, bpc);
if (status < FAKE_DEFAULT_RES)
fakecablein = true;
else
fakecablein = false;
g_mtk_dp->state = DPTXSTATE_INITIAL;
mtk_dp_hotplug_uevent(1);
}
void mtk_dp_HPDInterruptSet(int bstatus)
{
DDPFUNC("status:%d[2:DISCONNECT, 4:CONNECT, 8:IRQ] Power:%d\n",
bstatus, g_mtk_dp->bPowerOn);
if ((bstatus == HPD_CONNECT && !g_mtk_dp->bPowerOn)
|| (bstatus == HPD_DISCONNECT && g_mtk_dp->bPowerOn)
|| (bstatus == HPD_INT_EVNET && g_mtk_dp->bPowerOn)) {
if (bstatus == HPD_CONNECT) {
int ret;
ret = clk_prepare_enable(g_mtk_dp->dp_tx_clk);
if (ret < 0)
DPTXERR("Fail to enable dptx clock: %d\n", ret);
mdrv_DPTx_InitPort(g_mtk_dp);
mhal_DPTx_USBC_HPD(g_mtk_dp, true);
g_mtk_dp->bPowerOn = true;
} else if (bstatus == HPD_DISCONNECT)
mhal_DPTx_USBC_HPD(g_mtk_dp, false);
mdrv_DPTx_USBC_HPD_Event(bstatus);
return;
}
}
void mtk_dp_SWInterruptSet(int bstatus)
{
mutex_lock(&dp_lock);
if ((bstatus == HPD_DISCONNECT && g_mtk_dp->bPowerOn)
|| (bstatus == HPD_CONNECT && !g_mtk_dp->bPowerOn))
g_mtk_dp->bUeventToHwc = true;
if (!g_mtk_dp->bPowerOn && bstatus == HPD_DISCONNECT
&& g_mtk_dp->disp_status == DPTX_DISP_SUSPEND) {
DPTXMSG("System is sleeping, Plug Out\n");
mtk_dp_hotplug_uevent(0);
g_mtk_dp->disp_status = DPTX_DISP_NONE;
mutex_unlock(&dp_lock);
return;
}
mtk_dp_HPDInterruptSet(bstatus);
mutex_unlock(&dp_lock);
}
void mtk_dp_poweroff(void)
{
DPTXFUNC();
mutex_lock(&dp_lock);
if (g_mtk_dp->disp_status == DPTX_DISP_NONE) {
DPTXMSG("DPTX has been powered off\n");
mutex_unlock(&dp_lock);
return;
}
g_mtk_dp->disp_status = DPTX_DISP_SUSPEND;
mtk_dp_HPDInterruptSet(HPD_DISCONNECT);
mutex_unlock(&dp_lock);
}
void mtk_dp_poweron(void)
{
DPTXFUNC();
mutex_lock(&dp_lock);
g_mtk_dp->disp_status = DPTX_DISP_RESUME;
if (g_mtk_dp->bPowerOn) {
DPTXMSG("DPTX has been powered on\n");
mutex_unlock(&dp_lock);
return;
}
mtk_dp_HPDInterruptSet(HPD_CONNECT);
mutex_unlock(&dp_lock);
}
static int mtk_dp_create_workqueue(struct mtk_dp *mtk_dp)
{
mtk_dp->dptx_wq = create_singlethread_workqueue("mtk_dptx_wq");
if (!mtk_dp->dptx_wq) {
DPTXERR("Failed to create dptx workqueue\n");
return -ENOMEM;
}
INIT_WORK(&mtk_dp->dptx_work, mdrv_DPTx_main_handle);
INIT_WORK(&mtk_dp->hdcp_work, mdrv_DPTx_hdcp_handle);
return 0;
}
static int mtk_dp_bind(struct device *dev, struct device *master, void *data)
{
struct mtk_dp *mtk_dp = dev_get_drvdata(dev);
struct drm_device *drm = data;
int ret;
mtk_dp->drm_dev = drm;
DPTXDBG("%s, %d, mtk_dp 0x%p\n", __func__, __LINE__, mtk_dp);
ret = drm_connector_init(drm, &mtk_dp->conn, &mtk_dp_connector_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
dev_err(mtk_dp->dev, "Failed to initialize connector: %d\n",
ret);
return ret;
}
drm_connector_helper_add(&mtk_dp->conn, &mtk_dp_connector_helper_funcs);
if (drm_encoder_init(drm, &mtk_dp->enc, &mtk_dp_enc_funcs,
DRM_MODE_ENCODER_DPMST, "DP MST"))
goto err_encoder_init;
mtk_dp->enc.possible_crtcs = 2;
drm_connector_attach_encoder(&mtk_dp->conn, &mtk_dp->enc);
g_mtk_dp = mtk_dp;
mtk_dp->conn.kdev = drm->dev;
mtk_dp->aux.dev = mtk_dp->conn.kdev;
if (drm_dp_aux_register(&mtk_dp->aux))
goto err_encoder_init;
DPTXFUNC("Successful\n");
return 0;
err_encoder_init:
drm_connector_cleanup(&mtk_dp->conn);
DPTXERR("%s failed! %d\n", __func__, __LINE__);
return ret;
}
static void mtk_dp_unbind(struct device *dev, struct device *master,
void *data)
{
DPTXFUNC();
}
static const struct component_ops mtk_dp_component_ops = {
.bind = mtk_dp_bind, .unbind = mtk_dp_unbind,
};
static int mtk_drm_dp_probe(struct platform_device *pdev)
{
struct mtk_dp *mtk_dp;
struct device *dev = &pdev->dev;
int ret, irq_num = 0;
int comp_id;
struct mtk_drm_private *mtk_priv = dev_get_drvdata(dev);
DPTXFUNC();
mtk_dp = devm_kmalloc(dev, sizeof(*mtk_dp), GFP_KERNEL | __GFP_ZERO);
if (!mtk_dp)
return -ENOMEM;
memset(mtk_dp, 0, sizeof(struct mtk_dp));
mtk_dp->id = 0x0;
mtk_dp->dev = dev;
mtk_dp->priv = mtk_priv;
mtk_dp->bUeventToHwc = false;
mtk_dp->disp_status = DPTX_DISP_NONE;
irq_num = platform_get_irq(pdev, 0);
if (irq_num < 0) {
dev_err(&pdev->dev, "failed to request dp irq resource\n");
return -EPROBE_DEFER;
}
ret = mtk_dp_dt_parse_pdata(mtk_dp, pdev);
if (ret)
return ret;
comp_id = mtk_ddp_comp_get_id(dev->of_node, MTK_DISP_DPTX);
if (comp_id < 0) {
dev_err(dev, "Failed to identify by alias: %d\n", comp_id);
ret = comp_id;
goto error;
}
ret = mtk_ddp_comp_init(dev, dev->of_node, &mtk_dp->ddp_comp, comp_id,
NULL);
if (ret) {
dev_err(dev, "Failed to initialize component: %d\n", ret);
goto error;
}
mtk_dp_aux_init(mtk_dp);
DPTXMSG("comp_id %d, type %d, irq %d\n", comp_id,
MTK_DISP_DPTX, irq_num);
irq_set_status_flags(irq_num, IRQ_TYPE_LEVEL_HIGH);
ret = devm_request_irq(&pdev->dev, irq_num, mtk_dp_hpd_event,
IRQ_TYPE_LEVEL_HIGH, dev_name(&pdev->dev), mtk_dp);
if (ret) {
dev_err(&pdev->dev, "failed to request mediatek dptx irq\n");
return -EPROBE_DEFER;
}
dptx_notify_data.name = "hdmi"; // now hwc not support DP
dptx_notify_data.index = 0;
dptx_notify_data.state = DPTX_STATE_NO_DEVICE;
ret = dptx_uevent_dev_register(&dptx_notify_data);
if (ret)
DPTXERR("switch_dev_register failed, returned:%d!\n", ret);
dptx_extcon = devm_extcon_dev_allocate(&pdev->dev, dptx_cable);
if (IS_ERR(dptx_extcon)) {
DPTXERR("Couldn't allocate dptx extcon device\n");
return PTR_ERR(dptx_extcon);
}
dptx_extcon->dev.init_name = "dp_audio";
ret = devm_extcon_dev_register(&pdev->dev, dptx_extcon);
if (ret) {
pr_debug("failed to register dptx extcon: %d\n", ret);
return ret;
}
g_mtk_dp = mtk_dp;
mutex_init(&dp_lock);
platform_set_drvdata(pdev, mtk_dp);
mtk_dp->control_task = kthread_run(mtk_dp_control_kthread,
(void *)mtk_dp, "mtk_dp_video_trigger");
mtk_dp_create_workqueue(mtk_dp);
return component_add(&pdev->dev, &mtk_dp_component_ops);
error:
return -EPROBE_DEFER;
}
static int mtk_drm_dp_remove(struct platform_device *pdev)
{
struct mtk_dp *mtk_dp = platform_get_drvdata(pdev);
if (mtk_dp->dptx_wq)
destroy_workqueue(mtk_dp->dptx_wq);
mutex_destroy(&dp_lock);
drm_connector_cleanup(&mtk_dp->conn);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mtk_dp_suspend(struct device *dev)
{
struct mtk_dp *mtk_dp = dev_get_drvdata(dev);
mutex_lock(&dp_lock);
if (mtk_dp->bPowerOn) {
mtk_dp->disp_status = DPTX_DISP_SUSPEND;
mtk_dp_HPDInterruptSet(HPD_DISCONNECT);
mdelay(5);
}
mutex_unlock(&dp_lock);
DPTXFUNC();
return 0;
}
static int mtk_dp_resume(struct device *dev)
{
DPTXFUNC();
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mtk_dp_pm_ops,
mtk_dp_suspend, mtk_dp_resume);
static const struct of_device_id mtk_dp_of_match[] = {
{ .compatible = "mediatek,mt6885-dp_tx", },
{ },
};
struct platform_driver mtk_dp_tx_driver = {
.probe = mtk_drm_dp_probe,
.remove = mtk_drm_dp_remove,
.driver = {
.name = "mediatek-drm-dp",
.of_match_table = mtk_dp_of_match,
.pm = &mtk_dp_pm_ops,
},
};