kernel_samsung_a34x-permissive/drivers/gpu/drm/msm/dsi/dsi_host.c
2024-04-28 15:49:01 +02:00

2462 lines
61 KiB
C
Executable file

/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/pinctrl/consumer.h>
#include <linux/of_graph.h>
#include <linux/regulator/consumer.h>
#include <linux/spinlock.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <video/mipi_display.h>
#include "dsi.h"
#include "dsi.xml.h"
#include "sfpb.xml.h"
#include "dsi_cfg.h"
#include "msm_kms.h"
#define DSI_RESET_TOGGLE_DELAY_MS 20
static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor)
{
u32 ver;
if (!major || !minor)
return -EINVAL;
/*
* From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0
* makes all other registers 4-byte shifted down.
*
* In order to identify between DSI6G(v3) and beyond, and DSIv2 and
* older, we read the DSI_VERSION register without any shift(offset
* 0x1f0). In the case of DSIv2, this hast to be a non-zero value. In
* the case of DSI6G, this has to be zero (the offset points to a
* scratch register which we never touch)
*/
ver = msm_readl(base + REG_DSI_VERSION);
if (ver) {
/* older dsi host, there is no register shift */
ver = FIELD(ver, DSI_VERSION_MAJOR);
if (ver <= MSM_DSI_VER_MAJOR_V2) {
/* old versions */
*major = ver;
*minor = 0;
return 0;
} else {
return -EINVAL;
}
} else {
/*
* newer host, offset 0 has 6G_HW_VERSION, the rest of the
* registers are shifted down, read DSI_VERSION again with
* the shifted offset
*/
ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION);
ver = FIELD(ver, DSI_VERSION_MAJOR);
if (ver == MSM_DSI_VER_MAJOR_6G) {
/* 6G version */
*major = ver;
*minor = msm_readl(base + REG_DSI_6G_HW_VERSION);
return 0;
} else {
return -EINVAL;
}
}
}
#define DSI_ERR_STATE_ACK 0x0000
#define DSI_ERR_STATE_TIMEOUT 0x0001
#define DSI_ERR_STATE_DLN0_PHY 0x0002
#define DSI_ERR_STATE_FIFO 0x0004
#define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008
#define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010
#define DSI_ERR_STATE_PLL_UNLOCKED 0x0020
#define DSI_CLK_CTRL_ENABLE_CLKS \
(DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \
DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \
DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \
DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK)
struct msm_dsi_host {
struct mipi_dsi_host base;
struct platform_device *pdev;
struct drm_device *dev;
int id;
void __iomem *ctrl_base;
struct regulator_bulk_data supplies[DSI_DEV_REGULATOR_MAX];
struct clk *bus_clks[DSI_BUS_CLK_MAX];
struct clk *byte_clk;
struct clk *esc_clk;
struct clk *pixel_clk;
struct clk *byte_clk_src;
struct clk *pixel_clk_src;
struct clk *byte_intf_clk;
u32 byte_clk_rate;
u32 pixel_clk_rate;
u32 esc_clk_rate;
/* DSI v2 specific clocks */
struct clk *src_clk;
struct clk *esc_clk_src;
struct clk *dsi_clk_src;
u32 src_clk_rate;
struct gpio_desc *disp_en_gpio;
struct gpio_desc *te_gpio;
const struct msm_dsi_cfg_handler *cfg_hnd;
struct completion dma_comp;
struct completion video_comp;
struct mutex dev_mutex;
struct mutex cmd_mutex;
spinlock_t intr_lock; /* Protect interrupt ctrl register */
u32 err_work_state;
struct work_struct err_work;
struct work_struct hpd_work;
struct workqueue_struct *workqueue;
/* DSI 6G TX buffer*/
struct drm_gem_object *tx_gem_obj;
/* DSI v2 TX buffer */
void *tx_buf;
dma_addr_t tx_buf_paddr;
int tx_size;
u8 *rx_buf;
struct regmap *sfpb;
struct drm_display_mode *mode;
/* connected device info */
struct device_node *device_node;
unsigned int channel;
unsigned int lanes;
enum mipi_dsi_pixel_format format;
unsigned long mode_flags;
/* lane data parsed via DT */
int dlane_swap;
int num_data_lanes;
u32 dma_cmd_ctrl_restore;
bool registered;
bool power_on;
bool enabled;
int irq;
};
static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB565: return 16;
case MIPI_DSI_FMT_RGB666_PACKED: return 18;
case MIPI_DSI_FMT_RGB666:
case MIPI_DSI_FMT_RGB888:
default: return 24;
}
}
static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg)
{
return msm_readl(msm_host->ctrl_base + reg);
}
static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data)
{
msm_writel(data, msm_host->ctrl_base + reg);
}
static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host);
static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host);
static const struct msm_dsi_cfg_handler *dsi_get_config(
struct msm_dsi_host *msm_host)
{
const struct msm_dsi_cfg_handler *cfg_hnd = NULL;
struct device *dev = &msm_host->pdev->dev;
struct regulator *gdsc_reg;
struct clk *ahb_clk;
int ret;
u32 major = 0, minor = 0;
gdsc_reg = regulator_get(dev, "gdsc");
if (IS_ERR(gdsc_reg)) {
pr_err("%s: cannot get gdsc\n", __func__);
goto exit;
}
ahb_clk = msm_clk_get(msm_host->pdev, "iface");
if (IS_ERR(ahb_clk)) {
pr_err("%s: cannot get interface clock\n", __func__);
goto put_gdsc;
}
pm_runtime_get_sync(dev);
ret = regulator_enable(gdsc_reg);
if (ret) {
pr_err("%s: unable to enable gdsc\n", __func__);
goto put_gdsc;
}
ret = clk_prepare_enable(ahb_clk);
if (ret) {
pr_err("%s: unable to enable ahb_clk\n", __func__);
goto disable_gdsc;
}
ret = dsi_get_version(msm_host->ctrl_base, &major, &minor);
if (ret) {
pr_err("%s: Invalid version\n", __func__);
goto disable_clks;
}
cfg_hnd = msm_dsi_cfg_get(major, minor);
DBG("%s: Version %x:%x\n", __func__, major, minor);
disable_clks:
clk_disable_unprepare(ahb_clk);
disable_gdsc:
regulator_disable(gdsc_reg);
pm_runtime_put_sync(dev);
put_gdsc:
regulator_put(gdsc_reg);
exit:
return cfg_hnd;
}
static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host)
{
return container_of(host, struct msm_dsi_host, base);
}
static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
int i;
DBG("");
for (i = num - 1; i >= 0; i--)
if (regs[i].disable_load >= 0)
regulator_set_load(s[i].consumer,
regs[i].disable_load);
regulator_bulk_disable(num, s);
}
static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
int ret, i;
DBG("");
for (i = 0; i < num; i++) {
if (regs[i].enable_load >= 0) {
ret = regulator_set_load(s[i].consumer,
regs[i].enable_load);
if (ret < 0) {
pr_err("regulator %d set op mode failed, %d\n",
i, ret);
goto fail;
}
}
}
ret = regulator_bulk_enable(num, s);
if (ret < 0) {
pr_err("regulator enable failed, %d\n", ret);
goto fail;
}
return 0;
fail:
for (i--; i >= 0; i--)
regulator_set_load(s[i].consumer, regs[i].disable_load);
return ret;
}
static int dsi_regulator_init(struct msm_dsi_host *msm_host)
{
struct regulator_bulk_data *s = msm_host->supplies;
const struct dsi_reg_entry *regs = msm_host->cfg_hnd->cfg->reg_cfg.regs;
int num = msm_host->cfg_hnd->cfg->reg_cfg.num;
int i, ret;
for (i = 0; i < num; i++)
s[i].supply = regs[i].name;
ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s);
if (ret < 0) {
pr_err("%s: failed to init regulator, ret=%d\n",
__func__, ret);
return ret;
}
return 0;
}
int dsi_clk_init_v2(struct msm_dsi_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
int ret = 0;
msm_host->src_clk = msm_clk_get(pdev, "src");
if (IS_ERR(msm_host->src_clk)) {
ret = PTR_ERR(msm_host->src_clk);
pr_err("%s: can't find src clock. ret=%d\n",
__func__, ret);
msm_host->src_clk = NULL;
return ret;
}
msm_host->esc_clk_src = clk_get_parent(msm_host->esc_clk);
if (!msm_host->esc_clk_src) {
ret = -ENODEV;
pr_err("%s: can't get esc clock parent. ret=%d\n",
__func__, ret);
return ret;
}
msm_host->dsi_clk_src = clk_get_parent(msm_host->src_clk);
if (!msm_host->dsi_clk_src) {
ret = -ENODEV;
pr_err("%s: can't get src clock parent. ret=%d\n",
__func__, ret);
}
return ret;
}
int dsi_clk_init_6g_v2(struct msm_dsi_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
int ret = 0;
msm_host->byte_intf_clk = msm_clk_get(pdev, "byte_intf");
if (IS_ERR(msm_host->byte_intf_clk)) {
ret = PTR_ERR(msm_host->byte_intf_clk);
pr_err("%s: can't find byte_intf clock. ret=%d\n",
__func__, ret);
}
return ret;
}
static int dsi_clk_init(struct msm_dsi_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
const struct msm_dsi_config *cfg = cfg_hnd->cfg;
int i, ret = 0;
/* get bus clocks */
for (i = 0; i < cfg->num_bus_clks; i++) {
msm_host->bus_clks[i] = msm_clk_get(pdev,
cfg->bus_clk_names[i]);
if (IS_ERR(msm_host->bus_clks[i])) {
ret = PTR_ERR(msm_host->bus_clks[i]);
pr_err("%s: Unable to get %s clock, ret = %d\n",
__func__, cfg->bus_clk_names[i], ret);
goto exit;
}
}
/* get link and source clocks */
msm_host->byte_clk = msm_clk_get(pdev, "byte");
if (IS_ERR(msm_host->byte_clk)) {
ret = PTR_ERR(msm_host->byte_clk);
pr_err("%s: can't find dsi_byte clock. ret=%d\n",
__func__, ret);
msm_host->byte_clk = NULL;
goto exit;
}
msm_host->pixel_clk = msm_clk_get(pdev, "pixel");
if (IS_ERR(msm_host->pixel_clk)) {
ret = PTR_ERR(msm_host->pixel_clk);
pr_err("%s: can't find dsi_pixel clock. ret=%d\n",
__func__, ret);
msm_host->pixel_clk = NULL;
goto exit;
}
msm_host->esc_clk = msm_clk_get(pdev, "core");
if (IS_ERR(msm_host->esc_clk)) {
ret = PTR_ERR(msm_host->esc_clk);
pr_err("%s: can't find dsi_esc clock. ret=%d\n",
__func__, ret);
msm_host->esc_clk = NULL;
goto exit;
}
msm_host->byte_clk_src = clk_get_parent(msm_host->byte_clk);
if (IS_ERR(msm_host->byte_clk_src)) {
ret = PTR_ERR(msm_host->byte_clk_src);
pr_err("%s: can't find byte_clk clock. ret=%d\n", __func__, ret);
goto exit;
}
msm_host->pixel_clk_src = clk_get_parent(msm_host->pixel_clk);
if (IS_ERR(msm_host->pixel_clk_src)) {
ret = PTR_ERR(msm_host->pixel_clk_src);
pr_err("%s: can't find pixel_clk clock. ret=%d\n", __func__, ret);
goto exit;
}
if (cfg_hnd->ops->clk_init_ver)
ret = cfg_hnd->ops->clk_init_ver(msm_host);
exit:
return ret;
}
static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host)
{
const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
int i, ret;
DBG("id=%d", msm_host->id);
for (i = 0; i < cfg->num_bus_clks; i++) {
ret = clk_prepare_enable(msm_host->bus_clks[i]);
if (ret) {
pr_err("%s: failed to enable bus clock %d ret %d\n",
__func__, i, ret);
goto err;
}
}
return 0;
err:
for (; i > 0; i--)
clk_disable_unprepare(msm_host->bus_clks[i]);
return ret;
}
static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host)
{
const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
int i;
DBG("");
for (i = cfg->num_bus_clks - 1; i >= 0; i--)
clk_disable_unprepare(msm_host->bus_clks[i]);
}
int msm_dsi_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
struct mipi_dsi_host *host = msm_dsi->host;
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (!msm_host->cfg_hnd)
return 0;
dsi_bus_clk_disable(msm_host);
return 0;
}
int msm_dsi_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_dsi *msm_dsi = platform_get_drvdata(pdev);
struct mipi_dsi_host *host = msm_dsi->host;
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (!msm_host->cfg_hnd)
return 0;
return dsi_bus_clk_enable(msm_host);
}
int dsi_link_clk_enable_6g(struct msm_dsi_host *msm_host)
{
int ret;
DBG("Set clk rates: pclk=%d, byteclk=%d",
msm_host->mode->clock, msm_host->byte_clk_rate);
ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
goto error;
}
ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
goto error;
}
if (msm_host->byte_intf_clk) {
ret = clk_set_rate(msm_host->byte_intf_clk,
msm_host->byte_clk_rate / 2);
if (ret) {
pr_err("%s: Failed to set rate byte intf clk, %d\n",
__func__, ret);
goto error;
}
}
ret = clk_prepare_enable(msm_host->esc_clk);
if (ret) {
pr_err("%s: Failed to enable dsi esc clk\n", __func__);
goto error;
}
ret = clk_prepare_enable(msm_host->byte_clk);
if (ret) {
pr_err("%s: Failed to enable dsi byte clk\n", __func__);
goto byte_clk_err;
}
ret = clk_prepare_enable(msm_host->pixel_clk);
if (ret) {
pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
goto pixel_clk_err;
}
if (msm_host->byte_intf_clk) {
ret = clk_prepare_enable(msm_host->byte_intf_clk);
if (ret) {
pr_err("%s: Failed to enable byte intf clk\n",
__func__);
goto byte_intf_clk_err;
}
}
return 0;
byte_intf_clk_err:
clk_disable_unprepare(msm_host->pixel_clk);
pixel_clk_err:
clk_disable_unprepare(msm_host->byte_clk);
byte_clk_err:
clk_disable_unprepare(msm_host->esc_clk);
error:
return ret;
}
int dsi_link_clk_enable_v2(struct msm_dsi_host *msm_host)
{
int ret;
DBG("Set clk rates: pclk=%d, byteclk=%d, esc_clk=%d, dsi_src_clk=%d",
msm_host->mode->clock, msm_host->byte_clk_rate,
msm_host->esc_clk_rate, msm_host->src_clk_rate);
ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret);
goto error;
}
ret = clk_set_rate(msm_host->esc_clk, msm_host->esc_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate esc clk, %d\n", __func__, ret);
goto error;
}
ret = clk_set_rate(msm_host->src_clk, msm_host->src_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate src clk, %d\n", __func__, ret);
goto error;
}
ret = clk_set_rate(msm_host->pixel_clk, msm_host->pixel_clk_rate);
if (ret) {
pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret);
goto error;
}
ret = clk_prepare_enable(msm_host->byte_clk);
if (ret) {
pr_err("%s: Failed to enable dsi byte clk\n", __func__);
goto error;
}
ret = clk_prepare_enable(msm_host->esc_clk);
if (ret) {
pr_err("%s: Failed to enable dsi esc clk\n", __func__);
goto esc_clk_err;
}
ret = clk_prepare_enable(msm_host->src_clk);
if (ret) {
pr_err("%s: Failed to enable dsi src clk\n", __func__);
goto src_clk_err;
}
ret = clk_prepare_enable(msm_host->pixel_clk);
if (ret) {
pr_err("%s: Failed to enable dsi pixel clk\n", __func__);
goto pixel_clk_err;
}
return 0;
pixel_clk_err:
clk_disable_unprepare(msm_host->src_clk);
src_clk_err:
clk_disable_unprepare(msm_host->esc_clk);
esc_clk_err:
clk_disable_unprepare(msm_host->byte_clk);
error:
return ret;
}
void dsi_link_clk_disable_6g(struct msm_dsi_host *msm_host)
{
clk_disable_unprepare(msm_host->esc_clk);
clk_disable_unprepare(msm_host->pixel_clk);
if (msm_host->byte_intf_clk)
clk_disable_unprepare(msm_host->byte_intf_clk);
clk_disable_unprepare(msm_host->byte_clk);
}
void dsi_link_clk_disable_v2(struct msm_dsi_host *msm_host)
{
clk_disable_unprepare(msm_host->pixel_clk);
clk_disable_unprepare(msm_host->src_clk);
clk_disable_unprepare(msm_host->esc_clk);
clk_disable_unprepare(msm_host->byte_clk);
}
static u32 dsi_get_pclk_rate(struct msm_dsi_host *msm_host, bool is_dual_dsi)
{
struct drm_display_mode *mode = msm_host->mode;
u32 pclk_rate;
pclk_rate = mode->clock * 1000;
/*
* For dual DSI mode, the current DRM mode has the complete width of the
* panel. Since, the complete panel is driven by two DSI controllers,
* the clock rates have to be split between the two dsi controllers.
* Adjust the byte and pixel clock rates for each dsi host accordingly.
*/
if (is_dual_dsi)
pclk_rate /= 2;
return pclk_rate;
}
static void dsi_calc_pclk(struct msm_dsi_host *msm_host, bool is_dual_dsi)
{
u8 lanes = msm_host->lanes;
u32 bpp = dsi_get_bpp(msm_host->format);
u32 pclk_rate = dsi_get_pclk_rate(msm_host, is_dual_dsi);
u64 pclk_bpp = (u64)pclk_rate * bpp;
if (lanes == 0) {
pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__);
lanes = 1;
}
do_div(pclk_bpp, (8 * lanes));
msm_host->pixel_clk_rate = pclk_rate;
msm_host->byte_clk_rate = pclk_bpp;
DBG("pclk=%d, bclk=%d", msm_host->pixel_clk_rate,
msm_host->byte_clk_rate);
}
int dsi_calc_clk_rate_6g(struct msm_dsi_host *msm_host, bool is_dual_dsi)
{
if (!msm_host->mode) {
pr_err("%s: mode not set\n", __func__);
return -EINVAL;
}
dsi_calc_pclk(msm_host, is_dual_dsi);
msm_host->esc_clk_rate = clk_get_rate(msm_host->esc_clk);
return 0;
}
int dsi_calc_clk_rate_v2(struct msm_dsi_host *msm_host, bool is_dual_dsi)
{
u32 bpp = dsi_get_bpp(msm_host->format);
u64 pclk_bpp;
unsigned int esc_mhz, esc_div;
unsigned long byte_mhz;
dsi_calc_pclk(msm_host, is_dual_dsi);
pclk_bpp = (u64)dsi_get_pclk_rate(msm_host, is_dual_dsi) * bpp;
do_div(pclk_bpp, 8);
msm_host->src_clk_rate = pclk_bpp;
/*
* esc clock is byte clock followed by a 4 bit divider,
* we need to find an escape clock frequency within the
* mipi DSI spec range within the maximum divider limit
* We iterate here between an escape clock frequencey
* between 20 Mhz to 5 Mhz and pick up the first one
* that can be supported by our divider
*/
byte_mhz = msm_host->byte_clk_rate / 1000000;
for (esc_mhz = 20; esc_mhz >= 5; esc_mhz--) {
esc_div = DIV_ROUND_UP(byte_mhz, esc_mhz);
/*
* TODO: Ideally, we shouldn't know what sort of divider
* is available in mmss_cc, we're just assuming that
* it'll always be a 4 bit divider. Need to come up with
* a better way here.
*/
if (esc_div >= 1 && esc_div <= 16)
break;
}
if (esc_mhz < 5)
return -EINVAL;
msm_host->esc_clk_rate = msm_host->byte_clk_rate / esc_div;
DBG("esc=%d, src=%d", msm_host->esc_clk_rate,
msm_host->src_clk_rate);
return 0;
}
static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable)
{
u32 intr;
unsigned long flags;
spin_lock_irqsave(&msm_host->intr_lock, flags);
intr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
if (enable)
intr |= mask;
else
intr &= ~mask;
DBG("intr=%x enable=%d", intr, enable);
dsi_write(msm_host, REG_DSI_INTR_CTRL, intr);
spin_unlock_irqrestore(&msm_host->intr_lock, flags);
}
static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags)
{
if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
return BURST_MODE;
else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
return NON_BURST_SYNCH_PULSE;
return NON_BURST_SYNCH_EVENT;
}
static inline enum dsi_vid_dst_format dsi_get_vid_fmt(
const enum mipi_dsi_pixel_format mipi_fmt)
{
switch (mipi_fmt) {
case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE;
case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565;
default: return VID_DST_FORMAT_RGB888;
}
}
static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt(
const enum mipi_dsi_pixel_format mipi_fmt)
{
switch (mipi_fmt) {
case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888;
case MIPI_DSI_FMT_RGB666_PACKED:
case MIPI_DSI_FMT_RGB666: return CMD_DST_FORMAT_RGB666;
case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565;
default: return CMD_DST_FORMAT_RGB888;
}
}
static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable,
struct msm_dsi_phy_shared_timings *phy_shared_timings)
{
u32 flags = msm_host->mode_flags;
enum mipi_dsi_pixel_format mipi_fmt = msm_host->format;
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
u32 data = 0;
if (!enable) {
dsi_write(msm_host, REG_DSI_CTRL, 0);
return;
}
if (flags & MIPI_DSI_MODE_VIDEO) {
if (flags & MIPI_DSI_MODE_VIDEO_HSE)
data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE;
if (flags & MIPI_DSI_MODE_VIDEO_HFP)
data |= DSI_VID_CFG0_HFP_POWER_STOP;
if (flags & MIPI_DSI_MODE_VIDEO_HBP)
data |= DSI_VID_CFG0_HBP_POWER_STOP;
if (flags & MIPI_DSI_MODE_VIDEO_HSA)
data |= DSI_VID_CFG0_HSA_POWER_STOP;
/* Always set low power stop mode for BLLP
* to let command engine send packets
*/
data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP |
DSI_VID_CFG0_BLLP_POWER_STOP;
data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags));
data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt));
data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel);
dsi_write(msm_host, REG_DSI_VID_CFG0, data);
/* Do not swap RGB colors */
data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB);
dsi_write(msm_host, REG_DSI_VID_CFG1, 0);
} else {
/* Do not swap RGB colors */
data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB);
data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt));
dsi_write(msm_host, REG_DSI_CMD_CFG0, data);
data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) |
DSI_CMD_CFG1_WR_MEM_CONTINUE(
MIPI_DCS_WRITE_MEMORY_CONTINUE);
/* Always insert DCS command */
data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND;
dsi_write(msm_host, REG_DSI_CMD_CFG1, data);
}
dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL,
DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER |
DSI_CMD_DMA_CTRL_LOW_POWER);
data = 0;
/* Always assume dedicated TE pin */
data |= DSI_TRIG_CTRL_TE;
data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE);
data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW);
data |= DSI_TRIG_CTRL_STREAM(msm_host->channel);
if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_2))
data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME;
dsi_write(msm_host, REG_DSI_TRIG_CTRL, data);
data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(phy_shared_timings->clk_post) |
DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(phy_shared_timings->clk_pre);
dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data);
if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
(cfg_hnd->minor > MSM_DSI_6G_VER_MINOR_V1_0) &&
phy_shared_timings->clk_pre_inc_by_2)
dsi_write(msm_host, REG_DSI_T_CLK_PRE_EXTEND,
DSI_T_CLK_PRE_EXTEND_INC_BY_2_BYTECLK);
data = 0;
if (!(flags & MIPI_DSI_MODE_EOT_PACKET))
data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND;
dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data);
/* allow only ack-err-status to generate interrupt */
dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
data = DSI_CTRL_CLK_EN;
DBG("lane number=%d", msm_host->lanes);
data |= ((DSI_CTRL_LANE0 << msm_host->lanes) - DSI_CTRL_LANE0);
dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL,
DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(msm_host->dlane_swap));
if (!(flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
dsi_write(msm_host, REG_DSI_LANE_CTRL,
DSI_LANE_CTRL_CLKLN_HS_FORCE_REQUEST);
data |= DSI_CTRL_ENABLE;
dsi_write(msm_host, REG_DSI_CTRL, data);
}
static void dsi_timing_setup(struct msm_dsi_host *msm_host, bool is_dual_dsi)
{
struct drm_display_mode *mode = msm_host->mode;
u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */
u32 h_total = mode->htotal;
u32 v_total = mode->vtotal;
u32 hs_end = mode->hsync_end - mode->hsync_start;
u32 vs_end = mode->vsync_end - mode->vsync_start;
u32 ha_start = h_total - mode->hsync_start;
u32 ha_end = ha_start + mode->hdisplay;
u32 va_start = v_total - mode->vsync_start;
u32 va_end = va_start + mode->vdisplay;
u32 hdisplay = mode->hdisplay;
u32 wc;
DBG("");
/*
* For dual DSI mode, the current DRM mode has
* the complete width of the panel. Since, the complete
* panel is driven by two DSI controllers, the horizontal
* timings have to be split between the two dsi controllers.
* Adjust the DSI host timing values accordingly.
*/
if (is_dual_dsi) {
h_total /= 2;
hs_end /= 2;
ha_start /= 2;
ha_end /= 2;
hdisplay /= 2;
}
if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) {
dsi_write(msm_host, REG_DSI_ACTIVE_H,
DSI_ACTIVE_H_START(ha_start) |
DSI_ACTIVE_H_END(ha_end));
dsi_write(msm_host, REG_DSI_ACTIVE_V,
DSI_ACTIVE_V_START(va_start) |
DSI_ACTIVE_V_END(va_end));
dsi_write(msm_host, REG_DSI_TOTAL,
DSI_TOTAL_H_TOTAL(h_total - 1) |
DSI_TOTAL_V_TOTAL(v_total - 1));
dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC,
DSI_ACTIVE_HSYNC_START(hs_start) |
DSI_ACTIVE_HSYNC_END(hs_end));
dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0);
dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS,
DSI_ACTIVE_VSYNC_VPOS_START(vs_start) |
DSI_ACTIVE_VSYNC_VPOS_END(vs_end));
} else { /* command mode */
/* image data and 1 byte write_memory_start cmd */
wc = hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1;
dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL,
DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) |
DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL(
msm_host->channel) |
DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE(
MIPI_DSI_DCS_LONG_WRITE));
dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL,
DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(hdisplay) |
DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay));
}
}
static void dsi_sw_reset(struct msm_dsi_host *msm_host)
{
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
wmb(); /* clocks need to be enabled before reset */
dsi_write(msm_host, REG_DSI_RESET, 1);
msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
dsi_write(msm_host, REG_DSI_RESET, 0);
}
static void dsi_op_mode_config(struct msm_dsi_host *msm_host,
bool video_mode, bool enable)
{
u32 dsi_ctrl;
dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL);
if (!enable) {
dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN |
DSI_CTRL_CMD_MODE_EN);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE |
DSI_IRQ_MASK_VIDEO_DONE, 0);
} else {
if (video_mode) {
dsi_ctrl |= DSI_CTRL_VID_MODE_EN;
} else { /* command mode */
dsi_ctrl |= DSI_CTRL_CMD_MODE_EN;
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1);
}
dsi_ctrl |= DSI_CTRL_ENABLE;
}
dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl);
}
static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host)
{
u32 data;
data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL);
if (mode == 0)
data &= ~DSI_CMD_DMA_CTRL_LOW_POWER;
else
data |= DSI_CMD_DMA_CTRL_LOW_POWER;
dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data);
}
static void dsi_wait4video_done(struct msm_dsi_host *msm_host)
{
u32 ret = 0;
struct device *dev = &msm_host->pdev->dev;
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1);
reinit_completion(&msm_host->video_comp);
ret = wait_for_completion_timeout(&msm_host->video_comp,
msecs_to_jiffies(70));
if (ret <= 0)
dev_err(dev, "wait for video done timed out\n");
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0);
}
static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host)
{
if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO))
return;
if (msm_host->power_on && msm_host->enabled) {
dsi_wait4video_done(msm_host);
/* delay 4 ms to skip BLLP */
usleep_range(2000, 4000);
}
}
int dsi_tx_buf_alloc_6g(struct msm_dsi_host *msm_host, int size)
{
struct drm_device *dev = msm_host->dev;
struct msm_drm_private *priv = dev->dev_private;
uint64_t iova;
u8 *data;
data = msm_gem_kernel_new(dev, size, MSM_BO_UNCACHED,
priv->kms->aspace,
&msm_host->tx_gem_obj, &iova);
if (IS_ERR(data)) {
msm_host->tx_gem_obj = NULL;
return PTR_ERR(data);
}
msm_host->tx_size = msm_host->tx_gem_obj->size;
return 0;
}
int dsi_tx_buf_alloc_v2(struct msm_dsi_host *msm_host, int size)
{
struct drm_device *dev = msm_host->dev;
msm_host->tx_buf = dma_alloc_coherent(dev->dev, size,
&msm_host->tx_buf_paddr, GFP_KERNEL);
if (!msm_host->tx_buf)
return -ENOMEM;
msm_host->tx_size = size;
return 0;
}
static void dsi_tx_buf_free(struct msm_dsi_host *msm_host)
{
struct drm_device *dev = msm_host->dev;
struct msm_drm_private *priv;
/*
* This is possible if we're tearing down before we've had a chance to
* fully initialize. A very real possibility if our probe is deferred,
* in which case we'll hit msm_dsi_host_destroy() without having run
* through the dsi_tx_buf_alloc().
*/
if (!dev)
return;
priv = dev->dev_private;
if (msm_host->tx_gem_obj) {
msm_gem_put_iova(msm_host->tx_gem_obj, priv->kms->aspace);
drm_gem_object_put_unlocked(msm_host->tx_gem_obj);
msm_host->tx_gem_obj = NULL;
}
if (msm_host->tx_buf)
dma_free_coherent(dev->dev, msm_host->tx_size, msm_host->tx_buf,
msm_host->tx_buf_paddr);
}
void *dsi_tx_buf_get_6g(struct msm_dsi_host *msm_host)
{
return msm_gem_get_vaddr(msm_host->tx_gem_obj);
}
void *dsi_tx_buf_get_v2(struct msm_dsi_host *msm_host)
{
return msm_host->tx_buf;
}
void dsi_tx_buf_put_6g(struct msm_dsi_host *msm_host)
{
msm_gem_put_vaddr(msm_host->tx_gem_obj);
}
/*
* prepare cmd buffer to be txed
*/
static int dsi_cmd_dma_add(struct msm_dsi_host *msm_host,
const struct mipi_dsi_msg *msg)
{
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
struct mipi_dsi_packet packet;
int len;
int ret;
u8 *data;
ret = mipi_dsi_create_packet(&packet, msg);
if (ret) {
pr_err("%s: create packet failed, %d\n", __func__, ret);
return ret;
}
len = (packet.size + 3) & (~0x3);
if (len > msm_host->tx_size) {
pr_err("%s: packet size is too big\n", __func__);
return -EINVAL;
}
data = cfg_hnd->ops->tx_buf_get(msm_host);
if (IS_ERR(data)) {
ret = PTR_ERR(data);
pr_err("%s: get vaddr failed, %d\n", __func__, ret);
return ret;
}
/* MSM specific command format in memory */
data[0] = packet.header[1];
data[1] = packet.header[2];
data[2] = packet.header[0];
data[3] = BIT(7); /* Last packet */
if (mipi_dsi_packet_format_is_long(msg->type))
data[3] |= BIT(6);
if (msg->rx_buf && msg->rx_len)
data[3] |= BIT(5);
/* Long packet */
if (packet.payload && packet.payload_length)
memcpy(data + 4, packet.payload, packet.payload_length);
/* Append 0xff to the end */
if (packet.size < len)
memset(data + packet.size, 0xff, len - packet.size);
if (cfg_hnd->ops->tx_buf_put)
cfg_hnd->ops->tx_buf_put(msm_host);
return len;
}
/*
* dsi_short_read1_resp: 1 parameter
*/
static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
u8 *data = msg->rx_buf;
if (data && (msg->rx_len >= 1)) {
*data = buf[1]; /* strip out dcs type */
return 1;
} else {
pr_err("%s: read data does not match with rx_buf len %zu\n",
__func__, msg->rx_len);
return -EINVAL;
}
}
/*
* dsi_short_read2_resp: 2 parameter
*/
static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
u8 *data = msg->rx_buf;
if (data && (msg->rx_len >= 2)) {
data[0] = buf[1]; /* strip out dcs type */
data[1] = buf[2];
return 2;
} else {
pr_err("%s: read data does not match with rx_buf len %zu\n",
__func__, msg->rx_len);
return -EINVAL;
}
}
static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg)
{
/* strip out 4 byte dcs header */
if (msg->rx_buf && msg->rx_len)
memcpy(msg->rx_buf, buf + 4, msg->rx_len);
return msg->rx_len;
}
int dsi_dma_base_get_6g(struct msm_dsi_host *msm_host, uint64_t *dma_base)
{
struct drm_device *dev = msm_host->dev;
struct msm_drm_private *priv = dev->dev_private;
if (!dma_base)
return -EINVAL;
return msm_gem_get_iova(msm_host->tx_gem_obj,
priv->kms->aspace, dma_base);
}
int dsi_dma_base_get_v2(struct msm_dsi_host *msm_host, uint64_t *dma_base)
{
if (!dma_base)
return -EINVAL;
*dma_base = msm_host->tx_buf_paddr;
return 0;
}
static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len)
{
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
int ret;
uint64_t dma_base;
bool triggered;
ret = cfg_hnd->ops->dma_base_get(msm_host, &dma_base);
if (ret) {
pr_err("%s: failed to get iova: %d\n", __func__, ret);
return ret;
}
reinit_completion(&msm_host->dma_comp);
dsi_wait4video_eng_busy(msm_host);
triggered = msm_dsi_manager_cmd_xfer_trigger(
msm_host->id, dma_base, len);
if (triggered) {
ret = wait_for_completion_timeout(&msm_host->dma_comp,
msecs_to_jiffies(200));
DBG("ret=%d", ret);
if (ret == 0)
ret = -ETIMEDOUT;
else
ret = len;
} else
ret = len;
return ret;
}
static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host,
u8 *buf, int rx_byte, int pkt_size)
{
u32 *lp, *temp, data;
int i, j = 0, cnt;
u32 read_cnt;
u8 reg[16];
int repeated_bytes = 0;
int buf_offset = buf - msm_host->rx_buf;
lp = (u32 *)buf;
temp = (u32 *)reg;
cnt = (rx_byte + 3) >> 2;
if (cnt > 4)
cnt = 4; /* 4 x 32 bits registers only */
if (rx_byte == 4)
read_cnt = 4;
else
read_cnt = pkt_size + 6;
/*
* In case of multiple reads from the panel, after the first read, there
* is possibility that there are some bytes in the payload repeating in
* the RDBK_DATA registers. Since we read all the parameters from the
* panel right from the first byte for every pass. We need to skip the
* repeating bytes and then append the new parameters to the rx buffer.
*/
if (read_cnt > 16) {
int bytes_shifted;
/* Any data more than 16 bytes will be shifted out.
* The temp read buffer should already contain these bytes.
* The remaining bytes in read buffer are the repeated bytes.
*/
bytes_shifted = read_cnt - 16;
repeated_bytes = buf_offset - bytes_shifted;
}
for (i = cnt - 1; i >= 0; i--) {
data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i));
*temp++ = ntohl(data); /* to host byte order */
DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data));
}
for (i = repeated_bytes; i < 16; i++)
buf[j++] = reg[i];
return j;
}
static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host,
const struct mipi_dsi_msg *msg)
{
int len, ret;
int bllp_len = msm_host->mode->hdisplay *
dsi_get_bpp(msm_host->format) / 8;
len = dsi_cmd_dma_add(msm_host, msg);
if (!len) {
pr_err("%s: failed to add cmd type = 0x%x\n",
__func__, msg->type);
return -EINVAL;
}
/* for video mode, do not send cmds more than
* one pixel line, since it only transmit it
* during BLLP.
*/
/* TODO: if the command is sent in LP mode, the bit rate is only
* half of esc clk rate. In this case, if the video is already
* actively streaming, we need to check more carefully if the
* command can be fit into one BLLP.
*/
if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) {
pr_err("%s: cmd cannot fit into BLLP period, len=%d\n",
__func__, len);
return -EINVAL;
}
ret = dsi_cmd_dma_tx(msm_host, len);
if (ret < len) {
pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n",
__func__, msg->type, (*(u8 *)(msg->tx_buf)), len);
return -ECOMM;
}
return len;
}
static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host)
{
u32 data0, data1;
data0 = dsi_read(msm_host, REG_DSI_CTRL);
data1 = data0;
data1 &= ~DSI_CTRL_ENABLE;
dsi_write(msm_host, REG_DSI_CTRL, data1);
/*
* dsi controller need to be disabled before
* clocks turned on
*/
wmb();
dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS);
wmb(); /* make sure clocks enabled */
/* dsi controller can only be reset while clocks are running */
dsi_write(msm_host, REG_DSI_RESET, 1);
msleep(DSI_RESET_TOGGLE_DELAY_MS); /* make sure reset happen */
dsi_write(msm_host, REG_DSI_RESET, 0);
wmb(); /* controller out of reset */
dsi_write(msm_host, REG_DSI_CTRL, data0);
wmb(); /* make sure dsi controller enabled again */
}
static void dsi_hpd_worker(struct work_struct *work)
{
struct msm_dsi_host *msm_host =
container_of(work, struct msm_dsi_host, hpd_work);
drm_helper_hpd_irq_event(msm_host->dev);
}
static void dsi_err_worker(struct work_struct *work)
{
struct msm_dsi_host *msm_host =
container_of(work, struct msm_dsi_host, err_work);
u32 status = msm_host->err_work_state;
pr_err_ratelimited("%s: status=%x\n", __func__, status);
if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW)
dsi_sw_reset_restore(msm_host);
/* It is safe to clear here because error irq is disabled. */
msm_host->err_work_state = 0;
/* enable dsi error interrupt */
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1);
}
static void dsi_ack_err_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS);
if (status) {
dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status);
/* Writing of an extra 0 needed to clear error bits */
dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0);
msm_host->err_work_state |= DSI_ERR_STATE_ACK;
}
}
static void dsi_timeout_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS);
if (status) {
dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT;
}
}
static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR);
if (status & (DSI_DLN0_PHY_ERR_DLN0_ERR_ESC |
DSI_DLN0_PHY_ERR_DLN0_ERR_SYNC_ESC |
DSI_DLN0_PHY_ERR_DLN0_ERR_CONTROL |
DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP0 |
DSI_DLN0_PHY_ERR_DLN0_ERR_CONTENTION_LP1)) {
dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status);
msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY;
}
}
static void dsi_fifo_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_FIFO_STATUS);
/* fifo underflow, overflow */
if (status) {
dsi_write(msm_host, REG_DSI_FIFO_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_FIFO;
if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW)
msm_host->err_work_state |=
DSI_ERR_STATE_MDP_FIFO_UNDERFLOW;
}
}
static void dsi_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_STATUS0);
if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) {
dsi_write(msm_host, REG_DSI_STATUS0, status);
msm_host->err_work_state |=
DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION;
}
}
static void dsi_clk_status(struct msm_dsi_host *msm_host)
{
u32 status;
status = dsi_read(msm_host, REG_DSI_CLK_STATUS);
if (status & DSI_CLK_STATUS_PLL_UNLOCKED) {
dsi_write(msm_host, REG_DSI_CLK_STATUS, status);
msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED;
}
}
static void dsi_error(struct msm_dsi_host *msm_host)
{
/* disable dsi error interrupt */
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0);
dsi_clk_status(msm_host);
dsi_fifo_status(msm_host);
dsi_ack_err_status(msm_host);
dsi_timeout_status(msm_host);
dsi_status(msm_host);
dsi_dln0_phy_err(msm_host);
queue_work(msm_host->workqueue, &msm_host->err_work);
}
static irqreturn_t dsi_host_irq(int irq, void *ptr)
{
struct msm_dsi_host *msm_host = ptr;
u32 isr;
unsigned long flags;
if (!msm_host->ctrl_base)
return IRQ_HANDLED;
spin_lock_irqsave(&msm_host->intr_lock, flags);
isr = dsi_read(msm_host, REG_DSI_INTR_CTRL);
dsi_write(msm_host, REG_DSI_INTR_CTRL, isr);
spin_unlock_irqrestore(&msm_host->intr_lock, flags);
DBG("isr=0x%x, id=%d", isr, msm_host->id);
if (isr & DSI_IRQ_ERROR)
dsi_error(msm_host);
if (isr & DSI_IRQ_VIDEO_DONE)
complete(&msm_host->video_comp);
if (isr & DSI_IRQ_CMD_DMA_DONE)
complete(&msm_host->dma_comp);
return IRQ_HANDLED;
}
static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host,
struct device *panel_device)
{
msm_host->disp_en_gpio = devm_gpiod_get_optional(panel_device,
"disp-enable",
GPIOD_OUT_LOW);
if (IS_ERR(msm_host->disp_en_gpio)) {
DBG("cannot get disp-enable-gpios %ld",
PTR_ERR(msm_host->disp_en_gpio));
return PTR_ERR(msm_host->disp_en_gpio);
}
msm_host->te_gpio = devm_gpiod_get_optional(panel_device, "disp-te",
GPIOD_IN);
if (IS_ERR(msm_host->te_gpio)) {
DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio));
return PTR_ERR(msm_host->te_gpio);
}
return 0;
}
static int dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int ret;
if (dsi->lanes > msm_host->num_data_lanes)
return -EINVAL;
msm_host->channel = dsi->channel;
msm_host->lanes = dsi->lanes;
msm_host->format = dsi->format;
msm_host->mode_flags = dsi->mode_flags;
msm_dsi_manager_attach_dsi_device(msm_host->id, dsi->mode_flags);
/* Some gpios defined in panel DT need to be controlled by host */
ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev);
if (ret)
return ret;
DBG("id=%d", msm_host->id);
if (msm_host->dev)
queue_work(msm_host->workqueue, &msm_host->hpd_work);
return 0;
}
static int dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
msm_host->device_node = NULL;
DBG("id=%d", msm_host->id);
if (msm_host->dev)
queue_work(msm_host->workqueue, &msm_host->hpd_work);
return 0;
}
static ssize_t dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int ret;
if (!msg || !msm_host->power_on)
return -EINVAL;
mutex_lock(&msm_host->cmd_mutex);
ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg);
mutex_unlock(&msm_host->cmd_mutex);
return ret;
}
static struct mipi_dsi_host_ops dsi_host_ops = {
.attach = dsi_host_attach,
.detach = dsi_host_detach,
.transfer = dsi_host_transfer,
};
/*
* List of supported physical to logical lane mappings.
* For example, the 2nd entry represents the following mapping:
*
* "3012": Logic 3->Phys 0; Logic 0->Phys 1; Logic 1->Phys 2; Logic 2->Phys 3;
*/
static const int supported_data_lane_swaps[][4] = {
{ 0, 1, 2, 3 },
{ 3, 0, 1, 2 },
{ 2, 3, 0, 1 },
{ 1, 2, 3, 0 },
{ 0, 3, 2, 1 },
{ 1, 0, 3, 2 },
{ 2, 1, 0, 3 },
{ 3, 2, 1, 0 },
};
static int dsi_host_parse_lane_data(struct msm_dsi_host *msm_host,
struct device_node *ep)
{
struct device *dev = &msm_host->pdev->dev;
struct property *prop;
u32 lane_map[4];
int ret, i, len, num_lanes;
prop = of_find_property(ep, "data-lanes", &len);
if (!prop) {
dev_dbg(dev,
"failed to find data lane mapping, using default\n");
return 0;
}
num_lanes = len / sizeof(u32);
if (num_lanes < 1 || num_lanes > 4) {
dev_err(dev, "bad number of data lanes\n");
return -EINVAL;
}
msm_host->num_data_lanes = num_lanes;
ret = of_property_read_u32_array(ep, "data-lanes", lane_map,
num_lanes);
if (ret) {
dev_err(dev, "failed to read lane data\n");
return ret;
}
/*
* compare DT specified physical-logical lane mappings with the ones
* supported by hardware
*/
for (i = 0; i < ARRAY_SIZE(supported_data_lane_swaps); i++) {
const int *swap = supported_data_lane_swaps[i];
int j;
/*
* the data-lanes array we get from DT has a logical->physical
* mapping. The "data lane swap" register field represents
* supported configurations in a physical->logical mapping.
* Translate the DT mapping to what we understand and find a
* configuration that works.
*/
for (j = 0; j < num_lanes; j++) {
if (lane_map[j] < 0 || lane_map[j] > 3)
dev_err(dev, "bad physical lane entry %u\n",
lane_map[j]);
if (swap[lane_map[j]] != j)
break;
}
if (j == num_lanes) {
msm_host->dlane_swap = i;
return 0;
}
}
return -EINVAL;
}
static int dsi_host_parse_dt(struct msm_dsi_host *msm_host)
{
struct device *dev = &msm_host->pdev->dev;
struct device_node *np = dev->of_node;
struct device_node *endpoint, *device_node;
int ret = 0;
/*
* Get the endpoint of the output port of the DSI host. In our case,
* this is mapped to port number with reg = 1. Don't return an error if
* the remote endpoint isn't defined. It's possible that there is
* nothing connected to the dsi output.
*/
endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
if (!endpoint) {
dev_dbg(dev, "%s: no endpoint\n", __func__);
return 0;
}
ret = dsi_host_parse_lane_data(msm_host, endpoint);
if (ret) {
dev_err(dev, "%s: invalid lane configuration %d\n",
__func__, ret);
goto err;
}
/* Get panel node from the output port's endpoint data */
device_node = of_graph_get_remote_node(np, 1, 0);
if (!device_node) {
dev_dbg(dev, "%s: no valid device\n", __func__);
goto err;
}
msm_host->device_node = device_node;
if (of_property_read_bool(np, "syscon-sfpb")) {
msm_host->sfpb = syscon_regmap_lookup_by_phandle(np,
"syscon-sfpb");
if (IS_ERR(msm_host->sfpb)) {
dev_err(dev, "%s: failed to get sfpb regmap\n",
__func__);
ret = PTR_ERR(msm_host->sfpb);
}
}
of_node_put(device_node);
err:
of_node_put(endpoint);
return ret;
}
static int dsi_host_get_id(struct msm_dsi_host *msm_host)
{
struct platform_device *pdev = msm_host->pdev;
const struct msm_dsi_config *cfg = msm_host->cfg_hnd->cfg;
struct resource *res;
int i;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_ctrl");
if (!res)
return -EINVAL;
for (i = 0; i < cfg->num_dsi; i++) {
if (cfg->io_start[i] == res->start)
return i;
}
return -EINVAL;
}
int msm_dsi_host_init(struct msm_dsi *msm_dsi)
{
struct msm_dsi_host *msm_host = NULL;
struct platform_device *pdev = msm_dsi->pdev;
int ret;
msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL);
if (!msm_host) {
pr_err("%s: FAILED: cannot alloc dsi host\n",
__func__);
ret = -ENOMEM;
goto fail;
}
msm_host->pdev = pdev;
msm_dsi->host = &msm_host->base;
ret = dsi_host_parse_dt(msm_host);
if (ret) {
pr_err("%s: failed to parse dt\n", __func__);
goto fail;
}
msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL");
if (IS_ERR(msm_host->ctrl_base)) {
pr_err("%s: unable to map Dsi ctrl base\n", __func__);
ret = PTR_ERR(msm_host->ctrl_base);
goto fail;
}
pm_runtime_enable(&pdev->dev);
msm_host->cfg_hnd = dsi_get_config(msm_host);
if (!msm_host->cfg_hnd) {
ret = -EINVAL;
pr_err("%s: get config failed\n", __func__);
goto fail;
}
msm_host->id = dsi_host_get_id(msm_host);
if (msm_host->id < 0) {
ret = msm_host->id;
pr_err("%s: unable to identify DSI host index\n", __func__);
goto fail;
}
/* fixup base address by io offset */
msm_host->ctrl_base += msm_host->cfg_hnd->cfg->io_offset;
ret = dsi_regulator_init(msm_host);
if (ret) {
pr_err("%s: regulator init failed\n", __func__);
goto fail;
}
ret = dsi_clk_init(msm_host);
if (ret) {
pr_err("%s: unable to initialize dsi clks\n", __func__);
goto fail;
}
msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL);
if (!msm_host->rx_buf) {
ret = -ENOMEM;
pr_err("%s: alloc rx temp buf failed\n", __func__);
goto fail;
}
init_completion(&msm_host->dma_comp);
init_completion(&msm_host->video_comp);
mutex_init(&msm_host->dev_mutex);
mutex_init(&msm_host->cmd_mutex);
spin_lock_init(&msm_host->intr_lock);
/* setup workqueue */
msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0);
INIT_WORK(&msm_host->err_work, dsi_err_worker);
INIT_WORK(&msm_host->hpd_work, dsi_hpd_worker);
msm_dsi->id = msm_host->id;
DBG("Dsi Host %d initialized", msm_host->id);
return 0;
fail:
return ret;
}
void msm_dsi_host_destroy(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
DBG("");
dsi_tx_buf_free(msm_host);
if (msm_host->workqueue) {
flush_workqueue(msm_host->workqueue);
destroy_workqueue(msm_host->workqueue);
msm_host->workqueue = NULL;
}
mutex_destroy(&msm_host->cmd_mutex);
mutex_destroy(&msm_host->dev_mutex);
pm_runtime_disable(&msm_host->pdev->dev);
}
int msm_dsi_host_modeset_init(struct mipi_dsi_host *host,
struct drm_device *dev)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
struct platform_device *pdev = msm_host->pdev;
int ret;
msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
if (msm_host->irq < 0) {
ret = msm_host->irq;
dev_err(dev->dev, "failed to get irq: %d\n", ret);
return ret;
}
ret = devm_request_irq(&pdev->dev, msm_host->irq,
dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"dsi_isr", msm_host);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ%u: %d\n",
msm_host->irq, ret);
return ret;
}
msm_host->dev = dev;
ret = cfg_hnd->ops->tx_buf_alloc(msm_host, SZ_4K);
if (ret) {
pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret);
return ret;
}
return 0;
}
int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
int ret;
/* Register mipi dsi host */
if (!msm_host->registered) {
host->dev = &msm_host->pdev->dev;
host->ops = &dsi_host_ops;
ret = mipi_dsi_host_register(host);
if (ret)
return ret;
msm_host->registered = true;
/* If the panel driver has not been probed after host register,
* we should defer the host's probe.
* It makes sure panel is connected when fbcon detects
* connector status and gets the proper display mode to
* create framebuffer.
* Don't try to defer if there is nothing connected to the dsi
* output
*/
if (check_defer && msm_host->device_node) {
if (IS_ERR(of_drm_find_panel(msm_host->device_node)))
if (!of_drm_find_bridge(msm_host->device_node))
return -EPROBE_DEFER;
}
}
return 0;
}
void msm_dsi_host_unregister(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (msm_host->registered) {
mipi_dsi_host_unregister(host);
host->dev = NULL;
host->ops = NULL;
msm_host->registered = false;
}
}
int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
/* TODO: make sure dsi_cmd_mdp is idle.
* Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME
* to ask H/W to wait until cmd mdp is idle. S/W wait is not needed.
* How to handle the old versions? Wait for mdp cmd done?
*/
/*
* mdss interrupt is generated in mdp core clock domain
* mdp clock need to be enabled to receive dsi interrupt
*/
pm_runtime_get_sync(&msm_host->pdev->dev);
cfg_hnd->ops->link_clk_enable(msm_host);
/* TODO: vote for bus bandwidth */
if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
dsi_set_tx_power_mode(0, msm_host);
msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL);
dsi_write(msm_host, REG_DSI_CTRL,
msm_host->dma_cmd_ctrl_restore |
DSI_CTRL_CMD_MODE_EN |
DSI_CTRL_ENABLE);
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1);
return 0;
}
void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0);
dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore);
if (!(msg->flags & MIPI_DSI_MSG_USE_LPM))
dsi_set_tx_power_mode(1, msm_host);
/* TODO: unvote for bus bandwidth */
cfg_hnd->ops->link_clk_disable(msm_host);
pm_runtime_put_autosuspend(&msm_host->pdev->dev);
}
int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
return dsi_cmds2buf_tx(msm_host, msg);
}
int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
int data_byte, rx_byte, dlen, end;
int short_response, diff, pkt_size, ret = 0;
char cmd;
int rlen = msg->rx_len;
u8 *buf;
if (rlen <= 2) {
short_response = 1;
pkt_size = rlen;
rx_byte = 4;
} else {
short_response = 0;
data_byte = 10; /* first read */
if (rlen < data_byte)
pkt_size = rlen;
else
pkt_size = data_byte;
rx_byte = data_byte + 6; /* 4 header + 2 crc */
}
buf = msm_host->rx_buf;
end = 0;
while (!end) {
u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8};
struct mipi_dsi_msg max_pkt_size_msg = {
.channel = msg->channel,
.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
.tx_len = 2,
.tx_buf = tx,
};
DBG("rlen=%d pkt_size=%d rx_byte=%d",
rlen, pkt_size, rx_byte);
ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg);
if (ret < 2) {
pr_err("%s: Set max pkt size failed, %d\n",
__func__, ret);
return -EINVAL;
}
if ((cfg_hnd->major == MSM_DSI_VER_MAJOR_6G) &&
(cfg_hnd->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) {
/* Clear the RDBK_DATA registers */
dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL,
DSI_RDBK_DATA_CTRL_CLR);
wmb(); /* make sure the RDBK registers are cleared */
dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0);
wmb(); /* release cleared status before transfer */
}
ret = dsi_cmds2buf_tx(msm_host, msg);
if (ret < msg->tx_len) {
pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret);
return ret;
}
/*
* once cmd_dma_done interrupt received,
* return data from client is ready and stored
* at RDBK_DATA register already
* since rx fifo is 16 bytes, dcs header is kept at first loop,
* after that dcs header lost during shift into registers
*/
dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size);
if (dlen <= 0)
return 0;
if (short_response)
break;
if (rlen <= data_byte) {
diff = data_byte - rlen;
end = 1;
} else {
diff = 0;
rlen -= data_byte;
}
if (!end) {
dlen -= 2; /* 2 crc */
dlen -= diff;
buf += dlen; /* next start position */
data_byte = 14; /* NOT first read */
if (rlen < data_byte)
pkt_size += rlen;
else
pkt_size += data_byte;
DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff);
}
}
/*
* For single Long read, if the requested rlen < 10,
* we need to shift the start position of rx
* data buffer to skip the bytes which are not
* updated.
*/
if (pkt_size < 10 && !short_response)
buf = msm_host->rx_buf + (10 - rlen);
else
buf = msm_host->rx_buf;
cmd = buf[0];
switch (cmd) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__);
ret = 0;
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
ret = dsi_short_read1_resp(buf, msg);
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
ret = dsi_short_read2_resp(buf, msg);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
ret = dsi_long_read_resp(buf, msg);
break;
default:
pr_warn("%s:Invalid response cmd\n", __func__);
ret = 0;
}
return ret;
}
void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 dma_base,
u32 len)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_write(msm_host, REG_DSI_DMA_BASE, dma_base);
dsi_write(msm_host, REG_DSI_DMA_LEN, len);
dsi_write(msm_host, REG_DSI_TRIG_DMA, 1);
/* Make sure trigger happens */
wmb();
}
int msm_dsi_host_set_src_pll(struct mipi_dsi_host *host,
struct msm_dsi_pll *src_pll)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
struct clk *byte_clk_provider, *pixel_clk_provider;
int ret;
ret = msm_dsi_pll_get_clk_provider(src_pll,
&byte_clk_provider, &pixel_clk_provider);
if (ret) {
pr_info("%s: can't get provider from pll, don't set parent\n",
__func__);
return 0;
}
ret = clk_set_parent(msm_host->byte_clk_src, byte_clk_provider);
if (ret) {
pr_err("%s: can't set parent to byte_clk_src. ret=%d\n",
__func__, ret);
goto exit;
}
ret = clk_set_parent(msm_host->pixel_clk_src, pixel_clk_provider);
if (ret) {
pr_err("%s: can't set parent to pixel_clk_src. ret=%d\n",
__func__, ret);
goto exit;
}
if (msm_host->dsi_clk_src) {
ret = clk_set_parent(msm_host->dsi_clk_src, pixel_clk_provider);
if (ret) {
pr_err("%s: can't set parent to dsi_clk_src. ret=%d\n",
__func__, ret);
goto exit;
}
}
if (msm_host->esc_clk_src) {
ret = clk_set_parent(msm_host->esc_clk_src, byte_clk_provider);
if (ret) {
pr_err("%s: can't set parent to esc_clk_src. ret=%d\n",
__func__, ret);
goto exit;
}
}
exit:
return ret;
}
void msm_dsi_host_reset_phy(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
DBG("");
dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET);
/* Make sure fully reset */
wmb();
udelay(1000);
dsi_write(msm_host, REG_DSI_PHY_RESET, 0);
udelay(100);
}
void msm_dsi_host_get_phy_clk_req(struct mipi_dsi_host *host,
struct msm_dsi_phy_clk_request *clk_req,
bool is_dual_dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
int ret;
ret = cfg_hnd->ops->calc_clk_rate(msm_host, is_dual_dsi);
if (ret) {
pr_err("%s: unable to calc clk rate, %d\n", __func__, ret);
return;
}
clk_req->bitclk_rate = msm_host->byte_clk_rate * 8;
clk_req->escclk_rate = msm_host->esc_clk_rate;
}
int msm_dsi_host_enable(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
dsi_op_mode_config(msm_host,
!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true);
/* TODO: clock should be turned off for command mode,
* and only turned on before MDP START.
* This part of code should be enabled once mdp driver support it.
*/
/* if (msm_panel->mode == MSM_DSI_CMD_MODE) {
* dsi_link_clk_disable(msm_host);
* pm_runtime_put_autosuspend(&msm_host->pdev->dev);
* }
*/
msm_host->enabled = true;
return 0;
}
int msm_dsi_host_disable(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
msm_host->enabled = false;
dsi_op_mode_config(msm_host,
!!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false);
/* Since we have disabled INTF, the video engine won't stop so that
* the cmd engine will be blocked.
* Reset to disable video engine so that we can send off cmd.
*/
dsi_sw_reset(msm_host);
return 0;
}
static void msm_dsi_sfpb_config(struct msm_dsi_host *msm_host, bool enable)
{
enum sfpb_ahb_arb_master_port_en en;
if (!msm_host->sfpb)
return;
en = enable ? SFPB_MASTER_PORT_ENABLE : SFPB_MASTER_PORT_DISABLE;
regmap_update_bits(msm_host->sfpb, REG_SFPB_GPREG,
SFPB_GPREG_MASTER_PORT_EN__MASK,
SFPB_GPREG_MASTER_PORT_EN(en));
}
int msm_dsi_host_power_on(struct mipi_dsi_host *host,
struct msm_dsi_phy_shared_timings *phy_shared_timings,
bool is_dual_dsi)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
int ret = 0;
mutex_lock(&msm_host->dev_mutex);
if (msm_host->power_on) {
DBG("dsi host already on");
goto unlock_ret;
}
msm_dsi_sfpb_config(msm_host, true);
ret = dsi_host_regulator_enable(msm_host);
if (ret) {
pr_err("%s:Failed to enable vregs.ret=%d\n",
__func__, ret);
goto unlock_ret;
}
pm_runtime_get_sync(&msm_host->pdev->dev);
ret = cfg_hnd->ops->link_clk_enable(msm_host);
if (ret) {
pr_err("%s: failed to enable link clocks. ret=%d\n",
__func__, ret);
goto fail_disable_reg;
}
ret = pinctrl_pm_select_default_state(&msm_host->pdev->dev);
if (ret) {
pr_err("%s: failed to set pinctrl default state, %d\n",
__func__, ret);
goto fail_disable_clk;
}
dsi_timing_setup(msm_host, is_dual_dsi);
dsi_sw_reset(msm_host);
dsi_ctrl_config(msm_host, true, phy_shared_timings);
if (msm_host->disp_en_gpio)
gpiod_set_value(msm_host->disp_en_gpio, 1);
msm_host->power_on = true;
mutex_unlock(&msm_host->dev_mutex);
return 0;
fail_disable_clk:
cfg_hnd->ops->link_clk_disable(msm_host);
pm_runtime_put_autosuspend(&msm_host->pdev->dev);
fail_disable_reg:
dsi_host_regulator_disable(msm_host);
unlock_ret:
mutex_unlock(&msm_host->dev_mutex);
return ret;
}
int msm_dsi_host_power_off(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
const struct msm_dsi_cfg_handler *cfg_hnd = msm_host->cfg_hnd;
mutex_lock(&msm_host->dev_mutex);
if (!msm_host->power_on) {
DBG("dsi host already off");
goto unlock_ret;
}
dsi_ctrl_config(msm_host, false, NULL);
if (msm_host->disp_en_gpio)
gpiod_set_value(msm_host->disp_en_gpio, 0);
pinctrl_pm_select_sleep_state(&msm_host->pdev->dev);
cfg_hnd->ops->link_clk_disable(msm_host);
pm_runtime_put_autosuspend(&msm_host->pdev->dev);
dsi_host_regulator_disable(msm_host);
msm_dsi_sfpb_config(msm_host, false);
DBG("-");
msm_host->power_on = false;
unlock_ret:
mutex_unlock(&msm_host->dev_mutex);
return 0;
}
int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host,
struct drm_display_mode *mode)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
if (msm_host->mode) {
drm_mode_destroy(msm_host->dev, msm_host->mode);
msm_host->mode = NULL;
}
msm_host->mode = drm_mode_duplicate(msm_host->dev, mode);
if (!msm_host->mode) {
pr_err("%s: cannot duplicate mode\n", __func__);
return -ENOMEM;
}
return 0;
}
struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host,
unsigned long *panel_flags)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
struct drm_panel *panel;
panel = of_drm_find_panel(msm_host->device_node);
if (panel_flags)
*panel_flags = msm_host->mode_flags;
return panel;
}
struct drm_bridge *msm_dsi_host_get_bridge(struct mipi_dsi_host *host)
{
struct msm_dsi_host *msm_host = to_msm_dsi_host(host);
return of_drm_find_bridge(msm_host->device_node);
}