kernel_samsung_a34x-permissive/drivers/gpu/drm/rcar-du/rcar_du_group.c
2024-04-28 15:49:01 +02:00

270 lines
7.9 KiB
C
Executable file

/*
* rcar_du_group.c -- R-Car Display Unit Channels Pair
*
* Copyright (C) 2013-2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/*
* The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
* unit, timings generator, ...) and device-global resources (start/stop
* control, planes, ...) shared between the two CRTCs.
*
* The R8A7790 introduced a third CRTC with its own set of global resources.
* This would be modeled as two separate DU device instances if it wasn't for
* a handful or resources that are shared between the three CRTCs (mostly
* related to input and output routing). For this reason the R8A7790 DU must be
* modeled as a single device with three CRTCs, two sets of "semi-global"
* resources, and a few device-global resources.
*
* The rcar_du_group object is a driver specific object, without any real
* counterpart in the DU documentation, that models those semi-global resources.
*/
#include <linux/clk.h>
#include <linux/io.h>
#include "rcar_du_drv.h"
#include "rcar_du_group.h"
#include "rcar_du_regs.h"
u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
{
return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
}
void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
{
rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
}
static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
{
u32 defr6 = DEFR6_CODE;
if (rgrp->channels_mask & BIT(0))
defr6 |= DEFR6_ODPM02_DISP;
if (rgrp->channels_mask & BIT(1))
defr6 |= DEFR6_ODPM12_DISP;
rcar_du_group_write(rgrp, DEFR6, defr6);
}
static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
unsigned int possible_crtcs =
rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs;
u32 defr8 = DEFR8_CODE;
if (rcdu->info->gen < 3) {
defr8 |= DEFR8_DEFE8;
/*
* On Gen2 the DEFR8 register for the first group also controls
* RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
* DU instances that support it.
*/
if (rgrp->index == 0) {
if (possible_crtcs > 1)
defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
if (rgrp->dev->vspd1_sink == 2)
defr8 |= DEFR8_VSCS;
}
} else {
/*
* On Gen3 VSPD routing can't be configured, but DPAD routing
* needs to be set despite having a single option available.
*/
unsigned int rgb_crtc = ffs(possible_crtcs) - 1;
struct rcar_du_crtc *crtc = &rcdu->crtcs[rgb_crtc];
if (crtc->index / 2 == rgrp->index)
defr8 |= DEFR8_DRGBS_DU(crtc->index);
}
rcar_du_group_write(rgrp, DEFR8, defr8);
}
static void rcar_du_group_setup(struct rcar_du_group *rgrp)
{
struct rcar_du_device *rcdu = rgrp->dev;
/* Enable extended features */
rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
if (rcdu->info->gen < 3) {
rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
}
rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
rcar_du_group_setup_pins(rgrp);
if (rcar_du_has(rgrp->dev, RCAR_DU_FEATURE_EXT_CTRL_REGS)) {
rcar_du_group_setup_defr8(rgrp);
/*
* Configure input dot clock routing. We currently hardcode the
* configuration to routing DOTCLKINn to DUn. Register fields
* depend on the DU generation, but the resulting value is 0 in
* all cases.
*
* On Gen2 a single register in the first group controls dot
* clock selection for all channels, while on Gen3 dot clocks
* are setup through per-group registers, only available when
* the group has two channels.
*/
if ((rcdu->info->gen < 3 && rgrp->index == 0) ||
(rcdu->info->gen == 3 && rgrp->num_crtcs > 1))
rcar_du_group_write(rgrp, DIDSR, DIDSR_CODE);
}
if (rcdu->info->gen >= 3)
rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
/*
* Use DS1PR and DS2PR to configure planes priorities and connects the
* superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
*/
rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
/* Apply planes to CRTCs association. */
mutex_lock(&rgrp->lock);
rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
rgrp->dptsr_planes);
mutex_unlock(&rgrp->lock);
}
/*
* rcar_du_group_get - Acquire a reference to the DU channels group
*
* Acquiring the first reference setups core registers. A reference must be held
* before accessing any hardware registers.
*
* This function must be called with the DRM mode_config lock held.
*
* Return 0 in case of success or a negative error code otherwise.
*/
int rcar_du_group_get(struct rcar_du_group *rgrp)
{
if (rgrp->use_count)
goto done;
rcar_du_group_setup(rgrp);
done:
rgrp->use_count++;
return 0;
}
/*
* rcar_du_group_put - Release a reference to the DU
*
* This function must be called with the DRM mode_config lock held.
*/
void rcar_du_group_put(struct rcar_du_group *rgrp)
{
--rgrp->use_count;
}
static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
rcar_du_group_write(rgrp, DSYSR,
(rcar_du_group_read(rgrp, DSYSR) & ~(DSYSR_DRES | DSYSR_DEN)) |
(start ? DSYSR_DEN : DSYSR_DRES));
}
void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
{
/*
* Many of the configuration bits are only updated when the display
* reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
* of those bits could be pre-configured, but others (especially the
* bits related to plane assignment to display timing controllers) need
* to be modified at runtime.
*
* Restart the display controller if a start is requested. Sorry for the
* flicker. It should be possible to move most of the "DRES-update" bits
* setup to driver initialization time and minimize the number of cases
* when the display controller will have to be restarted.
*/
if (start) {
if (rgrp->used_crtcs++ != 0)
__rcar_du_group_start_stop(rgrp, false);
__rcar_du_group_start_stop(rgrp, true);
} else {
if (--rgrp->used_crtcs == 0)
__rcar_du_group_start_stop(rgrp, false);
}
}
void rcar_du_group_restart(struct rcar_du_group *rgrp)
{
rgrp->need_restart = false;
__rcar_du_group_start_stop(rgrp, false);
__rcar_du_group_start_stop(rgrp, true);
}
int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
{
struct rcar_du_group *rgrp;
struct rcar_du_crtc *crtc;
unsigned int index;
int ret;
if (!rcar_du_has(rcdu, RCAR_DU_FEATURE_EXT_CTRL_REGS))
return 0;
/*
* RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
* configured in the DEFR8 register of the first group on Gen2 and the
* last group on Gen3. As this function can be called with the DU
* channels of the corresponding CRTCs disabled, we need to enable the
* group clock before accessing the register.
*/
index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
rgrp = &rcdu->groups[index];
crtc = &rcdu->crtcs[index * 2];
ret = clk_prepare_enable(crtc->clock);
if (ret < 0)
return ret;
rcar_du_group_setup_defr8(rgrp);
clk_disable_unprepare(crtc->clock);
return 0;
}
int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
{
struct rcar_du_crtc *crtc0 = &rgrp->dev->crtcs[rgrp->index * 2];
u32 dorcr = rcar_du_group_read(rgrp, DORCR);
dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);
/*
* Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
* CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
* by default.
*/
if (crtc0->outputs & BIT(RCAR_DU_OUTPUT_DPAD1))
dorcr |= DORCR_PG2D_DS1;
else
dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;
rcar_du_group_write(rgrp, DORCR, dorcr);
return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
}