kernel_samsung_a34x-permissive/drivers/iio/adc/mt635x-auxadc.c
2024-04-28 15:49:01 +02:00

1299 lines
35 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/iio.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/mt6357/registers.h>
#include <linux/mfd/mt6358/registers.h>
#include <linux/mfd/mt6359/registers.h>
#if defined(CONFIG_MTK_PMIC_CHIP_MT6359)
#include <linux/mfd/mt6358/core.h>
#endif
#include <linux/mfd/mt6397/core.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regmap.h>
#include <linux/syscore_ops.h>
#include <dt-bindings/iio/mt635x-auxadc.h>
#include <mt-plat/aee.h>
#define AUXADC_DEBUG 1
#define AUXADC_RDY_BIT BIT(15)
#define AUXADC_DEF_R_RATIO 1
#define AUXADC_DEF_AVG_NUM 8
#define AUXADC_AVG_TIME_US 10
#define AUXADC_POLL_DELAY_US 100
#define AUXADC_TIMEOUT_US 32000
#define VOLT_FULL 1800
#define IMP_VOLT_FULL 18000
#define IMP_POLL_DELAY_US 1000
#define IMP_STOP_DELAY_US 150
struct mt635x_auxadc_device {
unsigned int chip_id;
struct regmap *regmap;
struct device *dev;
unsigned int nchannels;
struct iio_chan_spec *iio_chans;
struct mutex lock;
const struct auxadc_info *info;
int imp_vbat;
int imix_r;
};
/*
* @ch_name: HW channel name
* @ch_num: HW channel number
* @res: ADC resolution
* @r_ratio: resistance ratio, represented by r_ratio[0] / r_ratio[1]
* @avg_num: sampling times of AUXADC measurments then average it
* @regs: request and data output registers for this channel
* @has_regs: determine if this channel has request and data output registers
*/
struct auxadc_channels {
enum iio_chan_type type;
long info_mask;
/* AUXADC channel attribute */
const char *ch_name;
unsigned char ch_num;
unsigned char res;
unsigned char r_ratio[2];
unsigned short avg_num;
const struct auxadc_regs *regs;
bool has_regs;
#if AUXADC_DEBUG
void (*convert_fn)(struct mt635x_auxadc_device *adc_dev,
unsigned char convert);
int (*cali_fn)(struct mt635x_auxadc_device *adc_dev,
int val, int precision_factor);
#endif
};
#define MT635x_AUXADC_CHANNEL(_ch_name, _ch_num, _res, _has_regs) \
[AUXADC_##_ch_name] = { \
.type = IIO_VOLTAGE, \
.info_mask = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_PROCESSED), \
.ch_name = __stringify(_ch_name), \
.ch_num = _ch_num, \
.res = _res, \
.has_regs = _has_regs, \
}
/*
* The array represents all possible AUXADC channels found
* in the supported PMICs.
*/
static struct auxadc_channels auxadc_chans[] = {
MT635x_AUXADC_CHANNEL(BATADC, 0, 15, true),
MT635x_AUXADC_CHANNEL(ISENSE, 0, 15, true),
MT635x_AUXADC_CHANNEL(VCDT, 2, 12, true),
MT635x_AUXADC_CHANNEL(BAT_TEMP, 3, 12, true),
MT635x_AUXADC_CHANNEL(BATID, 3, 12, true),
MT635x_AUXADC_CHANNEL(CHIP_TEMP, 4, 12, true),
MT635x_AUXADC_CHANNEL(VCORE_TEMP, 4, 12, true),
MT635x_AUXADC_CHANNEL(VPROC_TEMP, 4, 12, true),
MT635x_AUXADC_CHANNEL(VGPU_TEMP, 4, 12, true),
MT635x_AUXADC_CHANNEL(ACCDET, 5, 12, true),
MT635x_AUXADC_CHANNEL(VDCXO, 6, 12, true),
MT635x_AUXADC_CHANNEL(TSX_TEMP, 7, 15, true),
MT635x_AUXADC_CHANNEL(HPOFS_CAL, 9, 15, true),
MT635x_AUXADC_CHANNEL(DCXO_TEMP, 10, 15, true),
MT635x_AUXADC_CHANNEL(VBIF, 11, 12, true),
MT635x_AUXADC_CHANNEL(IMP, 0, 15, false),
[AUXADC_IMIX_R] = {
.type = IIO_RESISTANCE,
.info_mask = BIT(IIO_CHAN_INFO_RAW),
.ch_name = "IMIX_R",
.has_regs = false,
},
};
struct auxadc_regs {
unsigned int rqst_reg;
unsigned int rqst_shift;
unsigned int out_reg;
};
#define MT635x_AUXADC_REG(_ch_name, _chip, _rqst_reg, _rqst_shift, _out_reg) \
[AUXADC_##_ch_name] = { \
.rqst_reg = _chip##_##_rqst_reg, \
.rqst_shift = _rqst_shift, \
.out_reg = _chip##_##_out_reg, \
} \
static const struct auxadc_regs mt6357_auxadc_regs_tbl[] = {
MT635x_AUXADC_REG(BATADC, MT6357, AUXADC_RQST0, 0, AUXADC_ADC0),
MT635x_AUXADC_REG(ISENSE, MT6357, AUXADC_RQST0, 1, AUXADC_ADC1),
MT635x_AUXADC_REG(VCDT, MT6357, AUXADC_RQST0, 2, AUXADC_ADC2),
MT635x_AUXADC_REG(BAT_TEMP, MT6357, AUXADC_RQST0, 3, AUXADC_ADC3),
MT635x_AUXADC_REG(CHIP_TEMP, MT6357, AUXADC_RQST0, 4, AUXADC_ADC4),
MT635x_AUXADC_REG(VCORE_TEMP, MT6357, AUXADC_RQST2, 5, AUXADC_ADC46),
MT635x_AUXADC_REG(VPROC_TEMP, MT6357, AUXADC_RQST2, 6, AUXADC_ADC47),
MT635x_AUXADC_REG(ACCDET, MT6357, AUXADC_RQST0, 5, AUXADC_ADC5),
MT635x_AUXADC_REG(TSX_TEMP, MT6357, AUXADC_RQST0, 7, AUXADC_ADC7),
MT635x_AUXADC_REG(HPOFS_CAL, MT6357, AUXADC_RQST0, 9, AUXADC_ADC9),
MT635x_AUXADC_REG(DCXO_TEMP, MT6357, AUXADC_RQST0, 4, AUXADC_ADC40),
MT635x_AUXADC_REG(VBIF, MT6357, AUXADC_RQST0, 11, AUXADC_ADC11),
};
static const struct auxadc_regs mt6358_auxadc_regs_tbl[] = {
MT635x_AUXADC_REG(BATADC, MT6358, AUXADC_RQST0, 0, AUXADC_ADC0),
MT635x_AUXADC_REG(VCDT, MT6358, AUXADC_RQST0, 2, AUXADC_ADC2),
MT635x_AUXADC_REG(BAT_TEMP, MT6358, AUXADC_RQST0, 3, AUXADC_ADC3),
MT635x_AUXADC_REG(CHIP_TEMP, MT6358, AUXADC_RQST0, 4, AUXADC_ADC4),
MT635x_AUXADC_REG(VCORE_TEMP, MT6358, AUXADC_RQST1, 8, AUXADC_ADC38),
MT635x_AUXADC_REG(VPROC_TEMP, MT6358, AUXADC_RQST1, 9, AUXADC_ADC39),
MT635x_AUXADC_REG(VGPU_TEMP, MT6358, AUXADC_RQST1, 10, AUXADC_ADC40),
MT635x_AUXADC_REG(ACCDET, MT6358, AUXADC_RQST0, 5, AUXADC_ADC5),
MT635x_AUXADC_REG(VDCXO, MT6358, AUXADC_RQST0, 6, AUXADC_ADC6),
MT635x_AUXADC_REG(TSX_TEMP, MT6358, AUXADC_RQST0, 7, AUXADC_ADC7),
MT635x_AUXADC_REG(HPOFS_CAL, MT6358, AUXADC_RQST0, 9, AUXADC_ADC9),
MT635x_AUXADC_REG(DCXO_TEMP, MT6358, AUXADC_RQST0, 10, AUXADC_ADC10),
MT635x_AUXADC_REG(VBIF, MT6358, AUXADC_RQST0, 11, AUXADC_ADC11),
};
static const struct auxadc_regs mt6359_auxadc_regs_tbl[] = {
MT635x_AUXADC_REG(BATADC, MT6359, AUXADC_RQST0, 0, AUXADC_ADC0),
MT635x_AUXADC_REG(BAT_TEMP, MT6359, AUXADC_RQST0, 3, AUXADC_ADC3),
MT635x_AUXADC_REG(CHIP_TEMP, MT6359, AUXADC_RQST0, 4, AUXADC_ADC4),
MT635x_AUXADC_REG(VCORE_TEMP, MT6359, AUXADC_RQST1, 8, AUXADC_ADC38),
MT635x_AUXADC_REG(VPROC_TEMP, MT6359, AUXADC_RQST1, 9, AUXADC_ADC39),
MT635x_AUXADC_REG(VGPU_TEMP, MT6359, AUXADC_RQST1, 10, AUXADC_ADC40),
MT635x_AUXADC_REG(ACCDET, MT6359, AUXADC_RQST0, 5, AUXADC_ADC5),
MT635x_AUXADC_REG(VDCXO, MT6359, AUXADC_RQST0, 6, AUXADC_ADC6),
MT635x_AUXADC_REG(TSX_TEMP, MT6359, AUXADC_RQST0, 7, AUXADC_ADC7),
MT635x_AUXADC_REG(HPOFS_CAL, MT6359, AUXADC_RQST0, 9, AUXADC_ADC9),
MT635x_AUXADC_REG(DCXO_TEMP, MT6359, AUXADC_RQST0, 10, AUXADC_ADC10),
MT635x_AUXADC_REG(VBIF, MT6359, AUXADC_RQST0, 11, AUXADC_ADC11),
};
static const unsigned int mt6357_en_isink_setting[][3] = {
{
MT6357_DRIVER_ANA_CON0, 0xC000, 0xC000,
}, {
MT6357_ISINK_EN_CTRL_SMPL, 0xC00, 0xC00,
}, {
MT6357_ISINK_EN_CTRL_SMPL, 0xC, 0xC,
}
};
static const unsigned int mt6357_dis_isink_setting[][3] = {
{
MT6357_ISINK_EN_CTRL_SMPL, 0xC, 0x0,
}, {
MT6357_ISINK_EN_CTRL_SMPL, 0xC00, 0x0,
}
};
static const unsigned int mt6359_en_isink_setting[][3] = {
{
MT6359_ISINK0_CON1, 0x7000, 0x7000,
}, {
MT6359_ISINK1_CON1, 0x7000, 0x7000,
}, {
MT6359_ISINK_EN_CTRL_SMPL, 0x300, 0x300,
}, {
MT6359_ISINK_EN_CTRL_SMPL, 0x3, 0x3,
}
};
static const unsigned int mt6359_dis_isink_setting[][3] = {
{
MT6359_ISINK_EN_CTRL_SMPL, 0x3, 0x0,
}, {
MT6359_ISINK_EN_CTRL_SMPL, 0x300, 0x0,
}
};
#if AUXADC_DEBUG
static const unsigned int mt6357_dbg_regs[] = {
MT6357_AUXADC_STA0, MT6357_AUXADC_STA1, MT6357_AUXADC_STA2,
MT6357_STRUP_CON6, MT6357_HK_TOP_RST_CON0,
MT6357_HK_TOP_CLK_CON0, MT6357_HK_TOP_CLK_CON1,
MT6357_AUXADC_IMP_CG0, MT6357_AUXADC_IMP0, MT6357_AUXADC_IMP1,
};
static const unsigned int mt6358_dbg_regs[] = {
MT6358_AUXADC_STA0, MT6358_AUXADC_STA1, MT6358_AUXADC_STA2,
MT6358_STRUP_CON6, MT6358_HK_TOP_RST_CON0,
MT6358_HK_TOP_CLK_CON0, MT6358_HK_TOP_CLK_CON1,
MT6358_AUXADC_CON20, /* check DATA_REUSE */
};
static const unsigned int mt6359_dbg_regs[] = {
MT6359_AUXADC_STA0, MT6359_AUXADC_STA1, MT6359_AUXADC_STA2,
MT6359_AUXADC_CON5, MT6359_AUXADC_CON9, MT6359_AUXADC_CON21,
MT6359_HK_TOP_LDO_STATUS,
MT6359_AUXADC_NAG_9, MT6359_AUXADC_NAG_10, MT6359_AUXADC_NAG_11,
MT6359_AUXADC_IMP3, MT6359_AUXADC_IMP4, MT6359_AUXADC_IMP5,
MT6359_AUXADC_LBAT6, MT6359_AUXADC_LBAT7, MT6359_AUXADC_LBAT8,
MT6359_AUXADC_BAT_TEMP_7, MT6359_AUXADC_BAT_TEMP_8,
MT6359_AUXADC_BAT_TEMP_9,
MT6359_AUXADC_LBAT2_6, MT6359_AUXADC_LBAT2_7, MT6359_AUXADC_LBAT2_8,
MT6359_AUXADC_MDRT_3, MT6359_AUXADC_MDRT_4, MT6359_AUXADC_MDRT_5,
MT6359_HK_TOP_STRUP, MT6359_HK_TOP_RST_CON0,
MT6359_HK_TOP_CLK_CON0, MT6359_HK_TOP_CLK_CON1,
MT6359_AUXADC_CON20, /* check DATA_REUSE */
};
static const unsigned int mt6357_rst_setting[][3] = {
{
MT6357_HK_TOP_RST_CON0, 0x9, 0x9,
}, {
MT6357_HK_TOP_RST_CON0, 0x9, 0,
}, {
MT6357_AUXADC_RQST0, 0x80, 0x80,
}, {
MT6357_AUXADC_RQST1, 0x400, 0x400,
}
};
static const unsigned int mt6358_rst_setting[][3] = {
{
MT6358_HK_TOP_RST_CON0, 0x9, 0x9,
}, {
MT6358_HK_TOP_RST_CON0, 0x9, 0,
}, {
MT6358_AUXADC_RQST0, 0x80, 0x80,
}, {
MT6358_AUXADC_RQST1, 0x40, 0x40,
}
};
static const unsigned int mt6359_rst_setting[][3] = {
{
MT6359_HK_TOP_WKEY, 0xFFFF, 0x6359,
}, {
MT6359_HK_TOP_RST_CON0, 0x9, 0x9,
}, {
MT6359_HK_TOP_RST_CON0, 0x9, 0,
}, {
MT6359_HK_TOP_WKEY, 0xFFFF, 0,
}, {
MT6359_AUXADC_RQST0, 0x80, 0x80,
}, {
MT6359_AUXADC_RQST1, 0x40, 0x40,
}
};
#endif
struct auxadc_info {
const struct auxadc_regs *regs_tbl;
const unsigned int (*en_isink_setting)[3];
unsigned int num_en_isink_setting;
const unsigned int (*dis_isink_setting)[3];
unsigned int num_dis_isink_setting;
int (*imp_conv)(struct mt635x_auxadc_device *adc_dev,
int *vbat, int *ibat);
void (*imp_stop)(struct mt635x_auxadc_device *adc_dev);
#if AUXADC_DEBUG
const unsigned int *dbg_regs;
unsigned int num_dbg_regs;
const unsigned int (*rst_setting)[3];
unsigned int num_rst_setting;
#endif
};
#if AUXADC_DEBUG
/* Put debug PURPOSE and WK setting hear */
static void auxadc_reset(struct mt635x_auxadc_device *adc_dev)
{
int i;
for (i = 0; i < adc_dev->info->num_rst_setting; i++) {
regmap_update_bits(adc_dev->regmap,
adc_dev->info->rst_setting[i][0],
adc_dev->info->rst_setting[i][1],
adc_dev->info->rst_setting[i][2]);
}
dev_info(adc_dev->dev, "reset AUXADC done\n");
}
static void auxadc_debug_dump(struct mt635x_auxadc_device *adc_dev,
int timeout_times)
{
int i = 0, len = 0;
unsigned char reg_log[631] = "", reg_str[21] = "";
unsigned int reg_val = 0;
for (i = 0; i < adc_dev->info->num_dbg_regs; i++) {
regmap_read(adc_dev->regmap,
adc_dev->info->dbg_regs[i], &reg_val);
len += snprintf(reg_str, 20, "Reg[0x%x]=0x%x,",
adc_dev->info->dbg_regs[i], reg_val);
strncat(reg_log, reg_str, ARRAY_SIZE(reg_log) - 1);
}
if (len)
dev_notice(adc_dev->dev,
"(%s)Time out!(%d) %s\n"
, __func__, timeout_times, reg_log);
}
static void imp_timeout_handler(struct mt635x_auxadc_device *adc_dev,
bool is_timeout)
{
static unsigned short timeout_times;
if (is_timeout == false) {
timeout_times = 0;
return;
}
timeout_times++;
auxadc_debug_dump(adc_dev, timeout_times);
if (timeout_times == 5)
auxadc_reset(adc_dev);
#if IS_ENABLED(CONFIG_MTK_AEE_FEATURE)
else if (timeout_times > 5)
aee_kernel_warning("PTIM timeout", "PTIM");
#endif
}
static void auxadc_timeout_handler(struct mt635x_auxadc_device *adc_dev,
bool is_timeout)
{
static unsigned short timeout_times;
if (is_timeout == false) {
timeout_times = 0;
return;
}
timeout_times++;
auxadc_debug_dump(adc_dev, timeout_times);
if (timeout_times == 11)
auxadc_reset(adc_dev);
}
#endif
#if 0
int get_auxadc_out(struct mt635x_auxadc_device *adc_dev,
const struct auxadc_channels *auxadc_chan, int *val);
int auxadc_priv_read_channel(struct device *dev, int channel)
{
const struct auxadc_channels *auxadc_chan;
struct iio_dev *indio_dev;
struct mt635x_auxadc_device *adc_dev;
int val, ret;
auxadc_chan = &auxadc_chans[channel];
indio_dev = platform_get_drvdata(to_platform_device(dev));
adc_dev = iio_priv(indio_dev);
ret = get_auxadc_out(adc_dev, auxadc_chan, &val);
val = val * auxadc_chan->r_ratio[0] * VOLT_FULL;
val = (val / auxadc_chan->r_ratio[1]) >> auxadc_chan->res;
return val;
}
#endif
unsigned char *auxadc_get_r_ratio(int channel)
{
const struct auxadc_channels *auxadc_chan = &auxadc_chans[channel];
return (unsigned char *)auxadc_chan->r_ratio;
}
static inline int auxadc_conv_imp_vbat(struct mt635x_auxadc_device *adc_dev)
{
int vbat;
vbat = adc_dev->imp_vbat;
vbat = vbat * auxadc_chans[AUXADC_IMP].r_ratio[0] * IMP_VOLT_FULL;
vbat = (vbat / auxadc_chans[AUXADC_IMP].r_ratio[1]) >>
auxadc_chans[AUXADC_IMP].res;
return vbat;
}
static struct power_supply *get_mtk_gauge_psy(void)
{
static struct power_supply *psy;
union power_supply_propval prop;
int ret;
if (!psy) {
psy = power_supply_get_by_name("mtk-gauge");
if (!psy) {
pr_err("%s psy is not rdy\n", __func__);
return NULL;
}
}
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_PRESENT,
&prop);
if (!ret && prop.intval == 0)
return psy; /* gauge enabled */
return NULL;
}
static int auxadc_get_imp_ibat(struct mt635x_auxadc_device *adc_dev)
{
struct power_supply *psy;
union power_supply_propval prop;
int ret;
psy = get_mtk_gauge_psy();
/* gauge disabled */
if (!psy)
return 0;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CURRENT_NOW,
&prop);
if (!ret)
return prop.intval;
return 0;
}
/* Using non-sleep delay time for polling IRQ status before suspend */
#define auxadc_imp_poll_timeout(map, addr, val, cond, delay_us, timeout_us) \
({ \
int __ret = 0, __cnt = 0; \
int __max_cnt = (timeout_us) / (delay_us); \
for (;;) { \
__ret = regmap_read((map), (addr), &(val)); \
if (__ret) \
break; \
if (cond) \
break; \
if ((__cnt++) > __max_cnt) { \
pr_err("IMP Time out!\n"); \
__ret = -ETIMEDOUT; \
break; \
} \
udelay(delay_us); \
} \
__ret ?: 0; \
})
#define MT6357_IMP_CK_SW_MODE_MASK BIT(0)
#define MT6357_IMP_CK_SW_EN_MASK BIT(1)
#define MT6357_IMP_AUTORPT_EN_MASK BIT(15)
#define MT6357_IMP_CLR_MASK (BIT(14) | BIT(7))
#define MT6357_IMP_IRQ_RDY_BIT BIT(8)
static int mt6357_imp_conv(struct mt635x_auxadc_device *adc_dev,
int *vbat, int *ibat)
{
int ret, val = 0;
bool is_timeout = false;
/* start conversion */
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP_CG0,
MT6357_IMP_CK_SW_MODE_MASK,
MT6357_IMP_CK_SW_MODE_MASK);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP_CG0,
MT6357_IMP_CK_SW_EN_MASK, MT6357_IMP_CK_SW_EN_MASK);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP1,
MT6357_IMP_AUTORPT_EN_MASK,
MT6357_IMP_AUTORPT_EN_MASK);
/* polling IRQ status */
ret = auxadc_imp_poll_timeout(adc_dev->regmap,
MT6357_AUXADC_IMP0,
val,
(val & MT6357_IMP_IRQ_RDY_BIT),
IMP_POLL_DELAY_US,
AUXADC_TIMEOUT_US);
if (ret == -ETIMEDOUT)
is_timeout = true;
#if AUXADC_DEBUG
imp_timeout_handler(adc_dev, is_timeout);
#endif
/* stop conversion */
adc_dev->info->imp_stop(adc_dev);
/* Get vbat/ibat */
*vbat = adc_dev->imp_vbat;
*ibat = auxadc_get_imp_ibat(adc_dev);
return ret;
}
static void mt6357_imp_stop(struct mt635x_auxadc_device *adc_dev)
{
regmap_read(adc_dev->regmap, MT6357_AUXADC_ADC33, &adc_dev->imp_vbat);
adc_dev->imp_vbat &= BIT(auxadc_chans[AUXADC_IMP].res) - 1;
/* stop conversion after read VBAT */
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP0,
MT6357_IMP_CLR_MASK, MT6357_IMP_CLR_MASK);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP0,
MT6357_IMP_CLR_MASK, 0);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP1,
MT6357_IMP_AUTORPT_EN_MASK, 0);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP_CG0,
MT6357_IMP_CK_SW_MODE_MASK, 0);
regmap_update_bits(adc_dev->regmap, MT6357_AUXADC_IMP_CG0,
MT6357_IMP_CK_SW_EN_MASK, MT6357_IMP_CK_SW_EN_MASK);
}
#define MT6358_IMP_CK_SW_MASK (BIT(1) | BIT(0))
#define MT6358_IMP_AUTORPT_EN_MASK BIT(15)
#define MT6358_IMP_CLR_MASK (BIT(14) | BIT(7))
#define MT6358_IMP_IRQ_RDY_BIT BIT(8)
static int mt6358_imp_conv(struct mt635x_auxadc_device *adc_dev,
int *vbat, int *ibat)
{
int ret, val = 0;
bool is_timeout = false;
/* start conversion */
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_DCM_CON,
MT6358_IMP_CK_SW_MASK, MT6358_IMP_CK_SW_MASK);
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_IMP1,
MT6358_IMP_AUTORPT_EN_MASK,
MT6358_IMP_AUTORPT_EN_MASK);
/* polling IRQ status */
ret = auxadc_imp_poll_timeout(adc_dev->regmap,
MT6358_AUXADC_IMP0,
val,
(val & MT6358_IMP_IRQ_RDY_BIT),
IMP_POLL_DELAY_US,
AUXADC_TIMEOUT_US);
if (ret == -ETIMEDOUT)
is_timeout = true;
#if AUXADC_DEBUG
imp_timeout_handler(adc_dev, is_timeout);
#endif
/* stop conversion */
adc_dev->info->imp_stop(adc_dev);
/* Get vbat/ibat */
*vbat = adc_dev->imp_vbat;
*ibat = auxadc_get_imp_ibat(adc_dev);
return ret;
}
static void mt6358_imp_stop(struct mt635x_auxadc_device *adc_dev)
{
regmap_read(adc_dev->regmap, MT6358_AUXADC_ADC28, &adc_dev->imp_vbat);
adc_dev->imp_vbat &= BIT(auxadc_chans[AUXADC_IMP].res) - 1;
/* stop conversion after read VBAT */
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_IMP0,
MT6358_IMP_CLR_MASK, MT6358_IMP_CLR_MASK);
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_IMP0,
MT6358_IMP_CLR_MASK, 0);
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_IMP1,
MT6358_IMP_AUTORPT_EN_MASK, 0);
regmap_update_bits(adc_dev->regmap, MT6358_AUXADC_DCM_CON,
MT6358_IMP_CK_SW_MASK, 0);
}
#define MT6359_IMP_IRQ_RDY_BIT BIT(15)
static int mt6359_imp_conv(struct mt635x_auxadc_device *adc_dev,
int *vbat, int *ibat)
{
int ret, val = 0;
bool is_timeout = false;
/* start conversion */
regmap_write(adc_dev->regmap, MT6359_AUXADC_IMP0, 1);
/* polling IRQ status */
ret = auxadc_imp_poll_timeout(adc_dev->regmap,
MT6359_AUXADC_IMP1,
val,
(val & MT6359_IMP_IRQ_RDY_BIT),
IMP_POLL_DELAY_US,
AUXADC_TIMEOUT_US);
if (ret == -ETIMEDOUT)
is_timeout = true;
#if AUXADC_DEBUG
imp_timeout_handler(adc_dev, is_timeout);
#endif
/* stop conversion */
adc_dev->info->imp_stop(adc_dev);
/* Get vbat/ibat */
*vbat = adc_dev->imp_vbat;
*ibat = auxadc_get_imp_ibat(adc_dev);
return ret;
}
static void mt6359_imp_stop(struct mt635x_auxadc_device *adc_dev)
{
/* stop conversion */
regmap_write(adc_dev->regmap, MT6359_AUXADC_IMP0, 0);
udelay(IMP_STOP_DELAY_US);
regmap_read(adc_dev->regmap, MT6359_AUXADC_IMP3, &adc_dev->imp_vbat);
adc_dev->imp_vbat &= BIT(auxadc_chans[AUXADC_IMP].res) - 1;
}
static const struct auxadc_info mt6357_info = {
.regs_tbl = mt6357_auxadc_regs_tbl,
.en_isink_setting = mt6357_en_isink_setting,
.num_en_isink_setting = ARRAY_SIZE(mt6357_en_isink_setting),
.dis_isink_setting = mt6357_dis_isink_setting,
.num_dis_isink_setting = ARRAY_SIZE(mt6357_dis_isink_setting),
.imp_conv = mt6357_imp_conv,
.imp_stop = mt6357_imp_stop,
#if AUXADC_DEBUG
.dbg_regs = mt6357_dbg_regs,
.num_dbg_regs = ARRAY_SIZE(mt6357_dbg_regs),
.rst_setting = mt6357_rst_setting,
.num_rst_setting = ARRAY_SIZE(mt6357_rst_setting),
#endif
};
static const struct auxadc_info mt6358_info = {
.regs_tbl = mt6358_auxadc_regs_tbl,
.imp_conv = mt6358_imp_conv,
.imp_stop = mt6358_imp_stop,
#if AUXADC_DEBUG
.dbg_regs = mt6358_dbg_regs,
.num_dbg_regs = ARRAY_SIZE(mt6358_dbg_regs),
.rst_setting = mt6358_rst_setting,
.num_rst_setting = ARRAY_SIZE(mt6358_rst_setting),
#endif
};
static const struct auxadc_info mt6359_info = {
.regs_tbl = mt6359_auxadc_regs_tbl,
.en_isink_setting = mt6359_en_isink_setting,
.num_en_isink_setting = ARRAY_SIZE(mt6359_en_isink_setting),
.dis_isink_setting = mt6359_dis_isink_setting,
.num_dis_isink_setting = ARRAY_SIZE(mt6359_dis_isink_setting),
.imp_conv = mt6359_imp_conv,
.imp_stop = mt6359_imp_stop,
#if AUXADC_DEBUG
.dbg_regs = mt6359_dbg_regs,
.num_dbg_regs = ARRAY_SIZE(mt6359_dbg_regs),
.rst_setting = mt6359_rst_setting,
.num_rst_setting = ARRAY_SIZE(mt6359_rst_setting),
#endif
};
/*
* imix_r cali before entering suspend
*/
static void enable_dummy_load(struct mt635x_auxadc_device *adc_dev)
{
int i = 0;
for (i = 0; i < adc_dev->info->num_en_isink_setting; i++) {
regmap_update_bits(adc_dev->regmap,
adc_dev->info->en_isink_setting[i][0],
adc_dev->info->en_isink_setting[i][1],
adc_dev->info->en_isink_setting[i][2]);
}
}
static void disable_dummy_load(struct mt635x_auxadc_device *adc_dev)
{
int i = 0;
for (i = 0; i < adc_dev->info->num_dis_isink_setting; i++) {
regmap_update_bits(adc_dev->regmap,
adc_dev->info->dis_isink_setting[i][0],
adc_dev->info->dis_isink_setting[i][1],
adc_dev->info->dis_isink_setting[i][2]);
}
}
static int auxadc_get_rac(struct mt635x_auxadc_device *adc_dev)
{
int vbat_1 = 0, vbat_2 = 0;
int ibat_1 = 0, ibat_2 = 0;
int rac = 0, ret = 0;
int retry_count = 0;
do {
/* Trigger ADC PTIM mode to get VBAT and current */
if (adc_dev->info->imp_conv)
ret = adc_dev->info->imp_conv(adc_dev,
&vbat_1, &ibat_1);
/* Convert imp vbat raw data */
vbat_1 = auxadc_conv_imp_vbat(adc_dev);
enable_dummy_load(adc_dev);
mdelay(50);
/* Trigger ADC PTIM mode again to get new VBAT and current */
if (adc_dev->info->imp_conv)
ret = adc_dev->info->imp_conv(adc_dev,
&vbat_2, &ibat_2);
/* Convert imp vbat raw data */
vbat_2 = auxadc_conv_imp_vbat(adc_dev);
disable_dummy_load(adc_dev);
/* Cal.Rac: 70mA <= c_diff <= 120mA, 4mV <= v_diff <= 200mV */
if ((ibat_2 - ibat_1) >= 700 && (ibat_2 - ibat_1) <= 1200 &&
(vbat_1 - vbat_2) >= 40 && (vbat_1 - vbat_2) <= 2000) {
/*m-ohm */
rac = ((vbat_1 - vbat_2) * 1000) / (ibat_2 - ibat_1);
if (rac < 0)
ret = (rac - (rac * 2)) * 1;
else
ret = rac * 1;
if (ret < 50) {
ret = -1;
pr_info("bypass due to Rac < 50mOhm\n");
}
} else {
ret = -1;
pr_info("bypass due to c_diff < 70mA\n");
}
pr_info("v1=%d,v2=%d,c1=%d,c2=%d,v_diff=%d,c_diff=%d\n",
vbat_1, vbat_2, ibat_1, ibat_2,
(vbat_1 - vbat_2), (ibat_2 - ibat_1));
pr_info("rac=%d,ret=%d,retry=%d\n",
rac, ret, retry_count);
if (++retry_count >= 3)
break;
} while (ret == -1);
return ret;
}
static int auxadc_get_uisoc(void)
{
struct power_supply *psy;
union power_supply_propval prop;
int ret;
psy = power_supply_get_by_name("battery");
if (!psy)
return -ENODEV;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY,
&prop);
if (ret || prop.intval < 0)
return -EINVAL;
else
return prop.intval;
}
/*
* @adc_dev: pointer to the struct mt635x_auxadc_device
* @auxadc_chan: pointer to the struct auxadc_channels, it represents specific
auxadc channel
* @val: pointer to output value
*/
int get_auxadc_out(struct mt635x_auxadc_device *adc_dev,
const struct auxadc_channels *auxadc_chan, int *val)
{
int ret;
bool is_timeout = false;
#if AUXADC_DEBUG
if (auxadc_chan->convert_fn)
auxadc_chan->convert_fn(adc_dev, 1);
#endif
regmap_write(adc_dev->regmap,
auxadc_chan->regs->rqst_reg,
BIT(auxadc_chan->regs->rqst_shift));
usleep_range(auxadc_chan->avg_num * AUXADC_AVG_TIME_US,
(auxadc_chan->avg_num + 1) * AUXADC_AVG_TIME_US);
ret = regmap_read_poll_timeout(adc_dev->regmap,
auxadc_chan->regs->out_reg,
*val,
(*val & AUXADC_RDY_BIT),
AUXADC_POLL_DELAY_US,
AUXADC_TIMEOUT_US);
*val &= BIT(auxadc_chan->res) - 1;
if (ret == -ETIMEDOUT) {
dev_err(adc_dev->dev, "(%d)Time out!\n", auxadc_chan->ch_num);
is_timeout = true;
}
#if AUXADC_DEBUG
auxadc_timeout_handler(adc_dev, is_timeout);
if (auxadc_chan->convert_fn)
auxadc_chan->convert_fn(adc_dev, 0);
#endif
return ret;
}
static int mt635x_auxadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct mt635x_auxadc_device *adc_dev = iio_priv(indio_dev);
const struct auxadc_channels *auxadc_chan;
int auxadc_out = 0;
int ret;
static DEFINE_RATELIMIT_STATE(ratelimit, 1 * HZ, 5);
mutex_lock(&adc_dev->lock);
pm_stay_awake(adc_dev->dev);
auxadc_chan = &auxadc_chans[chan->channel];
switch (chan->channel) {
case AUXADC_IMP:
if (adc_dev->info->imp_conv)
ret = adc_dev->info->imp_conv(adc_dev,
&auxadc_out, val2);
else
ret = -EINVAL;
break;
case AUXADC_IMIX_R:
auxadc_out = adc_dev->imix_r;
ret = 0;
break;
default:
if (auxadc_chan->regs)
ret = get_auxadc_out(adc_dev, auxadc_chan,
&auxadc_out);
else
ret = -EINVAL;
break;
}
pm_relax(adc_dev->dev);
mutex_unlock(&adc_dev->lock);
if (ret != -ETIMEDOUT && ret < 0)
goto err;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
*val = auxadc_out * auxadc_chan->r_ratio[0] * VOLT_FULL;
*val = (*val / auxadc_chan->r_ratio[1]) >> auxadc_chan->res;
#if AUXADC_DEBUG
if (auxadc_chan->cali_fn)
*val = auxadc_chan->cali_fn(adc_dev, *val, 10);
#endif
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_RAW:
*val = auxadc_out;
ret = IIO_VAL_INT;
break;
default:
return -EINVAL;
}
if (chan->channel == AUXADC_IMP)
ret = IIO_VAL_INT_MULTIPLE;
if (__ratelimit(&ratelimit)) {
dev_info(adc_dev->dev,
"name:%s, channel=%d, adc_out=0x%x, adc_result=%d\n",
auxadc_chan->ch_name, auxadc_chan->ch_num,
auxadc_out, *val);
}
err:
return ret;
}
static int mt635x_auxadc_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].channel == iiospec->args[0])
return i;
}
return -EINVAL;
}
static const struct iio_info mt635x_auxadc_info = {
.read_raw = &mt635x_auxadc_read_raw,
.of_xlate = &mt635x_auxadc_of_xlate,
};
#if AUXADC_DEBUG
#define MT6357_DCXO_CH4_APMUX_SEL BIT(4)
static void mt6357_dcxo_temp_conv(struct mt635x_auxadc_device *adc_dev,
unsigned char convert)
{
if (convert == 1)
regmap_update_bits(adc_dev->regmap,
MT6357_AUXADC_DCXO_MDRT_2,
MT6357_DCXO_CH4_APMUX_SEL,
MT6357_DCXO_CH4_APMUX_SEL);
else if (convert == 0)
regmap_update_bits(adc_dev->regmap,
MT6357_AUXADC_DCXO_MDRT_2,
MT6357_DCXO_CH4_APMUX_SEL, 0);
}
#define MT6357_BATON_TDET_EN BIT(1)
static void mt6357_vbif_conv(struct mt635x_auxadc_device *adc_dev,
unsigned char convert)
{
if (convert == 1)
regmap_update_bits(adc_dev->regmap,
MT6357_AUXADC_CHR_TOP_CON2,
MT6357_BATON_TDET_EN, 0);
else if (convert == 0)
regmap_update_bits(adc_dev->regmap,
MT6357_AUXADC_CHR_TOP_CON2,
MT6357_BATON_TDET_EN, MT6357_BATON_TDET_EN);
}
int auxadc_priv_read_channel(struct mt635x_auxadc_device *adc_dev,
int channel)
{
const struct auxadc_channels *auxadc_chan;
int val = 0, ret = 0;
auxadc_chan = &auxadc_chans[channel];
ret = get_auxadc_out(adc_dev, auxadc_chan, &val);
if (ret < 0)
pr_info("%s ret=%d\n", __func__, ret);
val = val * auxadc_chan->r_ratio[0] * VOLT_FULL;
val = (val / auxadc_chan->r_ratio[1]) >> auxadc_chan->res;
return val;
}
static int bat_temp_filter(int *arr, unsigned short size)
{
unsigned char i, i_max, i_min = 0;
int arr_max = 0, arr_min = arr[0];
int sum = 0;
for (i = 0; i < size; i++) {
sum += arr[i];
if (arr[i] > arr_max) {
arr_max = arr[i];
i_max = i;
} else if (arr[i] < arr_min) {
arr_min = arr[i];
i_min = i;
}
}
sum = sum - arr_max - arr_min;
return (sum/(size - 2));
}
static int wk_bat_temp_dbg(struct mt635x_auxadc_device *adc_dev,
int bat_temp_prev, int bat_temp)
{
int vbif28, bat_temp_new = bat_temp;
int arr_bat_temp[5];
int bat = 0;
unsigned short i;
vbif28 = auxadc_priv_read_channel(adc_dev, AUXADC_VBIF);
pr_notice("BAT_TEMP_PREV:%d,BAT_TEMP:%d,VBIF28:%d\n",
bat_temp_prev, bat_temp, vbif28);
if (bat_temp < 200 || abs(bat_temp_prev - bat_temp) > 100) {
auxadc_debug_dump(adc_dev, 0);
for (i = 0; i < 5; i++) {
arr_bat_temp[i] =
auxadc_priv_read_channel(adc_dev,
AUXADC_BAT_TEMP);
}
bat_temp_new = bat_temp_filter(arr_bat_temp, 5);
pr_notice("%d,%d,%d,%d,%d, BAT_TEMP_NEW:%d\n",
arr_bat_temp[0], arr_bat_temp[1], arr_bat_temp[2],
arr_bat_temp[3], arr_bat_temp[4], bat_temp_new);
/* Reset AuxADC to observe VBAT/IBAT/BAT_TEMP */
auxadc_reset(adc_dev);
for (i = 0; i < 5; i++) {
bat = auxadc_priv_read_channel(adc_dev,
AUXADC_BATADC);
arr_bat_temp[i] =
auxadc_priv_read_channel(adc_dev,
AUXADC_BAT_TEMP);
pr_notice("[CH3_DBG] %d,%d\n",
bat, arr_bat_temp[i]);
}
bat_temp_new = bat_temp_filter(arr_bat_temp, 5);
pr_notice("Final BAT_TEMP_NEW:%d\n", bat_temp_new);
}
return bat_temp_new;
}
static int mt635x_bat_temp_cali(struct mt635x_auxadc_device *adc_dev,
int bat_temp, int precision_factor)
{
static int bat_temp_prev;
static unsigned int dbg_count;
static unsigned int aee_count;
if (!adc_dev && bat_temp == -1 && precision_factor == -1) {
bat_temp_prev = 0;
return 0;
}
if (bat_temp_prev == 0)
goto out;
dbg_count++;
if (bat_temp < 200 || abs(bat_temp_prev - bat_temp) > 100) {
/* dump debug log when BAT_TEMP being abnormal */
bat_temp = wk_bat_temp_dbg(adc_dev, bat_temp_prev, bat_temp);
pr_notice("PMIC AUXADC BAT_TEMP aee_count=%d\n", aee_count);
aee_count++;
} else if (dbg_count % 50 == 0) {
/* dump debug log in normal case */
wk_bat_temp_dbg(adc_dev, bat_temp_prev, bat_temp);
}
out:
bat_temp_prev = bat_temp;
return bat_temp;
}
void auxadc_set_convert_fn(int channel,
void (*convert_fn)(struct mt635x_auxadc_device *,
unsigned char convert))
{
auxadc_chans[channel].convert_fn = convert_fn;
}
void auxadc_set_cali_fn(int channel,
int (*cali_fn)(struct mt635x_auxadc_device *, int, int))
{
auxadc_chans[channel].cali_fn = cali_fn;
}
#endif
#define IMIX_R_MIN_MOHM 100
#define IMIX_R_CALI_CNT 2
static int auxadc_cali_imix_r(struct mt635x_auxadc_device *dev)
{
static struct mt635x_auxadc_device *adc_dev;
static int pre_uisoc = 101;
int cur_uisoc = auxadc_get_uisoc();
int i, imix_r_avg = 0, rac_val[IMIX_R_CALI_CNT];
if (dev) {
adc_dev = dev;
return 0;
} else if (!adc_dev) {
pr_info("%s NULL adc_dev, skip\n",
__func__);
return -EINVAL;
} else if (!get_mtk_gauge_psy()) {
pr_info("%s gauge disabled, skip\n",
__func__);
return -ENODEV;
} else if (cur_uisoc < 0 ||
cur_uisoc == pre_uisoc) {
pr_info("%s pre_SOC=%d SOC=%d, skip\n",
__func__, pre_uisoc, cur_uisoc);
return 0;
}
pre_uisoc = cur_uisoc;
for (i = 0; i < IMIX_R_CALI_CNT; i++) {
rac_val[i] = auxadc_get_rac(adc_dev);
imix_r_avg += rac_val[i];
if (rac_val[i] < 0)
return -EIO;
}
imix_r_avg = imix_r_avg / IMIX_R_CALI_CNT;
pr_info("[%s] %d,%d,ravg:%d\n",
__func__, rac_val[0], rac_val[1], imix_r_avg);
if (imix_r_avg > IMIX_R_MIN_MOHM)
adc_dev->imix_r = imix_r_avg;
return 0;
}
static int auxadc_init_imix_r(struct mt635x_auxadc_device *adc_dev,
struct device_node *imix_r_node)
{
unsigned int val = 0;
int ret;
if (adc_dev->imix_r)
return 0;
ret = of_property_read_u32(imix_r_node, "val", &val);
if (ret)
dev_notice(adc_dev->dev, "no imix_r, ret=%d\n", ret);
adc_dev->imix_r = (int)val;
auxadc_cali_imix_r(adc_dev);
return 0;
}
static int auxadc_suspend_enter(void)
{
auxadc_cali_imix_r(NULL);
#if AUXADC_DEBUG
/* Restore bat_temp_prev when entering suspend */
mt635x_bat_temp_cali(NULL, -1, -1);
#endif
return 0;
}
static struct syscore_ops auxadc_syscore_ops = {
.suspend = auxadc_suspend_enter,
};
static int auxadc_get_data_from_dt(struct mt635x_auxadc_device *adc_dev,
unsigned int *channel,
struct device_node *node)
{
struct auxadc_channels *auxadc_chan;
unsigned int value, val_arr[2];
int ret;
ret = of_property_read_u32(node, "channel", channel);
if (ret) {
dev_notice(adc_dev->dev,
"invalid channel in node:%s\n", node->name);
return ret;
}
if (*channel < AUXADC_CHAN_MIN || *channel > AUXADC_CHAN_MAX) {
dev_notice(adc_dev->dev,
"invalid channel number %d in node:%s\n",
*channel, node->name);
return ret;
}
if (*channel == AUXADC_IMIX_R)
return auxadc_init_imix_r(adc_dev, node);
auxadc_chan = &auxadc_chans[*channel];
ret = of_property_read_u32_array(node, "resistance-ratio", val_arr, 2);
if (!ret) {
auxadc_chan->r_ratio[0] = val_arr[0];
auxadc_chan->r_ratio[1] = val_arr[1];
} else {
auxadc_chan->r_ratio[0] = AUXADC_DEF_R_RATIO;
auxadc_chan->r_ratio[1] = 1;
}
ret = of_property_read_u32(node, "avg-num", &value);
if (!ret)
auxadc_chan->avg_num = value;
else
auxadc_chan->avg_num = AUXADC_DEF_AVG_NUM;
return 0;
}
static int auxadc_parse_dt(struct mt635x_auxadc_device *adc_dev,
struct device_node *node)
{
struct iio_chan_spec *iio_chan;
struct device_node *child;
unsigned int channel = 0, index = 0;
int ret;
adc_dev->nchannels = of_get_available_child_count(node);
if (!adc_dev->nchannels)
return -EINVAL;
adc_dev->iio_chans = devm_kcalloc(adc_dev->dev, adc_dev->nchannels,
sizeof(*adc_dev->iio_chans), GFP_KERNEL);
if (!adc_dev->iio_chans)
return -ENOMEM;
iio_chan = adc_dev->iio_chans;
for_each_available_child_of_node(node, child) {
ret = auxadc_get_data_from_dt(adc_dev, &channel, child);
if (ret) {
of_node_put(child);
return ret;
}
if (auxadc_chans[channel].has_regs) {
auxadc_chans[channel].regs =
&adc_dev->info->regs_tbl[channel];
}
iio_chan->channel = channel;
iio_chan->datasheet_name = auxadc_chans[channel].ch_name;
iio_chan->extend_name = auxadc_chans[channel].ch_name;
iio_chan->info_mask_separate = auxadc_chans[channel].info_mask;
iio_chan->type = auxadc_chans[channel].type;
iio_chan->indexed = 1;
iio_chan->address = index++;
iio_chan++;
}
return 0;
}
static int mt635x_auxadc_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct mt635x_auxadc_device *adc_dev;
struct iio_dev *indio_dev;
struct mt6397_chip *chip;
int ret;
chip = dev_get_drvdata(pdev->dev.parent);
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc_dev));
if (!indio_dev)
return -ENOMEM;
adc_dev = iio_priv(indio_dev);
adc_dev->regmap = chip->regmap;
adc_dev->dev = &pdev->dev;
mutex_init(&adc_dev->lock);
device_init_wakeup(&pdev->dev, true);
adc_dev->info = of_device_get_match_data(&pdev->dev);
ret = auxadc_parse_dt(adc_dev, node);
if (ret < 0) {
dev_notice(&pdev->dev, "auxadc_parse_dt fail, ret=%d\n", ret);
return ret;
}
indio_dev->dev.parent = &pdev->dev;
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &mt635x_auxadc_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adc_dev->iio_chans;
indio_dev->num_channels = adc_dev->nchannels;
ret = devm_iio_device_register(&pdev->dev, indio_dev);
if (ret < 0) {
dev_notice(&pdev->dev, "failed to register iio device!\n");
return ret;
}
register_syscore_ops(&auxadc_syscore_ops);
#if AUXADC_DEBUG
switch (chip->chip_id) {
case MT6357_CHIP_ID:
auxadc_set_convert_fn(AUXADC_DCXO_TEMP, mt6357_dcxo_temp_conv);
auxadc_set_convert_fn(AUXADC_VBIF, mt6357_vbif_conv);
auxadc_set_cali_fn(AUXADC_BAT_TEMP, mt635x_bat_temp_cali);
break;
default:
break;
}
#endif
dev_info(&pdev->dev, "%s done\n", __func__);
return 0;
}
static const struct of_device_id mt635x_auxadc_of_match[] = {
{
.compatible = "mediatek,mt6357-auxadc",
.data = &mt6357_info,
}, {
.compatible = "mediatek,mt6358-auxadc",
.data = &mt6358_info,
}, {
.compatible = "mediatek,mt6359-auxadc",
.data = &mt6359_info,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, mt635x_auxadc_of_match);
static struct platform_driver mt635x_auxadc_driver = {
.driver = {
.name = "mt635x-auxadc",
.of_match_table = mt635x_auxadc_of_match,
},
.probe = mt635x_auxadc_probe,
};
module_platform_driver(mt635x_auxadc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jeter Chen <Jeter.Chen@mediatek.com>");
MODULE_DESCRIPTION("MediaTek PMIC AUXADC Driver for MT635x PMIC");