kernel_samsung_a34x-permissive/drivers/infiniband/hw/mlx4/mr.c
2024-04-28 15:49:01 +02:00

827 lines
21 KiB
C
Executable file

/*
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/slab.h>
#include <rdma/ib_user_verbs.h>
#include "mlx4_ib.h"
static u32 convert_access(int acc)
{
return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) |
(acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) |
(acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) |
(acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) |
(acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) |
MLX4_PERM_LOCAL_READ;
}
static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
{
switch (type) {
case IB_MW_TYPE_1: return MLX4_MW_TYPE_1;
case IB_MW_TYPE_2: return MLX4_MW_TYPE_2;
default: return -1;
}
}
struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
{
struct mlx4_ib_mr *mr;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
~0ull, convert_access(acc), 0, 0, &mr->mmr);
if (err)
goto err_free;
err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
if (err)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->umem = NULL;
return &mr->ibmr;
err_mr:
(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
err_free:
kfree(mr);
return ERR_PTR(err);
}
enum {
MLX4_MAX_MTT_SHIFT = 31
};
static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
struct mlx4_mtt *mtt,
u64 mtt_size, u64 mtt_shift, u64 len,
u64 cur_start_addr, u64 *pages,
int *start_index, int *npages)
{
u64 cur_end_addr = cur_start_addr + len;
u64 cur_end_addr_aligned = 0;
u64 mtt_entries;
int err = 0;
int k;
len += (cur_start_addr & (mtt_size - 1ULL));
cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
len += (cur_end_addr_aligned - cur_end_addr);
if (len & (mtt_size - 1ULL)) {
pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
len, mtt_size);
return -EINVAL;
}
mtt_entries = (len >> mtt_shift);
/*
* Align the MTT start address to the mtt_size.
* Required to handle cases when the MR starts in the middle of an MTT
* record. Was not required in old code since the physical addresses
* provided by the dma subsystem were page aligned, which was also the
* MTT size.
*/
cur_start_addr = round_down(cur_start_addr, mtt_size);
/* A new block is started ... */
for (k = 0; k < mtt_entries; ++k) {
pages[*npages] = cur_start_addr + (mtt_size * k);
(*npages)++;
/*
* Be friendly to mlx4_write_mtt() and pass it chunks of
* appropriate size.
*/
if (*npages == PAGE_SIZE / sizeof(u64)) {
err = mlx4_write_mtt(dev->dev, mtt, *start_index,
*npages, pages);
if (err)
return err;
(*start_index) += *npages;
*npages = 0;
}
}
return 0;
}
static inline u64 alignment_of(u64 ptr)
{
return ilog2(ptr & (~(ptr - 1)));
}
static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
u64 current_block_end,
u64 block_shift)
{
/* Check whether the alignment of the new block is aligned as well as
* the previous block.
* Block address must start with zeros till size of entity_size.
*/
if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
/*
* It is not as well aligned as the previous block-reduce the
* mtt size accordingly. Here we take the last right bit which
* is 1.
*/
block_shift = alignment_of(next_block_start);
/*
* Check whether the alignment of the end of previous block - is it
* aligned as well as the start of the block
*/
if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
/*
* It is not as well aligned as the start of the block -
* reduce the mtt size accordingly.
*/
block_shift = alignment_of(current_block_end);
return block_shift;
}
int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
struct ib_umem *umem)
{
u64 *pages;
u64 len = 0;
int err = 0;
u64 mtt_size;
u64 cur_start_addr = 0;
u64 mtt_shift;
int start_index = 0;
int npages = 0;
struct scatterlist *sg;
int i;
pages = (u64 *) __get_free_page(GFP_KERNEL);
if (!pages)
return -ENOMEM;
mtt_shift = mtt->page_shift;
mtt_size = 1ULL << mtt_shift;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
if (cur_start_addr + len == sg_dma_address(sg)) {
/* still the same block */
len += sg_dma_len(sg);
continue;
}
/*
* A new block is started ...
* If len is malaligned, write an extra mtt entry to cover the
* misaligned area (round up the division)
*/
err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
mtt_shift, len,
cur_start_addr,
pages, &start_index,
&npages);
if (err)
goto out;
cur_start_addr = sg_dma_address(sg);
len = sg_dma_len(sg);
}
/* Handle the last block */
if (len > 0) {
/*
* If len is malaligned, write an extra mtt entry to cover
* the misaligned area (round up the division)
*/
err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
mtt_shift, len,
cur_start_addr, pages,
&start_index, &npages);
if (err)
goto out;
}
if (npages)
err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
out:
free_page((unsigned long) pages);
return err;
}
/*
* Calculate optimal mtt size based on contiguous pages.
* Function will return also the number of pages that are not aligned to the
* calculated mtt_size to be added to total number of pages. For that we should
* check the first chunk length & last chunk length and if not aligned to
* mtt_size we should increment the non_aligned_pages number. All chunks in the
* middle already handled as part of mtt shift calculation for both their start
* & end addresses.
*/
int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
int *num_of_mtts)
{
u64 block_shift = MLX4_MAX_MTT_SHIFT;
u64 min_shift = umem->page_shift;
u64 last_block_aligned_end = 0;
u64 current_block_start = 0;
u64 first_block_start = 0;
u64 current_block_len = 0;
u64 last_block_end = 0;
struct scatterlist *sg;
u64 current_block_end;
u64 misalignment_bits;
u64 next_block_start;
u64 total_len = 0;
int i;
for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
/*
* Initialization - save the first chunk start as the
* current_block_start - block means contiguous pages.
*/
if (current_block_len == 0 && current_block_start == 0) {
current_block_start = sg_dma_address(sg);
first_block_start = current_block_start;
/*
* Find the bits that are different between the physical
* address and the virtual address for the start of the
* MR.
* umem_get aligned the start_va to a page boundary.
* Therefore, we need to align the start va to the same
* boundary.
* misalignment_bits is needed to handle the case of a
* single memory region. In this case, the rest of the
* logic will not reduce the block size. If we use a
* block size which is bigger than the alignment of the
* misalignment bits, we might use the virtual page
* number instead of the physical page number, resulting
* in access to the wrong data.
*/
misalignment_bits =
(start_va & (~(((u64)(BIT(umem->page_shift))) - 1ULL)))
^ current_block_start;
block_shift = min(alignment_of(misalignment_bits),
block_shift);
}
/*
* Go over the scatter entries and check if they continue the
* previous scatter entry.
*/
next_block_start = sg_dma_address(sg);
current_block_end = current_block_start + current_block_len;
/* If we have a split (non-contig.) between two blocks */
if (current_block_end != next_block_start) {
block_shift = mlx4_ib_umem_calc_block_mtt
(next_block_start,
current_block_end,
block_shift);
/*
* If we reached the minimum shift for 4k page we stop
* the loop.
*/
if (block_shift <= min_shift)
goto end;
/*
* If not saved yet we are in first block - we save the
* length of first block to calculate the
* non_aligned_pages number at the end.
*/
total_len += current_block_len;
/* Start a new block */
current_block_start = next_block_start;
current_block_len = sg_dma_len(sg);
continue;
}
/* The scatter entry is another part of the current block,
* increase the block size.
* An entry in the scatter can be larger than 4k (page) as of
* dma mapping which merge some blocks together.
*/
current_block_len += sg_dma_len(sg);
}
/* Account for the last block in the total len */
total_len += current_block_len;
/* Add to the first block the misalignment that it suffers from. */
total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
last_block_end = current_block_start + current_block_len;
last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
total_len += (last_block_aligned_end - last_block_end);
if (total_len & ((1ULL << block_shift) - 1ULL))
pr_warn("misaligned total length detected (%llu, %llu)!",
total_len, block_shift);
*num_of_mtts = total_len >> block_shift;
end:
if (block_shift < min_shift) {
/*
* If shift is less than the min we set a warning and return the
* min shift.
*/
pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
block_shift = min_shift;
}
return block_shift;
}
static struct ib_umem *mlx4_get_umem_mr(struct ib_ucontext *context, u64 start,
u64 length, u64 virt_addr,
int access_flags)
{
/*
* Force registering the memory as writable if the underlying pages
* are writable. This is so rereg can change the access permissions
* from readable to writable without having to run through ib_umem_get
* again
*/
if (!ib_access_writable(access_flags)) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
/*
* FIXME: Ideally this would iterate over all the vmas that
* cover the memory, but for now it requires a single vma to
* entirely cover the MR to support RO mappings.
*/
vma = find_vma(current->mm, start);
if (vma && vma->vm_end >= start + length &&
vma->vm_start <= start) {
if (vma->vm_flags & VM_WRITE)
access_flags |= IB_ACCESS_LOCAL_WRITE;
} else {
access_flags |= IB_ACCESS_LOCAL_WRITE;
}
up_read(&current->mm->mmap_sem);
}
return ib_umem_get(context, start, length, access_flags, 0);
}
struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int access_flags,
struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_mr *mr;
int shift;
int err;
int n;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->umem = mlx4_get_umem_mr(pd->uobject->context, start, length,
virt_addr, access_flags);
if (IS_ERR(mr->umem)) {
err = PTR_ERR(mr->umem);
goto err_free;
}
n = ib_umem_page_count(mr->umem);
shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
convert_access(access_flags), n, shift, &mr->mmr);
if (err)
goto err_umem;
err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
if (err)
goto err_mr;
err = mlx4_mr_enable(dev->dev, &mr->mmr);
if (err)
goto err_mr;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->ibmr.length = length;
mr->ibmr.iova = virt_addr;
mr->ibmr.page_size = 1U << shift;
return &mr->ibmr;
err_mr:
(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
err_umem:
ib_umem_release(mr->umem);
err_free:
kfree(mr);
return ERR_PTR(err);
}
int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
u64 start, u64 length, u64 virt_addr,
int mr_access_flags, struct ib_pd *pd,
struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(mr->device);
struct mlx4_ib_mr *mmr = to_mmr(mr);
struct mlx4_mpt_entry *mpt_entry;
struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
int err;
/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
* we assume that the calls can't run concurrently. Otherwise, a
* race exists.
*/
err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
if (err)
return err;
if (flags & IB_MR_REREG_PD) {
err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
to_mpd(pd)->pdn);
if (err)
goto release_mpt_entry;
}
if (flags & IB_MR_REREG_ACCESS) {
if (ib_access_writable(mr_access_flags) &&
!mmr->umem->writable) {
err = -EPERM;
goto release_mpt_entry;
}
err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
convert_access(mr_access_flags));
if (err)
goto release_mpt_entry;
}
if (flags & IB_MR_REREG_TRANS) {
int shift;
int n;
mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
ib_umem_release(mmr->umem);
mmr->umem =
mlx4_get_umem_mr(mr->uobject->context, start, length,
virt_addr, mr_access_flags);
if (IS_ERR(mmr->umem)) {
err = PTR_ERR(mmr->umem);
/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
mmr->umem = NULL;
goto release_mpt_entry;
}
n = ib_umem_page_count(mmr->umem);
shift = mmr->umem->page_shift;
err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
virt_addr, length, n, shift,
*pmpt_entry);
if (err) {
ib_umem_release(mmr->umem);
goto release_mpt_entry;
}
mmr->mmr.iova = virt_addr;
mmr->mmr.size = length;
err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
if (err) {
mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
ib_umem_release(mmr->umem);
goto release_mpt_entry;
}
}
/* If we couldn't transfer the MR to the HCA, just remember to
* return a failure. But dereg_mr will free the resources.
*/
err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
if (!err && flags & IB_MR_REREG_ACCESS)
mmr->mmr.access = mr_access_flags;
release_mpt_entry:
mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
return err;
}
static int
mlx4_alloc_priv_pages(struct ib_device *device,
struct mlx4_ib_mr *mr,
int max_pages)
{
int ret;
/* Ensure that size is aligned to DMA cacheline
* requirements.
* max_pages is limited to MLX4_MAX_FAST_REG_PAGES
* so page_map_size will never cross PAGE_SIZE.
*/
mr->page_map_size = roundup(max_pages * sizeof(u64),
MLX4_MR_PAGES_ALIGN);
/* Prevent cross page boundary allocation. */
mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
if (!mr->pages)
return -ENOMEM;
mr->page_map = dma_map_single(device->dev.parent, mr->pages,
mr->page_map_size, DMA_TO_DEVICE);
if (dma_mapping_error(device->dev.parent, mr->page_map)) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
free_page((unsigned long)mr->pages);
return ret;
}
static void
mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
{
if (mr->pages) {
struct ib_device *device = mr->ibmr.device;
dma_unmap_single(device->dev.parent, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
free_page((unsigned long)mr->pages);
mr->pages = NULL;
}
}
int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
int ret;
mlx4_free_priv_pages(mr);
ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
if (ret)
return ret;
if (mr->umem)
ib_umem_release(mr->umem);
kfree(mr);
return 0;
}
struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_mw *mw;
int err;
mw = kmalloc(sizeof(*mw), GFP_KERNEL);
if (!mw)
return ERR_PTR(-ENOMEM);
err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
to_mlx4_type(type), &mw->mmw);
if (err)
goto err_free;
err = mlx4_mw_enable(dev->dev, &mw->mmw);
if (err)
goto err_mw;
mw->ibmw.rkey = mw->mmw.key;
return &mw->ibmw;
err_mw:
mlx4_mw_free(dev->dev, &mw->mmw);
err_free:
kfree(mw);
return ERR_PTR(err);
}
int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
{
struct mlx4_ib_mw *mw = to_mmw(ibmw);
mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
kfree(mw);
return 0;
}
struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_mr *mr;
int err;
if (mr_type != IB_MR_TYPE_MEM_REG ||
max_num_sg > MLX4_MAX_FAST_REG_PAGES)
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
max_num_sg, 0, &mr->mmr);
if (err)
goto err_free;
err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
if (err)
goto err_free_mr;
mr->max_pages = max_num_sg;
err = mlx4_mr_enable(dev->dev, &mr->mmr);
if (err)
goto err_free_pl;
mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
mr->umem = NULL;
return &mr->ibmr;
err_free_pl:
mr->ibmr.device = pd->device;
mlx4_free_priv_pages(mr);
err_free_mr:
(void) mlx4_mr_free(dev->dev, &mr->mmr);
err_free:
kfree(mr);
return ERR_PTR(err);
}
struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
struct ib_fmr_attr *fmr_attr)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
struct mlx4_ib_fmr *fmr;
int err = -ENOMEM;
fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
if (!fmr)
return ERR_PTR(-ENOMEM);
err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
fmr_attr->max_pages, fmr_attr->max_maps,
fmr_attr->page_shift, &fmr->mfmr);
if (err)
goto err_free;
err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
if (err)
goto err_mr;
fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
return &fmr->ibfmr;
err_mr:
(void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
err_free:
kfree(fmr);
return ERR_PTR(err);
}
int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
int npages, u64 iova)
{
struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
&ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
}
int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
{
struct ib_fmr *ibfmr;
int err;
struct mlx4_dev *mdev = NULL;
list_for_each_entry(ibfmr, fmr_list, list) {
if (mdev && to_mdev(ibfmr->device)->dev != mdev)
return -EINVAL;
mdev = to_mdev(ibfmr->device)->dev;
}
if (!mdev)
return 0;
list_for_each_entry(ibfmr, fmr_list, list) {
struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
}
/*
* Make sure all MPT status updates are visible before issuing
* SYNC_TPT firmware command.
*/
wmb();
err = mlx4_SYNC_TPT(mdev);
if (err)
pr_warn("SYNC_TPT error %d when "
"unmapping FMRs\n", err);
return 0;
}
int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
{
struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
int err;
err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
if (!err)
kfree(ifmr);
return err;
}
static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
if (unlikely(mr->npages == mr->max_pages))
return -ENOMEM;
mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
return 0;
}
int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct mlx4_ib_mr *mr = to_mmr(ibmr);
int rc;
mr->npages = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
mr->page_map_size, DMA_TO_DEVICE);
return rc;
}