kernel_samsung_a34x-permissive/drivers/input/touchscreen/FT3518/focaltech_ex_fun.c
2024-04-28 15:49:01 +02:00

1178 lines
28 KiB
C
Executable file

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2016 MediaTek Inc.
*/
#include "focaltech_core.h"
/*****************************************************************************
* Private constant and macro definitions using #define
*****************************************************************************/
#define PROC_UPGRADE 0
#define PROC_READ_REGISTER 1
#define PROC_WRITE_REGISTER 2
#define PROC_AUTOCLB 4
#define PROC_UPGRADE_INFO 5
#define PROC_WRITE_DATA 6
#define PROC_READ_DATA 7
#define PROC_SET_TEST_FLAG 8
#define PROC_SET_SLAVE_ADDR 10
#define PROC_HW_RESET 11
#define PROC_READ_STATUS 12
#define PROC_SET_BOOT_MODE 13
#define PROC_ENTER_TEST_ENVIRONMENT 14
#define PROC_NAME "ftxxxx-debug"
#define PROC_BUF_SIZE 256
/*****************************************************************************
* Private enumerations, structures and unions using typedef
*****************************************************************************/
enum { RWREG_OP_READ = 0,
RWREG_OP_WRITE = 1,
};
/*****************************************************************************
* Static variables
*****************************************************************************/
static struct rwreg_operation_t {
int type; /* 0: read, 1: write */
int reg; /* register */
int len; /* read/write length */
int val; /* length = 1; read: return value, write: op return */
int res; /* 0: success, otherwise: fail */
char *opbuf; /* length >= 1, read return value, write: op return */
} rw_op;
/*****************************************************************************
* Global variable or extern global variabls/functions
*****************************************************************************/
/*****************************************************************************
* Static function prototypes
*****************************************************************************/
#if (KERNEL_VERSION(3, 10, 0) <= 265984)
static ssize_t fts_debug_write(struct file *filp, const char __user *buff,
size_t count, loff_t *ppos)
{
u8 *writebuf = NULL;
u8 tmpbuf[PROC_BUF_SIZE] = {0};
int buflen = count;
int writelen = 0;
int ret = 0;
char tmp[25];
struct fts_ts_data *ts_data = fts_data;
struct ftxxxx_proc *proc = &ts_data->proc;
if ((buflen <= 1) || (buflen > PAGE_SIZE)) {
FTS_ERROR("apk proc write count(%d>%d) fail", buflen,
(int)PAGE_SIZE);
return -EINVAL;
}
if (buflen > PROC_BUF_SIZE) {
writebuf = kcalloc(buflen, sizeof(u8), GFP_KERNEL);
if (writebuf == NULL) {
FTS_ERROR("apk proc write buf zalloc fail");
return -ENOMEM;
}
} else {
writebuf = tmpbuf;
}
if (copy_from_user(writebuf, buff, buflen)) {
FTS_ERROR("[APK]: copy from user error!!");
ret = -EFAULT;
goto proc_write_err;
}
proc->opmode = writebuf[0];
switch (proc->opmode) {
case PROC_SET_TEST_FLAG:
FTS_DEBUG("[APK]: PROC_SET_TEST_FLAG = %x", writebuf[1]);
if (writebuf[1] == 0) {
#if FTS_ESDCHECK_EN
fts_esdcheck_switch(ENABLE);
#endif
} else {
#if FTS_ESDCHECK_EN
fts_esdcheck_switch(DISABLE);
#endif
}
break;
case PROC_READ_REGISTER:
proc->cmd[0] = writebuf[1];
break;
case PROC_WRITE_REGISTER:
ret = fts_write_reg(writebuf[1], writebuf[2]);
if (ret < 0) {
FTS_ERROR("PROC_WRITE_REGISTER write error");
goto proc_write_err;
}
break;
case PROC_READ_DATA:
writelen = buflen - 1;
memcpy(proc->cmd, writebuf + 1, writelen);
proc->cmd_len = writelen;
ret = fts_write(writebuf + 1, writelen);
if (ret < 0) {
FTS_ERROR("PROC_READ_DATA write error");
goto proc_write_err;
}
break;
case PROC_WRITE_DATA:
writelen = buflen - 1;
ret = fts_write(writebuf + 1, writelen);
if (ret < 0) {
FTS_ERROR("PROC_WRITE_DATA write error");
goto proc_write_err;
}
break;
case PROC_SET_SLAVE_ADDR:
#if (FTS_CHIP_TYPE == _FT8201)
FTS_INFO("Original i2c addr 0x%x", ts_data->client->addr << 1);
if (writebuf[1] != ts_data->client->addr) {
ts_data->client->addr = writebuf[1];
FTS_INFO("Change i2c addr 0x%x to 0x%x",
ts_data->client->addr << 1, writebuf[1] << 1);
}
#endif
break;
case PROC_HW_RESET:
snprintf(tmp, 25, "%s", writebuf + 1);
tmp[buflen - 1] = '\0';
if (strncmp(tmp, "focal_driver", 12) == 0) {
FTS_INFO("APK execute HW Reset");
fts_reset_proc(0);
}
break;
case PROC_SET_BOOT_MODE:
FTS_DEBUG("[APK]: PROC_SET_BOOT_MODE = %x", writebuf[1]);
if (writebuf[1] == 0)
ts_data->fw_is_running = true;
else
ts_data->fw_is_running = false;
break;
case PROC_ENTER_TEST_ENVIRONMENT:
FTS_DEBUG("[APK]: PROC_ENTER_TEST_ENVIRONMENT = %x",
writebuf[1]);
if (writebuf[1] == 0)
fts_enter_test_environment(0);
else
fts_enter_test_environment(1);
break;
default:
break;
}
ret = buflen;
proc_write_err:
if ((buflen > PROC_BUF_SIZE) && writebuf) {
kfree(writebuf);
writebuf = NULL;
}
return ret;
}
static ssize_t fts_debug_read(struct file *filp, char __user *buff,
size_t count, loff_t *ppos)
{
int ret = 0;
int num_read_chars = 0;
int buflen = count;
u8 *readbuf = NULL;
u8 tmpbuf[PROC_BUF_SIZE] = {0};
struct fts_ts_data *ts_data = fts_data;
struct ftxxxx_proc *proc = &ts_data->proc;
if ((buflen <= 0) || (buflen > PAGE_SIZE)) {
FTS_ERROR("apk proc read count(%d>%d) fail", buflen,
(int)PAGE_SIZE);
return -EINVAL;
}
if (buflen > PROC_BUF_SIZE) {
readbuf = kcalloc(buflen, sizeof(u8), GFP_KERNEL);
if (readbuf == NULL) {
FTS_ERROR("apk proc write buf zalloc fail");
return -ENOMEM;
}
} else {
readbuf = tmpbuf;
}
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(1);
#endif
switch (proc->opmode) {
case PROC_READ_REGISTER:
num_read_chars = 1;
ret = fts_read_reg(proc->cmd[0], &readbuf[0]);
if (ret < 0) {
FTS_ERROR("PROC_READ_REGISTER read error");
goto proc_read_err;
}
break;
case PROC_WRITE_REGISTER:
break;
case PROC_READ_DATA:
num_read_chars = buflen;
ret = fts_read(NULL, 0, readbuf, num_read_chars);
if (ret < 0) {
FTS_ERROR("PROC_READ_DATA read error");
goto proc_read_err;
}
break;
case PROC_WRITE_DATA:
break;
default:
break;
}
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(0);
#endif
if (copy_to_user(buff, readbuf, num_read_chars)) {
FTS_ERROR("copy to user error");
ret = -EFAULT;
goto proc_read_err;
}
ret = num_read_chars;
proc_read_err:
if ((buflen > PROC_BUF_SIZE) && readbuf) {
kfree(readbuf);
readbuf = NULL;
}
return ret;
}
static const struct file_operations fts_proc_fops = {
.owner = THIS_MODULE, .read = fts_debug_read, .write = fts_debug_write,
};
#else
static int fts_debug_write(struct file *filp, const char __user *buff,
unsigned long len, void *data)
{
u8 *writebuf = NULL;
u8 tmpbuf[PROC_BUF_SIZE] = {0};
int buflen = count;
int writelen = 0;
int ret = 0;
char tmp[25];
struct fts_ts_data *ts_data = fts_data;
struct ftxxxx_proc *proc = &ts_data->proc;
if ((buflen <= 1) || (buflen > PAGE_SIZE)) {
FTS_ERROR("apk proc write count(%d>%d) fail", buflen,
(int)PAGE_SIZE);
return -EINVAL;
}
if (buflen > PROC_BUF_SIZE) {
writebuf = kcalloc(buflen, sizeof(u8), GFP_KERNEL);
if (writebuf == NULL) {
FTS_ERROR("apk proc write buf zalloc fail");
return -ENOMEM;
}
} else {
writebuf = tmpbuf;
}
if (copy_from_user(writebuf, buff, buflen)) {
FTS_ERROR("[APK]: copy from user error!!");
ret = -EFAULT;
goto proc_write_err;
}
proc->opmode = writebuf[0];
switch (proc->opmode) {
case PROC_SET_TEST_FLAG:
FTS_DEBUG("[APK]: PROC_SET_TEST_FLAG = %x", writebuf[1]);
if (writebuf[1] == 0) {
#if FTS_ESDCHECK_EN
fts_esdcheck_switch(ENABLE);
#endif
} else {
#if FTS_ESDCHECK_EN
fts_esdcheck_switch(DISABLE);
#endif
}
break;
case PROC_READ_REGISTER:
proc->cmd[0] = writebuf[1];
break;
case PROC_WRITE_REGISTER:
ret = fts_write_reg(writebuf[1], writebuf[2]);
if (ret < 0) {
FTS_ERROR("PROC_WRITE_REGISTER write error");
goto proc_write_err;
}
break;
case PROC_READ_DATA:
writelen = buflen - 1;
memcpy(proc->cmd, writebuf + 1, writelen);
proc->cmd_len = writelen;
ret = fts_write(writebuf + 1, writelen);
if (ret < 0) {
FTS_ERROR("PROC_READ_DATA write error");
goto proc_write_err;
}
break;
case PROC_WRITE_DATA:
writelen = buflen - 1;
ret = fts_write(writebuf + 1, writelen);
if (ret < 0) {
FTS_ERROR("PROC_WRITE_DATA write error");
goto proc_write_err;
}
break;
case PROC_SET_SLAVE_ADDR:
#if (FTS_CHIP_TYPE == _FT8201)
FTS_INFO("Original i2c addr 0x%x", ts_data->client->addr << 1);
if (writebuf[1] != ts_data->client->addr) {
ts_data->client->addr = writebuf[1];
FTS_INFO("Change i2c addr 0x%x to 0x%x",
ts_data->client->addr << 1, writebuf[1] << 1);
}
#endif
break;
case PROC_HW_RESET:
snprintf(tmp, PAGE_SIZE, "%s", writebuf + 1);
tmp[buflen - 1] = '\0';
if (strncmp(tmp, "focal_driver", 12) == 0) {
FTS_INFO("APK execute HW Reset");
fts_reset_proc(0);
}
break;
default:
break;
}
ret = buflen;
proc_write_err:
if ((buflen > PROC_BUF_SIZE) && writebuf) {
kfree(writebuf);
writebuf = NULL;
}
return ret;
}
static int fts_debug_read(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int ret = 0;
int num_read_chars = 0;
int buflen = count;
u8 *readbuf = NULL;
u8 tmpbuf[PROC_BUF_SIZE] = {0};
struct fts_ts_data *ts_data = fts_data;
struct ftxxxx_proc *proc = &ts_data->proc;
if ((buflen <= 0) || (buflen > PAGE_SIZE)) {
FTS_ERROR("apk proc read count(%d>%d) fail", buflen,
(int)PAGE_SIZE);
return -EINVAL;
}
if (buflen > PROC_BUF_SIZE) {
readbuf = kcalloc(buflen, sizeof(u8), GFP_KERNEL);
if (readbuf == NULL) {
FTS_ERROR("apk proc write buf zalloc fail");
return -ENOMEM;
}
} else {
readbuf = tmpbuf;
}
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(1);
#endif
switch (proc->opmode) {
case PROC_READ_REGISTER:
num_read_chars = 1;
ret = fts_read_reg(proc->cmd[0], &readbuf[0]);
if (ret < 0) {
FTS_ERROR("PROC_READ_REGISTER read error");
goto proc_read_err;
}
break;
case PROC_WRITE_REGISTER:
break;
case PROC_READ_DATA:
num_read_chars = buflen;
ret = fts_read(NULL, 0, readbuf, num_read_chars);
if (ret < 0) {
FTS_ERROR("PROC_READ_DATA read error");
goto proc_read_err;
}
break;
case PROC_WRITE_DATA:
break;
default:
break;
}
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(0);
#endif
if (copy_to_user(buff, readbuf, num_read_chars)) {
FTS_ERROR("copy to user error");
ret = -EFAULT;
goto proc_read_err;
}
ret = num_read_chars;
proc_read_err:
if ((buflen > PROC_BUF_SIZE) && readbuf) {
kfree(readbuf);
readbuf = NULL;
}
return ret;
}
#endif
int fts_create_apk_debug_channel(struct fts_ts_data *ts_data)
{
struct ftxxxx_proc *proc = &ts_data->proc;
#if (KERNEL_VERSION(3, 10, 0) <= 265984)
proc->proc_entry = proc_create(PROC_NAME, 0777, NULL, &fts_proc_fops);
if (proc->proc_entry == NULL) {
FTS_ERROR("create proc entry fail");
return -ENOMEM;
}
#else
proc->proc_entry = create_proc_entry(PROC_NAME, 0777, NULL);
if (proc->proc_entry == NULL) {
FTS_ERROR("create proc entry fail");
return -ENOMEM;
}
proc->proc_entry->write_proc = fts_debug_write;
proc->proc_entry->read_proc = fts_debug_read;
#endif
FTS_INFO("Create proc entry success!");
return 0;
}
void fts_release_apk_debug_channel(struct fts_ts_data *ts_data)
{
struct ftxxxx_proc *proc = &ts_data->proc;
if (proc->proc_entry) {
#if (KERNEL_VERSION(3, 10, 0) <= 265984)
proc_remove(proc->proc_entry);
#else
remove_proc_entry(PROC_NAME, NULL);
#endif
}
}
/************************************************************************
* sysfs interface
***********************************************************************/
/* fts_hw_reset interface */
static ssize_t fts_hw_reset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct input_dev *input_dev = fts_data->input_dev;
ssize_t count = 0;
mutex_lock(&input_dev->mutex);
fts_reset_proc(0);
count = snprintf(buf, PAGE_SIZE, "hw reset executed\n");
mutex_unlock(&input_dev->mutex);
return count;
}
static ssize_t fts_hw_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return -EPERM;
}
/* fts_irq interface */
static ssize_t fts_irq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t count = 0;
struct irq_desc *desc = irq_to_desc(fts_data->irq);
count = snprintf(buf, PAGE_SIZE, "irq_depth:%d\n", desc->depth);
return count;
}
static ssize_t fts_irq_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct input_dev *input_dev = fts_data->input_dev;
mutex_lock(&input_dev->mutex);
if (FTS_SYSFS_ECHO_ON(buf)) {
FTS_INFO("enable irq");
fts_irq_enable();
} else if (FTS_SYSFS_ECHO_OFF(buf)) {
FTS_INFO("disable irq");
fts_irq_disable();
}
mutex_unlock(&input_dev->mutex);
return count;
}
/* fts_boot_mode interface */
static ssize_t fts_boot_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct input_dev *input_dev = fts_data->input_dev;
FTS_FUNC_ENTER();
mutex_lock(&input_dev->mutex);
if (FTS_SYSFS_ECHO_ON(buf)) {
FTS_INFO("[EX-FUN]set to boot mode");
fts_data->fw_is_running = false;
} else if (FTS_SYSFS_ECHO_OFF(buf)) {
FTS_INFO("[EX-FUN]set to fw mode");
fts_data->fw_is_running = true;
}
mutex_unlock(&input_dev->mutex);
FTS_FUNC_EXIT();
return count;
}
static ssize_t fts_boot_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t count = 0;
struct input_dev *input_dev = fts_data->input_dev;
FTS_FUNC_ENTER();
mutex_lock(&input_dev->mutex);
if (fts_data->fw_is_running == true)
count = snprintf(buf, PAGE_SIZE, "tp is in fw mode\n");
else
count = snprintf(buf, PAGE_SIZE, "tp is in boot mode\n");
mutex_unlock(&input_dev->mutex);
FTS_FUNC_EXIT();
return count;
}
/* fts_fw_version interface */
static ssize_t fts_fw_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fts_ts_data *ts_data = fts_data;
struct input_dev *input_dev = ts_data->input_dev;
ssize_t num_read_chars = 0;
u8 fwver = 0;
mutex_lock(&input_dev->mutex);
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(1);
#endif
fts_read_reg(FTS_REG_FW_VER, &fwver);
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(0);
#endif
if ((fwver == 0xFF) || (fwver == 0x00))
num_read_chars =
snprintf(buf, PAGE_SIZE, "get tp fw version fail!\n");
else
num_read_chars = snprintf(buf, PAGE_SIZE, "%02x\n", fwver);
mutex_unlock(&input_dev->mutex);
return num_read_chars;
}
static ssize_t fts_fw_version_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
return -EPERM;
}
/* fts_rw_reg */
static ssize_t fts_rw_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int count;
int i;
struct input_dev *input_dev = fts_data->input_dev;
mutex_lock(&input_dev->mutex);
if (rw_op.len < 0) {
count = snprintf(buf, PAGE_SIZE, "Invalid cmd line\n");
} else if (rw_op.len == 1) {
if (rw_op.type == RWREG_OP_READ) {
if (rw_op.res == 0) {
count = snprintf(buf, PAGE_SIZE,
"Read %02X: %02X\n", rw_op.reg,
rw_op.val);
} else {
count = snprintf(buf, PAGE_SIZE,
"Read %02X failed, ret: %d\n",
rw_op.reg, rw_op.res);
}
} else {
if (rw_op.res == 0) {
count = snprintf(buf, PAGE_SIZE,
"Write %02X, %02X success\n",
rw_op.reg, rw_op.val);
} else {
count = snprintf(buf, PAGE_SIZE,
"Write %02X failed, ret: %d\n",
rw_op.reg, rw_op.res);
}
}
} else {
if (rw_op.type == RWREG_OP_READ) {
count = snprintf(buf, PAGE_SIZE,
"Read Reg: [%02X]-[%02X]\n", rw_op.reg,
rw_op.reg + rw_op.len);
count += snprintf(buf + count, PAGE_SIZE, "Result: ");
if (rw_op.res) {
count += snprintf(buf + count, PAGE_SIZE,
"failed, ret: %d\n",
rw_op.res);
} else {
if (rw_op.opbuf) {
for (i = 0; i < rw_op.len; i++) {
count += snprintf(
buf + count, PAGE_SIZE,
"%02X ",
rw_op.opbuf[i]);
}
count += snprintf(buf + count,
PAGE_SIZE, "\n");
}
}
} else {
;
count = snprintf(buf, PAGE_SIZE,
"Write Reg: [%02X]-[%02X]\n",
rw_op.reg, rw_op.reg + rw_op.len - 1);
count += snprintf(buf + count, PAGE_SIZE,
"Write Data: ");
if (rw_op.opbuf) {
for (i = 1; i < rw_op.len; i++) {
count += snprintf(buf + count,
PAGE_SIZE, "%02X ",
rw_op.opbuf[i]);
}
count += snprintf(buf + count, PAGE_SIZE, "\n");
}
if (rw_op.res) {
count += snprintf(buf + count, PAGE_SIZE,
"Result: failed, ret: %d\n",
rw_op.res);
} else {
count += snprintf(buf + count, PAGE_SIZE,
"Result: success\n");
}
}
}
mutex_unlock(&input_dev->mutex);
return count;
}
static int shex_to_int(const char *hex_buf, int size)
{
int i;
int base = 1;
int value = 0;
char single;
for (i = size - 1; i >= 0; i--) {
single = hex_buf[i];
if ((single >= '0') && (single <= '9'))
value += (single - '0') * base;
else if ((single >= 'a') && (single <= 'z'))
value += (single - 'a' + 10) * base;
else if ((single >= 'A') && (single <= 'Z'))
value += (single - 'A' + 10) * base;
else
return -EINVAL;
base *= 16;
}
return value;
}
static u8 shex_to_u8(const char *hex_buf, int size)
{
return (u8)shex_to_int(hex_buf, size);
}
/*
* Format buf:
* [0]: '0' write, '1' read(reserved)
* [1-2]: addr, hex
* [3-4]: length, hex
* [5-6]...[n-(n+1)]: data, hex
*/
static int fts_parse_buf(const char *buf, size_t cmd_len)
{
int length;
int i;
char *tmpbuf;
rw_op.reg = shex_to_u8(buf + 1, 2);
length = shex_to_int(buf + 3, 2);
if (buf[0] == '1') {
rw_op.len = length;
rw_op.type = RWREG_OP_READ;
FTS_DEBUG("read %02X, %d bytes", rw_op.reg, rw_op.len);
} else {
if (cmd_len < (length * 2 + 5)) {
pr_info("data invalided!\n");
return -EINVAL;
}
FTS_DEBUG("write %02X, %d bytes", rw_op.reg, length);
/* first byte is the register addr */
rw_op.type = RWREG_OP_WRITE;
rw_op.len = length + 1;
}
if (rw_op.len > 0) {
tmpbuf = kzalloc(rw_op.len, GFP_KERNEL);
if (!tmpbuf) {
FTS_ERROR("allocate memory failed!\n");
return -ENOMEM;
}
if (rw_op.type == RWREG_OP_WRITE) {
tmpbuf[0] = rw_op.reg & 0xFF;
FTS_DEBUG("write buffer: ");
for (i = 1; i < rw_op.len; i++) {
tmpbuf[i] = shex_to_u8(buf + 5 + i * 2 - 2, 2);
FTS_DEBUG("buf[%d]: %02X", i, tmpbuf[i] & 0xFF);
}
}
rw_op.opbuf = tmpbuf;
}
return rw_op.len;
}
static ssize_t fts_rw_reg_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct input_dev *input_dev = fts_data->input_dev;
ssize_t cmd_length = 0;
mutex_lock(&input_dev->mutex);
cmd_length = count - 1;
kfree(rw_op.opbuf);
rw_op.opbuf = NULL;
FTS_DEBUG("cmd len: %d, buf: %s", (int)cmd_length, buf);
/* compatible old ops */
if (cmd_length == 2) {
rw_op.type = RWREG_OP_READ;
rw_op.len = 1;
rw_op.reg = shex_to_int(buf, 2);
} else if (cmd_length == 4) {
rw_op.type = RWREG_OP_WRITE;
rw_op.len = 1;
rw_op.reg = shex_to_int(buf, 2);
rw_op.val = shex_to_int(buf + 2, 2);
} else if (cmd_length < 5) {
FTS_ERROR("Invalid cmd buffer");
mutex_unlock(&input_dev->mutex);
return -EINVAL;
}
rw_op.len = fts_parse_buf(buf, cmd_length);
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(1);
#endif
if (rw_op.len < 0) {
FTS_ERROR("cmd buffer error!");
} else {
if (rw_op.type == RWREG_OP_READ) {
if (rw_op.len == 1) {
u8 reg, val;
reg = rw_op.reg & 0xFF;
rw_op.res = fts_read_reg(reg, &val);
rw_op.val = val;
} else {
char reg;
reg = rw_op.reg & 0xFF;
rw_op.res = fts_read(&reg, 1, rw_op.opbuf,
rw_op.len);
}
if (rw_op.res < 0) {
FTS_ERROR("Could not read 0x%02x", rw_op.reg);
} else {
FTS_INFO("read 0x%02x, %d bytes successful",
rw_op.reg, rw_op.len);
rw_op.res = 0;
}
} else {
if (rw_op.len == 1) {
u8 reg, val;
reg = rw_op.reg & 0xFF;
val = rw_op.val & 0xFF;
rw_op.res = fts_write_reg(reg, val);
} else {
rw_op.res = fts_write(rw_op.opbuf, rw_op.len);
}
if (rw_op.res < 0) {
FTS_ERROR("Could not write 0x%02x", rw_op.reg);
} else {
FTS_INFO("Write 0x%02x, %d bytes successful",
rw_op.val, rw_op.len);
rw_op.res = 0;
}
}
}
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(0);
#endif
mutex_unlock(&input_dev->mutex);
return count;
}
/* fts_upgrade_bin interface */
static ssize_t fts_upgrade_bin_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return -EPERM;
}
static ssize_t fts_upgrade_bin_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char fwname[FILE_NAME_LENGTH] = {0};
struct input_dev *input_dev = fts_data->input_dev;
if ((count <= 1) || (count >= FILE_NAME_LENGTH - 32)) {
FTS_ERROR("fw bin name's length(%d) fail", (int)count);
return -EINVAL;
}
memset(fwname, 0, sizeof(fwname));
snprintf(fwname, 128, "%s", buf);
fwname[count - 1] = '\0';
FTS_INFO("upgrade with bin file through sysfs node");
mutex_lock(&input_dev->mutex);
fts_upgrade_bin(fwname, 0);
mutex_unlock(&input_dev->mutex);
return count;
}
/* fts_force_upgrade interface */
static ssize_t fts_force_upgrade_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return -EPERM;
}
static ssize_t fts_force_upgrade_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
char fwname[FILE_NAME_LENGTH];
struct input_dev *input_dev = fts_data->input_dev;
if ((count <= 1) || (count >= FILE_NAME_LENGTH - 32)) {
FTS_ERROR("fw bin name's length(%d) fail", (int)count);
return -EINVAL;
}
memset(fwname, 0, sizeof(fwname));
snprintf(fwname, 128, "%s", buf);
fwname[count - 1] = '\0';
FTS_INFO("force upgrade through sysfs node");
mutex_lock(&input_dev->mutex);
fts_upgrade_bin(fwname, 1);
mutex_unlock(&input_dev->mutex);
return count;
}
/* fts_driver_info interface */
static ssize_t fts_driver_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int count = 0;
struct fts_ts_data *ts_data = fts_data;
struct fts_ts_platform_data *pdata = ts_data->pdata;
struct input_dev *input_dev = ts_data->input_dev;
mutex_lock(&input_dev->mutex);
count += snprintf(buf + count, PAGE_SIZE, "Driver Ver:%s\n",
FTS_DRIVER_VERSION);
count += snprintf(buf + count, PAGE_SIZE,
"Resolution:(%d,%d)~(%d,%d)\n", pdata->x_min,
pdata->y_min, pdata->x_max, pdata->y_max);
count += snprintf(buf + count, PAGE_SIZE, "Max Touchs:%d\n",
pdata->max_touch_number);
count += snprintf(buf + count, PAGE_SIZE,
"reset gpio:%d,int gpio:%d,irq:%d\n",
pdata->reset_gpio, pdata->irq_gpio, ts_data->irq);
count += snprintf(buf + count, PAGE_SIZE, "IC ID:0x%02x%02x\n",
ts_data->ic_info.ids.chip_idh,
ts_data->ic_info.ids.chip_idl);
mutex_unlock(&input_dev->mutex);
return count;
}
static ssize_t fts_driver_info_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return -EPERM;
}
/* fts_dump_reg interface */
static ssize_t fts_dump_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int count = 0;
u8 val = 0;
struct input_dev *input_dev = fts_data->input_dev;
mutex_lock(&input_dev->mutex);
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(1);
#endif
fts_read_reg(FTS_REG_POWER_MODE, &val);
count += snprintf(buf + count, PAGE_SIZE, "Power Mode:0x%02x\n", val);
fts_read_reg(FTS_REG_FW_VER, &val);
count += snprintf(buf + count, PAGE_SIZE, "FW Ver:0x%02x\n", val);
fts_read_reg(FTS_REG_LIC_VER, &val);
count += snprintf(buf + count, PAGE_SIZE, "LCD Initcode Ver:0x%02x\n",
val);
fts_read_reg(FTS_REG_IDE_PARA_VER_ID, &val);
count += snprintf(buf + count, PAGE_SIZE, "Param Ver:0x%02x\n", val);
fts_read_reg(FTS_REG_IDE_PARA_STATUS, &val);
count += snprintf(buf + count, PAGE_SIZE, "Param status:0x%02x\n", val);
fts_read_reg(FTS_REG_VENDOR_ID, &val);
count += snprintf(buf + count, PAGE_SIZE, "Vendor ID:0x%02x\n", val);
fts_read_reg(FTS_REG_LCD_BUSY_NUM, &val);
count += snprintf(buf + count, PAGE_SIZE, "LCD Busy Number:0x%02x\n",
val);
fts_read_reg(FTS_REG_GESTURE_EN, &val);
count += snprintf(buf + count, PAGE_SIZE, "Gesture Mode:0x%02x\n", val);
fts_read_reg(FTS_REG_CHARGER_MODE_EN, &val);
count += snprintf(buf + count, PAGE_SIZE, "charge stat:0x%02x\n", val);
fts_read_reg(FTS_REG_INT_CNT, &val);
count += snprintf(buf + count, PAGE_SIZE, "INT count:0x%02x\n", val);
fts_read_reg(FTS_REG_FLOW_WORK_CNT, &val);
count += snprintf(buf + count, PAGE_SIZE, "ESD count:0x%02x\n", val);
#if FTS_ESDCHECK_EN
fts_esdcheck_proc_busy(0);
#endif
mutex_unlock(&input_dev->mutex);
return count;
}
static ssize_t fts_dump_reg_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
return -EPERM;
}
/* fts_dump_reg interface */
static ssize_t fts_tpbuf_point_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int count = 0;
int i = 0;
struct input_dev *input_dev = fts_data->input_dev;
mutex_lock(&input_dev->mutex);
count += snprintf(buf + count, PAGE_SIZE, "touch point buffer:\n");
for (i = 0; i < fts_data->pnt_buf_size; i++) {
count += snprintf(buf + count, PAGE_SIZE, "%02x ",
fts_data->point_buf[i]);
}
count += snprintf(buf + count, PAGE_SIZE, "\n");
mutex_unlock(&input_dev->mutex);
return count;
}
static ssize_t fts_tpbuf_point_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
return -EPERM;
}
/* fts_log_level interface */
static ssize_t fts_log_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int count = 0;
struct input_dev *input_dev = fts_data->input_dev;
mutex_lock(&input_dev->mutex);
count += snprintf(buf + count, PAGE_SIZE, "log level:%d\n",
fts_data->log_level);
mutex_unlock(&input_dev->mutex);
return count;
}
static ssize_t fts_log_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int value = 0;
int ret = 0;
struct input_dev *input_dev = fts_data->input_dev;
FTS_FUNC_ENTER();
mutex_lock(&input_dev->mutex);
ret = kstrtouint(buf, 0, &value);
FTS_DEBUG("log level:%d->%d", fts_data->log_level, value);
fts_data->log_level = value;
mutex_unlock(&input_dev->mutex);
FTS_FUNC_EXIT();
return count;
}
/* get the fw version example:cat fw_version */
static DEVICE_ATTR_RW(fts_fw_version);
/* read and write register(s)
* All data type is **HEX**
* Single Byte:
* read: echo 88 > rw_reg ---read register 0x88
* write: echo 8807 > rw_reg ---write 0x07 into register 0x88
* Multi-bytes:
* [0:rw-flag][1-2: reg addr, hex][3-4: length, hex][5-6...n-n+1: write
* data, hex]
* rw-flag: 0, write; 1, read
* read: echo 10005 > rw_reg ---read reg 0x00-0x05
* write: echo 000050102030405 > rw_reg ---write reg 0x00-0x05 as
* 01,02,03,04,05
* Get result:
* cat rw_reg
*/
static DEVICE_ATTR_RW(fts_rw_reg);
/* upgrade from fw bin file example:echo "*.bin" > fts_upgrade_bin */
static DEVICE_ATTR_RW(fts_upgrade_bin);
static DEVICE_ATTR_RW(fts_force_upgrade);
static DEVICE_ATTR_RW(fts_driver_info);
static DEVICE_ATTR_RW(fts_dump_reg);
static DEVICE_ATTR_RW(fts_hw_reset);
static DEVICE_ATTR_RW(fts_irq);
static DEVICE_ATTR_RW(fts_boot_mode);
static DEVICE_ATTR_RW(fts_tpbuf_point);
static DEVICE_ATTR_RW(fts_log_level);
/* add your attr in here*/
static struct attribute *fts_attributes[] = {
&dev_attr_fts_fw_version.attr, &dev_attr_fts_rw_reg.attr,
&dev_attr_fts_dump_reg.attr, &dev_attr_fts_upgrade_bin.attr,
&dev_attr_fts_force_upgrade.attr, &dev_attr_fts_driver_info.attr,
&dev_attr_fts_hw_reset.attr, &dev_attr_fts_irq.attr,
&dev_attr_fts_boot_mode.attr, &dev_attr_fts_tpbuf_point.attr,
&dev_attr_fts_log_level.attr, NULL};
static struct attribute_group fts_attribute_group = {.attrs = fts_attributes};
int fts_create_sysfs(struct fts_ts_data *ts_data)
{
int ret = 0;
ret = sysfs_create_group(&ts_data->dev->kobj, &fts_attribute_group);
if (ret) {
FTS_ERROR("[EX]: sysfs_create_group() failed!!");
sysfs_remove_group(&ts_data->dev->kobj, &fts_attribute_group);
return -ENOMEM;
}
FTS_INFO("[EX]: sysfs_create_group() succeeded!!");
return ret;
}
int fts_remove_sysfs(struct fts_ts_data *ts_data)
{
sysfs_remove_group(&ts_data->dev->kobj, &fts_attribute_group);
return 0;
}