kernel_samsung_a34x-permissive/drivers/input/touchscreen/mediatek/GT911/gt9xx_driver.c
2024-04-28 15:49:01 +02:00

1910 lines
44 KiB
C
Executable file

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include "tpd.h"
#include "gt9xx_config.h"
#include "include/tpd_gt9xx_common.h"
#ifdef CONFIG_MTK_BOOT
#include "mtk_boot_common.h"
#endif
#ifdef GTP_PROXIMITY
#include <linux/hwmsen_dev.h>
#include <linux/hwmsensor.h>
#include <linux/sensors_io.h>
#endif
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <uapi/linux/sched/types.h>
#include <linux/device.h>
#include <linux/proc_fs.h> /*proc*/
static int tpd_flag;
static int tpd_halt;
static int tpd_eint_mode = 1;
static int tpd_polling_time = 50;
static DECLARE_WAIT_QUEUE_HEAD(waiter);
static DEFINE_MUTEX(i2c_access);
unsigned int tpd_rst_gpio_number;
unsigned int tpd_int_gpio_number;
#ifdef CONFIG_GTP_HAVE_TOUCH_KEY
const u16 touch_key_array[] = TPD_KEYS;
/* #define GTP_MAX_KEY_NUM ( sizeof( touch_key_array )/sizeof( */
/* touch_key_array[0] ) ) */
struct touch_virtual_key_map_t {
int point_x;
int point_y;
};
static struct touch_virtual_key_map_t touch_key_point_maping_array[] =
GTP_KEY_MAP_ARRAY;
#endif
unsigned int touch_irq;
#if (defined(TPD_WARP_START) && defined(TPD_WARP_END))
static int tpd_wb_start_local[TPD_WARP_CNT] = TPD_WARP_START;
static int tpd_wb_end_local[TPD_WARP_CNT] = TPD_WARP_END;
#endif
#if (defined(TPD_HAVE_CALIBRATION) && !defined(TPD_CUSTOM_CALIBRATION))
/* static int tpd_calmat_local[8] = TPD_CALIBRATION_MATRIX; */
/* static int tpd_def_calmat_local[8] = TPD_CALIBRATION_MATRIX; */
static int tpd_def_calmat_local_normal[8] =
TPD_CALIBRATION_MATRIX_ROTATION_NORMAL;
static int tpd_def_calmat_local_factory[8] =
TPD_CALIBRATION_MATRIX_ROTATION_FACTORY;
#endif
static irqreturn_t tpd_interrupt_handler(int irq, void *dev_id);
static int touch_event_handler(void *unused);
static int tpd_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int tpd_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int tpd_i2c_remove(struct i2c_client *client);
static void tpd_on(void);
static void tpd_off(void);
#ifdef CONFIG_GTP_CHARGER_DETECT
#define TPD_CHARGER_CHECK_CIRCLE 50
static struct delayed_work gtp_charger_check_work;
static struct workqueue_struct *gtp_charger_check_workqueue;
static void gtp_charger_check_func(struct work_struct *);
static u8 gtp_charger_mode;
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
#define TPD_ESD_CHECK_CIRCLE 2000
static struct delayed_work gtp_esd_check_work;
static struct workqueue_struct *gtp_esd_check_workqueue;
static void gtp_esd_check_func(struct work_struct *);
#endif
#ifdef GTP_PROXIMITY
#define TPD_PROXIMITY_VALID_REG 0x814E
#define TPD_PROXIMITY_ENABLE_REG 0x8042
static u8 tpd_proximity_flag;
static u8 tpd_proximity_detect = 1; /* 0-->close ; 1--> far away */
#endif
#ifndef GTP_REG_REFRESH_RATE
#define GTP_REG_REFRESH_RATE 0x8056
#endif
u32 gtp_eint_trigger_type = IRQF_TRIGGER_FALLING;
struct i2c_client *i2c_client_point;
static const struct i2c_device_id tpd_i2c_id[] = {{"gt9xx", 0}, {} };
static unsigned short force[] = {0, 0xBA, I2C_CLIENT_END, I2C_CLIENT_END};
static const unsigned short *const forces[] = {force, NULL};
/* static struct i2c_client_address_data addr_data = { .forces = forces,}; */
static const struct of_device_id gt9xx_dt_match[] = {
{.compatible = "mediatek,cap_touch"}, {},
};
MODULE_DEVICE_TABLE(of, gt9xx_dt_match);
static struct i2c_driver tpd_i2c_driver = {
.driver = {
.of_match_table = of_match_ptr(gt9xx_dt_match),
},
.probe = tpd_i2c_probe,
.remove = tpd_i2c_remove,
.detect = tpd_i2c_detect,
.driver.name = "gt9xx",
.id_table = tpd_i2c_id,
.address_list = (const unsigned short *)forces,
};
#ifdef CONFIG_OF
static int of_get_gt9xx_platform_data(struct device *dev)
{
/*int ret, num;*/
if (dev->of_node) {
const struct of_device_id *match;
match = of_match_device(of_match_ptr(gt9xx_dt_match), dev);
if (!match) {
GTP_ERROR("Error: No device match found\n");
return -ENODEV;
}
}
tpd_rst_gpio_number = of_get_named_gpio(dev->of_node, "rst-gpio", 0);
tpd_int_gpio_number = of_get_named_gpio(dev->of_node, "int-gpio", 0);
/*
** ret = of_property_read_u32(dev->of_node, "rst-gpio", &num);
*if (!ret)
* tpd_rst_gpio_number = num;
*ret = of_property_read_u32(dev->of_node, "int-gpio", &num);
*if (!ret)
* tpd_int_gpio_number = num;
*/
GTP_ERROR("g_vproc_en_gpio_number %d\n", tpd_rst_gpio_number);
GTP_ERROR("g_vproc_vsel_gpio_number %d\n", tpd_int_gpio_number);
return 0;
}
#else
static int of_get_gt9xx_platform_data(struct device *dev)
{
return 0;
}
#endif
static u8 config[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH] = {
GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#ifdef CONFIG_GTP_CHARGER_DETECT
static u8 config_charger[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH] = {
GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
#endif
#pragma pack(1)
struct st_tpd_info {
u16 pid; /* product id */
u16 vid; /* version id */
};
#pragma pack()
struct st_tpd_info tpd_info;
u8 int_type;
u32 abs_x_max;
u32 abs_y_max;
u8 gtp_rawdiff_mode;
u8 cfg_len;
/* proc file system */
static struct proc_dir_entry *gt91xx_config_proc;
/*
*******************************************************
*Function:
* Write refresh rate
*
*Input:
* rate: refresh rate N (Duration=5+N ms, N=0~15)
*
*Output:
* Executive outcomes.0---succeed.
*******************************************************
*/
static u8 gtp_set_refresh_rate(u8 rate)
{
u8 buf[3] = {GTP_REG_REFRESH_RATE >> 8, GTP_REG_REFRESH_RATE & 0xff,
rate};
if (rate > 0xf) {
GTP_ERROR("Refresh rate is over range (%d)", rate);
return FAIL;
}
GTP_INFO("Refresh rate change to %d", rate);
return gtp_i2c_write(i2c_client_point, buf, sizeof(buf));
}
/*
*******************************************************
*Function:
* Get refresh rate
*
*Output:
* Refresh rate or error code
*******************************************************
*/
static u8 gtp_get_refresh_rate(void)
{
int ret;
u8 buf[3] = {GTP_REG_REFRESH_RATE >> 8, GTP_REG_REFRESH_RATE & 0xff};
ret = gtp_i2c_read(i2c_client_point, buf, sizeof(buf));
if (ret < 0)
return ret;
GTP_INFO("Refresh rate is %d", buf[GTP_ADDR_LENGTH]);
return buf[GTP_ADDR_LENGTH];
}
/* ============================================================= */
static ssize_t show_refresh_rate(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret = gtp_get_refresh_rate();
if (ret < 0)
return 0;
return sprintf(buf, "%d\n", ret);
}
static ssize_t store_refresh_rate(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long rate = 0;
if (kstrtoul(buf, 16, &rate))
return 0;
gtp_set_refresh_rate(rate);
return size;
}
static DEVICE_ATTR(tpd_refresh_rate, 0664, show_refresh_rate,
store_refresh_rate);
static struct device_attribute *gt9xx_attrs[] = {
&dev_attr_tpd_refresh_rate,
};
/* ============================================================= */
static int tpd_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
strcpy(info->type, "mtk-tpd");
return 0;
}
#ifdef GTP_PROXIMITY
static s32 tpd_get_ps_value(void)
{
return tpd_proximity_detect;
}
static s32 tpd_enable_ps(s32 enable)
{
u8 state;
s32 ret = -1;
if (enable) {
state = 1;
tpd_proximity_flag = 1;
GTP_INFO("TPD proximity function to be on.");
} else {
state = 0;
tpd_proximity_flag = 0;
GTP_INFO("TPD proximity function to be off.");
}
ret = i2c_write_bytes(i2c_client_point, TPD_PROXIMITY_ENABLE_REG,
&state, 1);
if (ret < 0) {
GTP_ERROR("TPD %s proximity cmd failed.",
state ? "enable" : "disable");
return ret;
}
GTP_INFO("TPD proximity function %s success.",
state ? "enable" : "disable");
return 0;
}
s32 tpd_ps_operate(void *self, u32 command, void *buff_in, s32 size_in,
void *buff_out, s32 size_out, s32 *actualout)
{
s32 err = 0;
s32 value;
hwm_sensor_data *sensor_data;
switch (command) {
case SENSOR_DELAY:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Set delay parameter error!");
err = -EINVAL;
}
/* Do nothing */
break;
case SENSOR_ENABLE:
if ((buff_in == NULL) || (size_in < sizeof(int))) {
GTP_ERROR("Enable sensor parameter error!");
err = -EINVAL;
} else {
value = *(int *)buff_in;
err = tpd_enable_ps(value);
}
break;
case SENSOR_GET_DATA:
if ((buff_out == NULL) ||
(size_out < sizeof(hwm_sensor_data))) {
GTP_ERROR("Get sensor data parameter error!");
err = -EINVAL;
} else {
sensor_data = (hwm_sensor_data *)buff_out;
sensor_data->values[0] = tpd_get_ps_value();
sensor_data->value_divide = 1;
sensor_data->status = SENSOR_STATUS_ACCURACY_MEDIUM;
}
break;
default:
GTP_ERROR(
"proxmy sensor operate function no this parameter %d!",
command);
err = -1;
break;
}
return err;
}
#endif
static ssize_t gt91xx_config_read_proc(struct file *file, char *buffer,
size_t count, loff_t *ppos)
{
char *page = NULL;
char *ptr = NULL;
char temp_data[GTP_CONFIG_MAX_LENGTH + 2] = {0};
int i, len, err = -1;
page = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!page) {
kfree(page);
return -ENOMEM;
}
ptr = page;
ptr += sprintf(ptr, "==== GT9XX config init value====\n");
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ptr += sprintf(ptr, "0x%02X ", config[i + 2]);
if (i % 8 == 7)
ptr += sprintf(ptr, "\n");
}
ptr += sprintf(ptr, "\n");
ptr += sprintf(ptr, "==== GT9XX config real value====\n");
i2c_read_bytes(i2c_client_point, GTP_REG_CONFIG_DATA, temp_data,
GTP_CONFIG_MAX_LENGTH);
for (i = 0; i < GTP_CONFIG_MAX_LENGTH; i++) {
ptr += sprintf(ptr, "0x%02X ", temp_data[i]);
if (i % 8 == 7)
ptr += sprintf(ptr, "\n");
}
/* Touch PID & VID */
ptr += sprintf(ptr, "\n");
ptr += sprintf(ptr, "==== GT9XX Version ID ====\n");
i2c_read_bytes(i2c_client_point, GTP_REG_VERSION, temp_data, 6);
ptr += sprintf(ptr, "Chip PID: %c%c%c VID: 0x%02X%02X\n", temp_data[0],
temp_data[1], temp_data[2], temp_data[5], temp_data[4]);
i2c_read_bytes(i2c_client_point, 0x41E4, temp_data, 1);
ptr += sprintf(ptr, "Boot status 0x%X\n", temp_data[0]);
/* Touch Status and Clock Gate */
ptr += sprintf(ptr, "\n");
ptr += sprintf(ptr, "==== Touch Status and Clock Gate ====\n");
ptr += sprintf(ptr, "status: 1: on, 0 :off\n");
ptr += sprintf(ptr, "status:%d\n", (tpd_halt + 1) & 0x1);
len = ptr - page;
if (*ppos >= len) {
kfree(page);
return 0;
}
err = copy_to_user(buffer, (char *)page, len);
*ppos += len;
if (err) {
kfree(page);
return err;
}
kfree(page);
return len;
/* return (ptr - page); */
}
static ssize_t gt91xx_config_write_proc(struct file *file, const char *buffer,
size_t count, loff_t *ppos)
{
s32 ret = 0;
char temp[25] = {0}; /* for store special format cmd */
char mode_str[15] = {0};
unsigned int mode;
u8 buf[1];
GTP_DEBUG("write count %ld\n", (unsigned long)count);
if (count > GTP_CONFIG_MAX_LENGTH) {
GTP_ERROR("size not match [%d:%ld]", GTP_CONFIG_MAX_LENGTH,
(unsigned long)count);
return -EFAULT;
}
/**********************************************/
/* for store special format cmd */
if (copy_from_user(temp, buffer, sizeof(temp))) {
GTP_ERROR("copy from user fail 2");
return -EFAULT;
}
ret = sscanf(temp, "%s %d", (char *)&mode_str, &mode);
/***********POLLING/EINT MODE switch****************/
if (strcmp(mode_str, "polling") == 0) {
if (mode >= 10 && mode <= 200) {
GTP_INFO("Switch to polling mode, polling time is %d",
mode);
tpd_eint_mode = 0;
tpd_polling_time = mode;
tpd_flag = 1;
wake_up_interruptible(&waiter);
} else {
GTP_INFO(
"Wrong polling time, please set between 10~200ms");
}
return count;
}
if (strcmp(mode_str, "eint") == 0) {
GTP_INFO("Switch to eint mode");
tpd_eint_mode = 1;
return count;
}
/**********************************************/
if (strcmp(mode_str, "switch") == 0) {
if (mode == 0) /* turn off */
tpd_off();
else if (mode == 1) /* turn on */
tpd_on();
else
GTP_ERROR("error mode :%d", mode);
return count;
}
/* force clear config */
if (strcmp(mode_str, "clear_config") == 0) {
GTP_INFO("Force clear config");
buf[0] = 0x10;
ret = i2c_write_bytes(i2c_client_point, GTP_REG_SLEEP, buf, 1);
return count;
}
if (copy_from_user(&config[2], buffer, count)) {
GTP_ERROR("copy from user fail");
return -EFAULT;
}
/***********clk operate reseved****************/
/**********************************************/
ret = gtp_send_cfg(i2c_client_point);
abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
abs_y_max =
(config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
int_type = (config[TRIGGER_LOC]) & 0x03;
if (ret < 0)
GTP_ERROR("send config failed.");
return count;
}
int i2c_read_bytes(struct i2c_client *client, u16 addr, u8 *rxbuf, int len)
{
u8 buffer[GTP_ADDR_LENGTH];
u16 left = len;
u16 offset = 0;
u8 *data = NULL;
struct i2c_msg msg[2] = {
{
.addr = (client->addr),
.flags = 0,
.buf = buffer,
.len = GTP_ADDR_LENGTH,
},
{
.addr = (client->addr),
.flags = I2C_M_RD,
},
};
if (rxbuf == NULL)
return -1;
data = kmalloc(MAX_TRANSACTION_LENGTH < (len + GTP_ADDR_LENGTH)
? MAX_TRANSACTION_LENGTH
: (len + GTP_ADDR_LENGTH),
GFP_KERNEL);
if (data == NULL)
return -1;
msg[1].buf = data;
GTP_DEBUG("i2c read_bytes to device %02X address %04X len %d",
client->addr, addr, len);
while (left > 0) {
buffer[0] = ((addr + offset) >> 8) & 0xFF;
buffer[1] = (addr + offset) & 0xFF;
msg[1].buf = &rxbuf[offset];
if (left > MAX_TRANSACTION_LENGTH) {
msg[1].len = MAX_TRANSACTION_LENGTH;
left -= MAX_TRANSACTION_LENGTH;
offset += MAX_TRANSACTION_LENGTH;
} else {
msg[1].len = left;
left = 0;
}
if (i2c_transfer(client->adapter, &msg[0], 2) != 2) {
GTP_ERROR("I2C read 0x%X length=%d failed",
addr + offset, len);
kfree(data);
return -1;
}
}
kfree(data);
return 0;
}
s32 gtp_i2c_read(struct i2c_client *client, u8 *buf, s32 len)
{
s32 ret = -1;
u16 addr = (buf[0] << 8) + buf[1];
ret = i2c_read_bytes(client, addr, &buf[2], len - 2);
if (!ret)
return 2;
gtp_reset_guitar(client, 20);
return ret;
}
int i2c_write_bytes(struct i2c_client *client, u16 addr, u8 *txbuf, int len)
{
u8 buffer[MAX_TRANSACTION_LENGTH];
u16 left = len;
u16 offset = 0;
struct i2c_msg msg = {
.addr = (client->addr),
.flags = 0,
.buf = buffer,
};
if (txbuf == NULL)
return -1;
GTP_DEBUG("i2c write_bytes to device %02X address %04X len %d",
client->addr, addr, len);
while (left > 0) {
buffer[0] = ((addr + offset) >> 8) & 0xFF;
buffer[1] = (addr + offset) & 0xFF;
if (left > MAX_I2C_TRANSFER_SIZE) {
memcpy(&buffer[GTP_ADDR_LENGTH], &txbuf[offset],
MAX_I2C_TRANSFER_SIZE);
msg.len = MAX_TRANSACTION_LENGTH;
left -= MAX_I2C_TRANSFER_SIZE;
offset += MAX_I2C_TRANSFER_SIZE;
} else {
memcpy(&buffer[GTP_ADDR_LENGTH], &txbuf[offset], left);
msg.len = left + GTP_ADDR_LENGTH;
left = 0;
}
/* GTP_DEBUG("byte left %d offset %d", left, offset); */
if (i2c_transfer(client->adapter, &msg, 1) != 1) {
GTP_ERROR("I2C write 0x%X%X length=%d failed",
buffer[0], buffer[1], len);
return -1;
}
}
return 0;
}
s32 gtp_i2c_write(struct i2c_client *client, u8 *buf, s32 len)
{
s32 ret = -1;
u16 addr = (buf[0] << 8) + buf[1];
ret = i2c_write_bytes(client, addr, &buf[2], len - 2);
if (!ret)
return 1;
gtp_reset_guitar(client, 20);
return ret;
}
/*
*******************************************************
*Function:
* Send config Function.
*
*Input:
* client: i2c client.
*
*Output:
* Executive outcomes.0--success,non-0--fail.
*******************************************************
*/
s32 gtp_send_cfg(struct i2c_client *client)
{
s32 ret = 0;
#ifdef CONFIG_GTP_DRIVER_SEND_CFG
s32 retry = 0;
for (retry = 0; retry < 5; retry++) {
#ifdef CONFIG_GTP_CHARGER_DETECT
if (gtp_charger_mode == 1) {
GTP_DEBUG("Write charger config");
ret = gtp_i2c_write(client, config_charger,
GTP_CONFIG_MAX_LENGTH +
GTP_ADDR_LENGTH);
} else {
GTP_DEBUG("Write normal config");
ret = gtp_i2c_write(client, config,
GTP_CONFIG_MAX_LENGTH +
GTP_ADDR_LENGTH);
}
#else
ret = gtp_i2c_write(client, config,
GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
#endif
if (ret > 0)
break;
}
#endif
return ret;
}
/*
*******************************************************
*Function:
* Read goodix touchscreen version function.
*
*Input:
* client: i2c client struct.
* version:address to store version info
*
*Output:
* Executive outcomes.0---succeed.
*******************************************************
*/
s32 gtp_read_version(struct i2c_client *client, u16 *version)
{
s32 ret = -1;
s32 i;
u8 buf[8] = {GTP_REG_VERSION >> 8, GTP_REG_VERSION & 0xff};
GTP_DEBUG_FUNC();
ret = gtp_i2c_read(client, buf, sizeof(buf));
if (ret < 0) {
GTP_ERROR("GTP read version failed");
return ret;
}
if (version)
*version = (buf[7] << 8) | buf[6];
tpd_info.vid = (buf[7] << 8) | buf[6];
tpd_info.pid = 0x00;
/* for gt9xx series */
for (i = 0; i < 3; i++) {
if (buf[i + 2] < 0x30)
break;
tpd_info.pid |= ((buf[i + 2] - 0x30) << ((2 - i) * 4));
}
GTP_INFO("IC VERSION:%c%c%c_%02x%02x", buf[2], buf[3], buf[4], buf[7],
buf[6]);
return ret;
}
/*
*******************************************************
*Function:
* GTP initialize function.
*
*Input:
* client: i2c client private struct.
*
*Output:
* Executive outcomes.0---succeed.
*******************************************************
*/
static s32 gtp_init_panel(struct i2c_client *client)
{
s32 ret = -1;
#ifdef CONFIG_GTP_DRIVER_SEND_CFG
s32 i;
u8 check_sum = 0;
u8 rd_cfg_buf[16];
u8 cfg_info_group1[] = CTP_CFG_GROUP1;
u8 cfg_info_group2[] = CTP_CFG_GROUP2;
u8 cfg_info_group3[] = CTP_CFG_GROUP3;
u8 *send_cfg_buf[3] = {cfg_info_group1, cfg_info_group2,
cfg_info_group3};
#ifdef CONFIG_GTP_CHARGER_DETECT
u8 cfg_info_group1_charger[] = CTP_CFG_GROUP1_CHARGER;
u8 cfg_info_group2_charger[] = CTP_CFG_GROUP2_CHARGER;
u8 cfg_info_group3_charger[] = CTP_CFG_GROUP3_CHARGER;
u8 *send_cfg_buf_charger[3] = {cfg_info_group1_charger,
cfg_info_group2_charger,
cfg_info_group3_charger};
#endif
u8 cfg_info_len[3] = {ARRAY_SIZE(cfg_info_group1),
ARRAY_SIZE(cfg_info_group2),
ARRAY_SIZE(cfg_info_group3)};
for (i = 0; i < 3; i++) {
if (cfg_info_len[i] > cfg_len)
cfg_len = cfg_info_len[i];
}
GTP_DEBUG("len1=%d,len2=%d,len3=%d,get_len=%d", cfg_info_len[0],
cfg_info_len[1], cfg_info_len[2], cfg_len);
if ((!cfg_info_len[1]) && (!cfg_info_len[2])) {
rd_cfg_buf[GTP_ADDR_LENGTH] = 0;
} else {
rd_cfg_buf[0] = GTP_REG_SENSOR_ID >> 8;
rd_cfg_buf[1] = GTP_REG_SENSOR_ID & 0xff;
ret = gtp_i2c_read(client, rd_cfg_buf, 3);
if (ret < 0) {
GTP_ERROR(
"Read SENSOR ID failed,default use group1 config!");
rd_cfg_buf[GTP_ADDR_LENGTH] = 0;
goto out;
}
rd_cfg_buf[GTP_ADDR_LENGTH] &= 0x03;
}
GTP_INFO("SENSOR ID:%d", rd_cfg_buf[GTP_ADDR_LENGTH]);
memset(&config[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config[GTP_ADDR_LENGTH],
send_cfg_buf[rd_cfg_buf[GTP_ADDR_LENGTH]], cfg_len);
#ifdef CONFIG_GTP_CHARGER_DETECT
memset(&config_charger[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config_charger[GTP_ADDR_LENGTH],
send_cfg_buf_charger[rd_cfg_buf[GTP_ADDR_LENGTH]], cfg_len);
#endif
#ifdef CONFIG_GTP_CUSTOM_CFG
config[RESOLUTION_LOC] = (u8)GTP_MAX_WIDTH;
config[RESOLUTION_LOC + 1] = (u8)(GTP_MAX_WIDTH >> 8);
config[RESOLUTION_LOC + 2] = (u8)GTP_MAX_HEIGHT;
config[RESOLUTION_LOC + 3] = (u8)(GTP_MAX_HEIGHT >> 8);
if (GTP_INT_TRIGGER == 0) /* RISING */
config[TRIGGER_LOC] &= 0xfe;
else if (GTP_INT_TRIGGER == 1) /* FALLING */
config[TRIGGER_LOC] |= 0x01;
#endif /* endif CONFIG_GTP_CUSTOM_CFG */
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
check_sum += config[i];
config[cfg_len] = (~check_sum) + 1;
#ifdef CONFIG_GTP_CHARGER_DETECT
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
check_sum += config_charger[i];
config_charger[cfg_len] = (~check_sum) + 1;
#endif
#else /* else DRIVER NEED NOT SEND CONFIG */
if (cfg_len == 0)
cfg_len = GTP_CONFIG_MAX_LENGTH;
ret = gtp_i2c_read(client, config, cfg_len + GTP_ADDR_LENGTH);
if (ret < 0) {
GTP_ERROR(
"GTP read resolution & max_touch_num failed, use default value!");
abs_x_max = GTP_MAX_WIDTH;
abs_y_max = GTP_MAX_HEIGHT;
int_type = GTP_INT_TRIGGER;
goto out;
}
#endif /* endif GTP_DRIVER_SEND_CFG */
abs_x_max = (config[RESOLUTION_LOC + 1] << 8) + config[RESOLUTION_LOC];
abs_y_max =
(config[RESOLUTION_LOC + 3] << 8) + config[RESOLUTION_LOC + 2];
int_type = (config[TRIGGER_LOC]) & 0x03;
if ((!abs_x_max) || (!abs_y_max)) {
GTP_ERROR(
"GTP resolution & max_touch_num invalid, use default value!");
abs_x_max = GTP_MAX_WIDTH;
abs_y_max = GTP_MAX_HEIGHT;
}
ret = gtp_send_cfg(client);
if (ret < 0) {
GTP_ERROR("Send config error.");
goto out;
}
GTP_DEBUG("X_MAX = %d,Y_MAX = %d,TRIGGER = 0x%02x", abs_x_max,
abs_y_max, int_type);
msleep(20);
out:
return ret;
}
static s8 gtp_i2c_test(struct i2c_client *client)
{
u8 retry = 0;
s8 ret = -1;
u32 hw_info = 0;
GTP_DEBUG_FUNC();
while (retry++ < 5) {
ret = i2c_read_bytes(client, GTP_REG_HW_INFO, (u8 *)&hw_info,
sizeof(hw_info));
if ((!ret) && (hw_info == 0x00900600)) /* 20121212 */
return ret;
GTP_ERROR("GTP_REG_HW_INFO : %08X", hw_info);
GTP_ERROR("GTP i2c test failed time %d.", retry);
msleep(20);
}
return -1;
}
/*
*******************************************************
*Function:
* Set INT pin as input for FW sync.
*
*Note:
* If the INT is high, It means there is pull up resistor attached on the INT
*pin.
* Pull low the INT pin manaully for FW sync.
*******************************************************
*/
void gtp_int_sync(void)
{
GTP_DEBUG("There is pull up resisitor attached on the INT pin~!");
tpd_gpio_output(GTP_INT_PORT, 0);
gpio_direction_output(tpd_int_gpio_number, 0);
msleep(50);
tpd_gpio_as_int(GTP_INT_PORT);
gpio_direction_input(tpd_int_gpio_number);
}
void gtp_reset_guitar(struct i2c_client *client, s32 ms)
{
GTP_INFO("GTP RESET!");
tpd_gpio_output(GTP_RST_PORT, 0);
gpio_direction_output(tpd_rst_gpio_number, 0);
msleep(ms);
tpd_gpio_output(GTP_INT_PORT, client->addr == 0x14);
gpio_direction_output(tpd_int_gpio_number, client->addr == 0x14);
msleep(20);
tpd_gpio_output(GTP_RST_PORT, 1);
gpio_direction_output(tpd_rst_gpio_number, 1);
msleep(20);
gtp_int_sync();
}
static int tpd_power_on(struct i2c_client *client)
{
int ret = 0;
int reset_count = 0;
reset_proc:
tpd_gpio_output(GTP_INT_PORT, 0);
gpio_direction_output(tpd_int_gpio_number, 0);
tpd_gpio_output(GTP_RST_PORT, 0);
gpio_direction_output(tpd_rst_gpio_number, 0);
msleep(20);
/* power on, need confirm with SA */
GTP_ERROR("turn on power reg-vgp6\n");
ret = regulator_enable(tpd->reg);
if (ret != 0)
TPD_DMESG("Failed to enable reg-vgp6: %d\n", ret);
gtp_reset_guitar(client, 20);
GTP_ERROR("tpd_int_gpio_number:0x%x, tpd_rst_gpio_number:0x%x",
tpd_int_gpio_number, tpd_rst_gpio_number);
ret = gtp_i2c_test(client);
if (ret < 0) {
GTP_ERROR("I2C communication ERROR!");
if (reset_count < TPD_MAX_RESET_COUNT) {
reset_count++;
goto reset_proc;
} else {
goto out;
}
}
#ifdef CONFIG_GTP_FW_DOWNLOAD
ret = gup_init_fw_proc(client);
if (ret < 0)
GTP_ERROR("Create fw download thread error.");
#endif
out:
return ret;
}
#ifdef MTK_CTP_RESET_CONFIG
static int tpd_clear_config(void *unused)
{
int ret = 0, check_sum = 0;
u8 temp_data = 0, i = 0;
u8 config_1st[GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH] = {
GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
GTP_INFO("Clear Config Begin......");
msleep(10000); /* wait main thread to be completed */
ret = i2c_read_bytes(i2c_client_point, GTP_REG_CONFIG_DATA, &temp_data,
1);
if (ret < 0) {
GTP_ERROR("GTP read config failed!");
return -1;
}
GTP_INFO("IC config version: 0x%x; Driver config version: 0x%x",
temp_data, config[GTP_ADDR_LENGTH]);
if ((temp_data < (u8)0x5A) && (temp_data > config[GTP_ADDR_LENGTH])) {
memset(&config_1st[GTP_ADDR_LENGTH], 0, GTP_CONFIG_MAX_LENGTH);
memcpy(&config_1st[GTP_ADDR_LENGTH], &config[GTP_ADDR_LENGTH],
cfg_len);
config_1st[GTP_ADDR_LENGTH] = 0;
check_sum = 0;
for (i = GTP_ADDR_LENGTH; i < cfg_len; i++)
check_sum += config_1st[i];
config_1st[cfg_len] = (~check_sum) + 1;
ret = gtp_i2c_write(i2c_client_point, config_1st,
GTP_CONFIG_MAX_LENGTH + GTP_ADDR_LENGTH);
if (ret < 0)
GTP_ERROR("GTP write 00 config failed!");
else
GTP_INFO("Force clear cfg done");
} else {
GTP_INFO("No need clear cfg");
}
return 0;
}
#endif
static const struct file_operations gt_upgrade_proc_fops = {
.write = gt91xx_config_write_proc, .read = gt91xx_config_read_proc};
static int tpd_irq_registration(void)
{
struct device_node *node = NULL;
int ret = 0;
node = of_find_compatible_node(NULL, NULL, "mediatek,cap_touch");
if (node) {
/*touch_irq = gpio_to_irq(tpd_int_gpio_number);*/
touch_irq = irq_of_parse_and_map(node, 0);
if (!int_type) { /* EINTF_TRIGGER */
ret = request_irq(touch_irq, tpd_interrupt_handler,
IRQF_TRIGGER_RISING, TPD_DEVICE,
NULL);
gtp_eint_trigger_type = IRQF_TRIGGER_RISING;
if (ret > 0)
GTP_ERROR(
"tpd request_irq IRQ LINE NOT AVAILABLE!.");
} else {
ret = request_irq(touch_irq, tpd_interrupt_handler,
IRQF_TRIGGER_FALLING, TPD_DEVICE,
NULL);
gtp_eint_trigger_type = IRQF_TRIGGER_FALLING;
if (ret > 0)
GTP_ERROR(
"tpd request_irq IRQ LINE NOT AVAILABLE!.");
}
} else {
GTP_ERROR(
"[%s] tpd request_irq can not find touch eint device node!.",
__func__);
}
return 0;
}
static s32 tpd_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
s32 err = 0;
s32 ret = 0;
u16 version_info;
struct task_struct *thread = NULL;
#if 0 /*#ifdef CONFIG_GTP_HAVE_TOUCH_KEY */
s32 idx = 0;
#endif
#ifdef GTP_PROXIMITY
struct hwmsen_object obj_ps;
#endif
of_get_gt9xx_platform_data(&client->dev);
/* configure the gpio pins */
ret = gpio_request_one(tpd_rst_gpio_number, GPIOF_OUT_INIT_LOW,
"touchp_reset");
if (ret < 0) {
GTP_ERROR("Unable to request gpio reset_pin\n");
return -1;
}
ret = gpio_request_one(tpd_int_gpio_number, GPIOF_IN, "tpd_int");
if (ret < 0) {
GTP_ERROR("Unable to request gpio int_pin\n");
gpio_free(tpd_rst_gpio_number);
return -1;
}
i2c_client_point = client;
ret = tpd_power_on(client);
if (ret < 0) {
GTP_ERROR("I2C communication ERROR!");
goto out;
}
#ifdef MTK_CTP_RESET_CONFIG
thread = kthread_run(tpd_clear_config, 0, "mtk-tpd-clear-config");
if (IS_ERR(thread)) {
err = PTR_ERR(thread);
GTP_INFO(
TPD_DEVICE
" failed to create kernel thread for clearing config: %d",
err);
}
thread = NULL;
#endif
#ifdef CONFIG_GTP_AUTO_UPDATE
ret = gup_init_update_proc(client);
if (ret < 0) {
GTP_ERROR("Create update thread error.");
goto out;
}
#endif
#ifdef VELOCITY_CUSTOM
tpd_v_magnify_x = TPD_VELOCITY_CUSTOM_X;
tpd_v_magnify_y = TPD_VELOCITY_CUSTOM_Y;
#endif
ret = gtp_read_version(client, &version_info);
if (ret < 0) {
GTP_ERROR("Read version failed.");
goto out;
}
ret = gtp_init_panel(client);
if (ret < 0) {
GTP_ERROR("GTP init panel failed.");
goto out;
}
GTP_DEBUG("gtp_init_panel success");
/* Create proc file system */
gt91xx_config_proc = proc_create(GT91XX_CONFIG_PROC_FILE, 0660, NULL,
&gt_upgrade_proc_fops);
if (gt91xx_config_proc == NULL) {
GTP_ERROR("create_proc_entry %s failed",
GT91XX_CONFIG_PROC_FILE);
goto out;
}
#ifdef CONFIG_GTP_CREATE_WR_NODE
init_wr_node(client);
#endif
thread = kthread_run(touch_event_handler, 0, TPD_DEVICE);
if (IS_ERR(thread)) {
err = PTR_ERR(thread);
GTP_ERROR(TPD_DEVICE " failed to create kernel thread: %d",
err);
goto out;
}
#if 0 /* #ifdef CONFIG_GTP_HAVE_TOUCH_KEY */
for (idx = 0; idx < TPD_KEY_COUNT; idx++)
input_set_capability(tpd->dev, EV_KEY, touch_key_array[idx]);
#endif
tpd_irq_registration();
/*enable_irq(touch_irq);*/
#ifdef GTP_PROXIMITY
/* obj_ps.self = cm3623_obj; */
obj_ps.polling = 0; /* 0--interrupt mode;1--polling mode; */
obj_ps.sensor_operate = tpd_ps_operate;
err = hwmsen_attach(ID_PROXIMITY, &obj_ps);
if (err)
GTP_ERROR("hwmsen attach fail, return:%d.", err);
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
INIT_DELAYED_WORK(&gtp_esd_check_work, gtp_esd_check_func);
gtp_esd_check_workqueue = create_workqueue("gtp_esd_check");
queue_delayed_work(gtp_esd_check_workqueue, &gtp_esd_check_work,
TPD_ESD_CHECK_CIRCLE);
#endif
#ifdef CONFIG_GTP_CHARGER_DETECT
INIT_DELAYED_WORK(&gtp_charger_check_work, gtp_charger_check_func);
gtp_charger_check_workqueue = create_workqueue("gtp_charger_check");
queue_delayed_work(gtp_charger_check_workqueue, &gtp_charger_check_work,
TPD_CHARGER_CHECK_CIRCLE);
#endif
tpd_load_status = 1;
GTP_INFO("%s, success run Done", __func__);
return 0;
out:
gpio_free(tpd_rst_gpio_number);
gpio_free(tpd_int_gpio_number);
return -1;
}
static irqreturn_t tpd_interrupt_handler(int irq, void *dev_id)
{
TPD_DEBUG_PRINT_INT;
tpd_flag = 1;
wake_up_interruptible(&waiter);
return IRQ_HANDLED;
}
static int tpd_i2c_remove(struct i2c_client *client)
{
#ifdef CONFIG_GTP_CREATE_WR_NODE
uninit_wr_node();
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
destroy_workqueue(gtp_esd_check_workqueue);
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
destroy_workqueue(gtp_charger_check_workqueue);
#endif
gpio_free(tpd_rst_gpio_number);
gpio_free(tpd_int_gpio_number);
return 0;
}
#ifdef CONFIG_GTP_CHARGER_DETECT
static void gtp_charger_check_func(struct work_struct *work)
{
int cur_charger_state;
cur_charger_state = upmu_get_pchr_chrdet();
GTP_DEBUG("Charger mode = %d", cur_charger_state);
if (gtp_charger_mode != cur_charger_state) {
GTP_DEBUG("Charger state change detected~!");
GTP_DEBUG("Charger mode = %d", cur_charger_state);
gtp_charger_mode = cur_charger_state;
gtp_send_cfg(i2c_client_point);
}
if (!tpd_halt)
queue_delayed_work(gtp_charger_check_workqueue,
&gtp_charger_check_work,
TPD_CHARGER_CHECK_CIRCLE);
}
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
static void force_reset_guitar(void)
{
s32 i;
s32 ret;
GTP_INFO("force_reset_guitar");
/* Power off TP */
ret = regulator_disable(tpd->reg);
if (ret != 0)
TPD_DMESG("Failed to disable reg-vgp6: %d\n", ret);
msleep(30);
/* Power on TP */
ret = regulator_enable(tpd->reg);
if (ret != 0)
TPD_DMESG("Failed to enable reg-vgp6: %d\n", ret);
msleep(30);
for (i = 0; i < 5; i++) {
/* Reset Guitar */
gtp_reset_guitar(i2c_client_point, 20);
/* Send config */
ret = gtp_send_cfg(i2c_client_point);
if (ret < 0)
continue;
break;
}
}
static void gtp_esd_check_func(struct work_struct *work)
{
int i;
int ret = -1;
u8 test[3] = {GTP_REG_CONFIG_DATA >> 8, GTP_REG_CONFIG_DATA & 0xff};
if (tpd_halt)
return;
for (i = 0; i < 3; i++) {
ret = gtp_i2c_read(i2c_client_point, test, 3);
if (ret > 0)
break;
}
if (i >= 3)
force_reset_guitar();
if (!tpd_halt)
queue_delayed_work(gtp_esd_check_workqueue, &gtp_esd_check_work,
TPD_ESD_CHECK_CIRCLE);
}
#endif
static int tpd_history_x = 0, tpd_history_y;
static void tpd_down(s32 x, s32 y, s32 size, s32 id)
{
if ((!size) && (!id)) {
input_report_abs(tpd->dev, ABS_MT_PRESSURE, 100);
input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, 100);
} else {
input_report_abs(tpd->dev, ABS_MT_PRESSURE, size);
input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, size);
/* track id Start 0 */
input_report_abs(tpd->dev, ABS_MT_TRACKING_ID, id);
}
input_report_key(tpd->dev, BTN_TOUCH, 1);
input_report_abs(tpd->dev, ABS_MT_POSITION_X, x);
input_report_abs(tpd->dev, ABS_MT_POSITION_Y, y);
input_mt_sync(tpd->dev);
TPD_DEBUG_SET_TIME;
TPD_EM_PRINT(x, y, x, y, id, 1);
tpd_history_x = x;
tpd_history_y = y;
/* MMProfileLogEx(MMP_TouchPanelEvent, MMProfileFlagPulse, 1, x + y); */
#ifdef CONFIG_MTK_BOOT
if (tpd_dts_data.use_tpd_button) {
if (get_boot_mode() == FACTORY_BOOT ||
get_boot_mode() == RECOVERY_BOOT)
tpd_button(x, y, 1);
}
#endif
}
static void tpd_up(s32 x, s32 y, s32 id)
{
/* input_report_abs(tpd->dev, ABS_MT_PRESSURE, 0); */
input_report_key(tpd->dev, BTN_TOUCH, 0);
/* input_report_abs(tpd->dev, ABS_MT_TOUCH_MAJOR, 0); */
input_mt_sync(tpd->dev);
TPD_DEBUG_SET_TIME;
TPD_EM_PRINT(tpd_history_x, tpd_history_y, tpd_history_x, tpd_history_y,
id, 0);
tpd_history_x = 0;
tpd_history_y = 0;
/* MMProfileLogEx(MMP_TouchPanelEvent, MMProfileFlagPulse, 0, x + y); */
#ifdef CONFIG_MTK_BOOT
if (tpd_dts_data.use_tpd_button) {
if (get_boot_mode() == FACTORY_BOOT ||
get_boot_mode() == RECOVERY_BOOT)
tpd_button(x, y, 0);
}
#endif
}
/*Coordination mapping*/
static void tpd_calibrate_driver(int *x, int *y)
{
int tx;
GTP_DEBUG("Call tpd_calibrate of this driver ..\n");
tx = ((tpd_def_calmat[0] * (*x)) + (tpd_def_calmat[1] * (*y)) +
(tpd_def_calmat[2])) >>
12;
*y = ((tpd_def_calmat[3] * (*x)) + (tpd_def_calmat[4] * (*y)) +
(tpd_def_calmat[5])) >>
12;
*x = tx;
}
static int touch_event_handler(void *unused)
{
struct sched_param param = {.sched_priority = 4};
u8 end_cmd[3] = {GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF, 0};
u8 point_data[2 + 1 + 8 * GTP_MAX_TOUCH + 1] = {
GTP_READ_COOR_ADDR >> 8, GTP_READ_COOR_ADDR & 0xFF};
u8 touch_num = 0;
u8 finger = 0;
static u8 pre_touch;
static u8 pre_key;
u8 key_value = 0;
u8 *coor_data = NULL;
s32 input_x = 0;
s32 input_y = 0;
s32 input_w = 0;
s32 id = 0;
s32 i = 0;
s32 ret = -1;
#ifdef GTP_PROXIMITY
s32 err = 0;
hwm_sensor_data sensor_data;
u8 proximity_status;
#endif
#ifdef CONFIG_GTP_CHANGE_X2Y
s32 temp;
#endif
sched_setscheduler(current, SCHED_RR, &param);
do {
set_current_state(TASK_INTERRUPTIBLE);
if (tpd_eint_mode) {
wait_event_interruptible(waiter, tpd_flag != 0);
tpd_flag = 0;
} else {
msleep(tpd_polling_time);
}
set_current_state(TASK_RUNNING);
mutex_lock(&i2c_access);
disable_irq(touch_irq);
if (tpd_halt) {
mutex_unlock(&i2c_access);
GTP_DEBUG("return for interrupt after suspend... ");
continue;
}
ret = gtp_i2c_read(i2c_client_point, point_data, 12);
if (ret < 0) {
GTP_ERROR("I2C transfer error. errno:%d ", ret);
goto exit_work_func;
}
finger = point_data[GTP_ADDR_LENGTH];
if ((finger & 0x80) == 0) {
enable_irq(touch_irq);
mutex_unlock(&i2c_access);
GTP_ERROR("buffer not ready");
continue;
}
#ifdef GTP_PROXIMITY
if (tpd_proximity_flag == 1) {
proximity_status = point_data[GTP_ADDR_LENGTH];
GTP_DEBUG("REG INDEX[0x814E]:0x%02X", proximity_status);
if (proximity_status & 0x60) {
/* proximity or large touch detect,enable */
/* hwm_sensor. */
tpd_proximity_detect = 0;
/* sensor_data.values[0] = 0; */
} else {
tpd_proximity_detect = 1;
/* sensor_data.values[0] = 1; */
}
/* get raw data */
GTP_DEBUG(" ps change");
GTP_DEBUG("PROXIMITY STATUS:0x%02X",
tpd_proximity_detect);
/* map and store data to hwm_sensor_data */
sensor_data.values[0] = tpd_get_ps_value();
sensor_data.value_divide = 1;
sensor_data.status = SENSOR_STATUS_ACCURACY_MEDIUM;
/* report to the up-layer */
ret = hwmsen_get_interrupt_data(ID_PROXIMITY,
&sensor_data);
if (ret)
GTP_ERROR(
"Call hwmsen_get_interrupt_data fail = %d",
err);
}
#endif
touch_num = finger & 0x0f;
if (touch_num > GTP_MAX_TOUCH) {
GTP_ERROR("Bad number of fingers!");
goto exit_work_func;
}
if (touch_num > 1) {
u8 buf[8 * GTP_MAX_TOUCH] = {
(GTP_READ_COOR_ADDR + 10) >> 8,
(GTP_READ_COOR_ADDR + 10) & 0xff};
ret = gtp_i2c_read(i2c_client_point, buf,
2 + 8 * (touch_num - 1));
memcpy(&point_data[12], &buf[2], 8 * (touch_num - 1));
}
#ifdef CONFIG_GTP_HAVE_TOUCH_KEY
key_value = point_data[3 + 8 * touch_num];
if (key_value || pre_key) {
for (i = 0; i < TPD_KEY_COUNT; i++) {
/* input_report_key(tpd->dev, */
/* touch_key_array[i], key_value & (0x01 << i)); */
if (key_value &
(0x01 << i)) { /* key=1 menu ;key=2 home; */
/* key =4 back; */
input_x =
touch_key_point_maping_array[i]
.point_x;
input_y =
touch_key_point_maping_array[i]
.point_y;
GTP_DEBUG("button =%d %d", input_x,
input_y);
tpd_down(input_x, input_y, 0, 0);
}
}
if ((pre_key != 0) && (key_value == 0))
tpd_up(0, 0, 0);
touch_num = 0;
pre_touch = 0;
}
#endif
pre_key = key_value;
GTP_DEBUG("pre_touch:%02x, finger:%02x.", pre_touch, finger);
if (touch_num) {
for (i = 0; i < touch_num; i++) {
coor_data = &point_data[i * 8 + 3];
id = coor_data[0] & 0x0F;
input_x = coor_data[1] | coor_data[2] << 8;
input_y = coor_data[3] | coor_data[4] << 8;
input_w = coor_data[5] | coor_data[6] << 8;
GTP_DEBUG(
"Original touch point : [X:%04d, Y:%04d]",
input_x, input_y);
input_x = TPD_WARP_X(abs_x_max, input_x);
input_y = TPD_WARP_Y(abs_y_max, input_y);
tpd_calibrate_driver(&input_x, &input_y);
GTP_DEBUG(
"Touch point after calibration: [X:%04d, Y:%04d]",
input_x, input_y);
#ifdef CONFIG_GTP_CHANGE_X2Y
temp = input_x;
input_x = input_y;
input_y = temp;
#endif
tpd_down(input_x, input_y, input_w, id);
}
} else if (pre_touch) {
GTP_DEBUG("Touch Release!");
tpd_up(0, 0, 0);
} else {
GTP_DEBUG("Additional Eint!");
}
pre_touch = touch_num;
/* input_report_key(tpd->dev, BTN_TOUCH, (touch_num || */
/* key_value)); */
if (tpd != NULL && tpd->dev != NULL)
input_sync(tpd->dev);
exit_work_func:
if (!gtp_rawdiff_mode) {
ret = gtp_i2c_write(i2c_client_point, end_cmd, 3);
if (ret < 0)
GTP_INFO("I2C write end_cmd error!");
}
enable_irq(touch_irq);
mutex_unlock(&i2c_access);
} while (!kthread_should_stop());
return 0;
}
static int tpd_local_init(void)
{
int retval;
tpd->reg = regulator_get(tpd->tpd_dev, "vtouch");
retval = regulator_set_voltage(tpd->reg, 2800000, 3300000);
if (retval != 0) {
TPD_DMESG("Failed to set reg-vgp6 voltage: %d\n", retval);
return -1;
}
if (i2c_add_driver(&tpd_i2c_driver) != 0) {
GTP_INFO("unable to add i2c driver.");
return -1;
}
if (tpd_load_status == 0) {
/* if(tpd_load_status == 0) // disable auto load touch driver */
/* for linux3.0 porting */
GTP_INFO("add error touch panel driver.");
i2c_del_driver(&tpd_i2c_driver);
return -1;
}
input_set_abs_params(tpd->dev, ABS_MT_TRACKING_ID, 0,
(GTP_MAX_TOUCH - 1), 0, 0);
if (tpd_dts_data.use_tpd_button) {
/*initialize tpd button data*/
tpd_button_setting(tpd_dts_data.tpd_key_num,
tpd_dts_data.tpd_key_local,
tpd_dts_data.tpd_key_dim_local);
}
#if (defined(TPD_WARP_START) && defined(TPD_WARP_END))
TPD_DO_WARP = 1;
memcpy(tpd_wb_start, tpd_wb_start_local, TPD_WARP_CNT * 4);
memcpy(tpd_wb_end, tpd_wb_start_local, TPD_WARP_CNT * 4);
#endif
#if (defined(TPD_HAVE_CALIBRATION) && !defined(TPD_CUSTOM_CALIBRATION))
/* memcpy(tpd_calmat, tpd_def_calmat_local, 8 * 4); */
/* memcpy(tpd_def_calmat, tpd_def_calmat_local, 8 * 4); */
#ifdef CONFIG_MTK_BOOT
if (get_boot_mode() == FACTORY_BOOT) {
TPD_DEBUG("Factory mode is detected!\n");
memcpy(tpd_calmat, tpd_def_calmat_local_factory, 8 * 4);
memcpy(tpd_def_calmat, tpd_def_calmat_local_factory, 8 * 4);
} else {
#endif
TPD_DEBUG("Normal mode is detected!\n");
memcpy(tpd_calmat, tpd_def_calmat_local_normal, 8 * 4);
memcpy(tpd_def_calmat, tpd_def_calmat_local_normal, 8 * 4);
#ifdef CONFIG_MTK_BOOT
}
#endif
#endif
/* set vendor string */
tpd->dev->id.vendor = 0x00;
tpd->dev->id.product = tpd_info.pid;
tpd->dev->id.version = tpd_info.vid;
GTP_INFO("end %s, %d", __func__, __LINE__);
tpd_type_cap = 1;
return 0;
}
/*
*******************************************************
*Function:
* Eter sleep function.
*
*Input:
* client:i2c_client.
*
*Output:
* Executive outcomes.0--success,non-0--fail.
*******************************************************
*/
static s8 gtp_enter_sleep(struct i2c_client *client)
{
s8 ret = -1;
#ifndef CONFIG_GTP_POWER_CTRL_SLEEP
s8 retry = 0;
u8 i2c_control_buf[3] = {(u8)(GTP_REG_SLEEP >> 8), (u8)GTP_REG_SLEEP,
5};
tpd_gpio_output(GTP_INT_PORT, 0);
gpio_direction_output(tpd_int_gpio_number, 0);
msleep(20);
while (retry++ < 5) {
ret = gtp_i2c_write(client, i2c_control_buf, 3);
if (ret > 0) {
GTP_INFO("GTP enter sleep!");
return ret;
}
msleep(20);
}
#else
tpd_gpio_output(GTP_RST_PORT, 0);
gpio_direction_output(tpd_rst_gpio_number, 0);
msleep(20);
ret = regulator_disable(tpd->reg);
if (ret != 0)
TPD_DMESG("Failed to disable reg-vgp6: %d\n", ret);
GTP_INFO("GTP enter sleep!");
return 0;
#endif
GTP_ERROR("GTP send sleep cmd failed.");
return ret;
}
/*
*******************************************************
*Function:
* Wakeup from sleep mode Function.
*
*Input:
* client:i2c_client.
*
*Output:
* Executive outcomes.0--success,non-0--fail.
*******************************************************
*/
static s8 gtp_wakeup_sleep(struct i2c_client *client)
{
u8 retry = 0;
s8 ret = -1;
GTP_INFO("GTP wakeup begin.");
#ifdef CONFIG_GTP_POWER_CTRL_SLEEP
while (retry++ < 5) {
ret = tpd_power_on(client);
if (ret < 0)
GTP_ERROR("I2C Power on ERROR!");
ret = gtp_send_cfg(client);
if (ret > 0) {
GTP_DEBUG("Wakeup sleep send config success.");
return ret;
}
}
#else
while (retry++ < 10) {
tpd_gpio_output(GTP_INT_PORT, 1);
gpio_direction_output(tpd_int_gpio_number, 1);
msleep(20);
tpd_gpio_output(GTP_INT_PORT, 0);
gpio_direction_output(tpd_int_gpio_number, 0);
msleep(20);
ret = gtp_i2c_test(client);
if (ret >= 0) {
gtp_int_sync();
return ret;
}
gtp_reset_guitar(client, 20);
}
#endif
GTP_ERROR("GTP wakeup sleep failed.");
return ret;
}
/* Function to manage low power suspend */
static void tpd_suspend(struct device *h)
{
s32 ret = -1;
mutex_lock(&i2c_access);
disable_irq(touch_irq);
tpd_halt = 1;
mutex_unlock(&i2c_access);
ret = gtp_enter_sleep(i2c_client_point);
if (ret < 0)
GTP_ERROR("GTP early suspend failed.");
#ifdef CONFIG_GTP_ESD_PROTECT
cancel_delayed_work_sync(&gtp_esd_check_work);
#endif
#ifdef CONFIG_GTP_CHARGER_DETECT
cancel_delayed_work_sync(&gtp_charger_check_work);
#endif
#ifdef GTP_PROXIMITY
if (tpd_proximity_flag == 1)
return;
#endif
}
/* Function to manage power-on resume */
static void tpd_resume(struct device *h)
{
s32 ret = -1;
ret = gtp_wakeup_sleep(i2c_client_point);
if (ret < 0)
GTP_ERROR("GTP later resume failed.");
GTP_INFO("GTP wakeup sleep.");
mutex_lock(&i2c_access);
tpd_halt = 0;
enable_irq(touch_irq);
mutex_unlock(&i2c_access);
#ifdef GTP_PROXIMITY
if (tpd_proximity_flag == 1)
return;
#endif
#ifdef CONFIG_GTP_ESD_PROTECT
queue_delayed_work(gtp_esd_check_workqueue, &gtp_esd_check_work,
TPD_ESD_CHECK_CIRCLE);
#endif
#ifdef CONFIG_GTP_CHARGER_DETECT
queue_delayed_work(gtp_charger_check_workqueue, &gtp_charger_check_work,
TPD_CHARGER_CHECK_CIRCLE);
#endif
}
static void tpd_off(void)
{
int ret;
ret = regulator_disable(tpd->reg);
if (ret != 0)
TPD_DMESG("Failed to disable reg-vgp6: %d\n", ret);
GTP_INFO("GTP enter sleep!");
tpd_halt = 1;
disable_irq(touch_irq);
}
static void tpd_on(void)
{
s32 ret = -1, retry = 0;
while (retry++ < 5) {
ret = tpd_power_on(i2c_client_point);
if (ret < 0)
GTP_ERROR("I2C Power on ERROR!");
ret = gtp_send_cfg(i2c_client_point);
if (ret > 0)
GTP_DEBUG("Wakeup sleep send config success.");
}
if (ret < 0)
GTP_ERROR("GTP later resume failed.");
enable_irq(touch_irq);
tpd_halt = 0;
}
static struct tpd_driver_t tpd_device_driver = {
.tpd_device_name = "gt9xx",
.tpd_local_init = tpd_local_init,
.suspend = tpd_suspend,
.resume = tpd_resume,
.attrs = {
.attr = gt9xx_attrs, .num = ARRAY_SIZE(gt9xx_attrs),
},
};
/* called when loaded into kernel */
static int __init tpd_driver_init(void)
{
GTP_INFO("MediaTek gt91xx touch panel driver init");
tpd_get_dts_info();
if (tpd_driver_add(&tpd_device_driver) < 0)
GTP_INFO("add generic driver failed");
return 0;
}
/* should never be called */
static void __exit tpd_driver_exit(void)
{
GTP_INFO("MediaTek gt91xx touch panel driver exit");
/* input_unregister_device(tpd->dev); */
tpd_driver_remove(&tpd_device_driver);
}
module_init(tpd_driver_init);
module_exit(tpd_driver_exit);