kernel_samsung_a34x-permissive/drivers/iommu/dma-iommu.c
2024-04-28 15:49:01 +02:00

1362 lines
38 KiB
C
Executable file

/*
* A fairly generic DMA-API to IOMMU-API glue layer.
*
* Copyright (C) 2014-2015 ARM Ltd.
*
* based in part on arch/arm/mm/dma-mapping.c:
* Copyright (C) 2000-2004 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/acpi_iort.h>
#include <linux/device.h>
#include <linux/dma-iommu.h>
#include <linux/gfp.h>
#include <linux/huge_mm.h>
#include <linux/iommu.h>
#include <linux/iova.h>
#include <linux/irq.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <linux/vmalloc.h>
#ifdef CONFIG_MTK_IOMMU_V2
#include "mtk_iommu_ext.h"
#endif
#ifdef CONFIG_MTK_IOMMU_MISC_DBG
#include "m4u_debug.h"
#endif
#define IOMMU_MAPPING_ERROR 0
struct iommu_dma_msi_page {
struct list_head list;
dma_addr_t iova;
phys_addr_t phys;
};
enum iommu_dma_cookie_type {
IOMMU_DMA_IOVA_COOKIE,
IOMMU_DMA_MSI_COOKIE,
};
struct iommu_dma_cookie {
enum iommu_dma_cookie_type type;
union {
/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
struct iova_domain iovad;
/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
dma_addr_t msi_iova;
};
struct list_head msi_page_list;
spinlock_t msi_lock;
};
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
{
if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
return cookie->iovad.granule;
return PAGE_SIZE;
}
static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
{
struct iommu_dma_cookie *cookie;
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
if (cookie) {
spin_lock_init(&cookie->msi_lock);
INIT_LIST_HEAD(&cookie->msi_page_list);
cookie->type = type;
}
return cookie;
}
int iommu_dma_init(void)
{
return iova_cache_get();
}
/**
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
* @domain: IOMMU domain to prepare for DMA-API usage
*
* IOMMU drivers should normally call this from their domain_alloc
* callback when domain->type == IOMMU_DOMAIN_DMA.
*/
int iommu_get_dma_cookie(struct iommu_domain *domain)
{
if (domain->iova_cookie)
return -EEXIST;
domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
if (!domain->iova_cookie)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL(iommu_get_dma_cookie);
/**
* iommu_get_msi_cookie - Acquire just MSI remapping resources
* @domain: IOMMU domain to prepare
* @base: Start address of IOVA region for MSI mappings
*
* Users who manage their own IOVA allocation and do not want DMA API support,
* but would still like to take advantage of automatic MSI remapping, can use
* this to initialise their own domain appropriately. Users should reserve a
* contiguous IOVA region, starting at @base, large enough to accommodate the
* number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
* used by the devices attached to @domain.
*/
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
{
struct iommu_dma_cookie *cookie;
if (domain->type != IOMMU_DOMAIN_UNMANAGED)
return -EINVAL;
if (domain->iova_cookie)
return -EEXIST;
cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
if (!cookie)
return -ENOMEM;
cookie->msi_iova = base;
domain->iova_cookie = cookie;
return 0;
}
EXPORT_SYMBOL(iommu_get_msi_cookie);
/**
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
* iommu_get_msi_cookie()
*
* IOMMU drivers should normally call this from their domain_free callback.
*/
void iommu_put_dma_cookie(struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi, *tmp;
if (!cookie)
return;
if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
put_iova_domain(&cookie->iovad);
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
list_del(&msi->list);
kfree(msi);
}
kfree(cookie);
domain->iova_cookie = NULL;
}
EXPORT_SYMBOL(iommu_put_dma_cookie);
/**
* iommu_dma_get_resv_regions - Reserved region driver helper
* @dev: Device from iommu_get_resv_regions()
* @list: Reserved region list from iommu_get_resv_regions()
*
* IOMMU drivers can use this to implement their .get_resv_regions callback
* for general non-IOMMU-specific reservations. Currently, this covers GICv3
* ITS region reservation on ACPI based ARM platforms that may require HW MSI
* reservation.
*/
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
{
if (!is_of_node(dev->iommu_fwspec->iommu_fwnode))
iort_iommu_msi_get_resv_regions(dev, list);
}
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
phys_addr_t start, phys_addr_t end)
{
struct iova_domain *iovad = &cookie->iovad;
struct iommu_dma_msi_page *msi_page;
int i, num_pages;
start -= iova_offset(iovad, start);
num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
for (i = 0; i < num_pages; i++) {
msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
if (!msi_page)
return -ENOMEM;
msi_page->phys = start;
msi_page->iova = start;
INIT_LIST_HEAD(&msi_page->list);
list_add(&msi_page->list, &cookie->msi_page_list);
start += iovad->granule;
}
return 0;
}
static void iova_reserve_pci_windows(struct pci_dev *dev,
struct iova_domain *iovad)
{
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
struct resource_entry *window;
unsigned long lo, hi;
resource_list_for_each_entry(window, &bridge->windows) {
if (resource_type(window->res) != IORESOURCE_MEM)
continue;
lo = iova_pfn(iovad, window->res->start - window->offset);
hi = iova_pfn(iovad, window->res->end - window->offset);
reserve_iova(iovad, lo, hi);
}
}
static int iova_reserve_iommu_regions(struct device *dev,
struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct iommu_resv_region *region;
LIST_HEAD(resv_regions);
int ret = 0;
if (dev_is_pci(dev))
iova_reserve_pci_windows(to_pci_dev(dev), iovad);
iommu_get_resv_regions(dev, &resv_regions);
list_for_each_entry(region, &resv_regions, list) {
unsigned long lo, hi;
/* We ARE the software that manages these! */
if (region->type == IOMMU_RESV_SW_MSI)
continue;
lo = iova_pfn(iovad, region->start);
hi = iova_pfn(iovad, region->start + region->length - 1);
reserve_iova(iovad, lo, hi);
#ifdef IOMMU_DEBUG_ENABLED
pr_notice("%s, %d, reserved iova from 0x%lx to 0x%lx\n",
__func__, __LINE__, lo << 12, hi << 12);
#endif
if (region->type == IOMMU_RESV_MSI)
ret = cookie_init_hw_msi_region(cookie, region->start,
region->start + region->length);
if (ret)
break;
}
iommu_put_resv_regions(dev, &resv_regions);
return ret;
}
/**
* iommu_dma_init_domain - Initialise a DMA mapping domain
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
* @base: IOVA at which the mappable address space starts
* @size: Size of IOVA space
* @dev: Device the domain is being initialised for
*
* @base and @size should be exact multiples of IOMMU page granularity to
* avoid rounding surprises. If necessary, we reserve the page at address 0
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
* any change which could make prior IOVAs invalid will fail.
*/
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
u64 size, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
unsigned long order, base_pfn, end_pfn;
if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
return -EINVAL;
/* Use the smallest supported page size for IOVA granularity */
order = __ffs(domain->pgsize_bitmap);
base_pfn = max_t(unsigned long, 1, base >> order);
end_pfn = (base + size - 1) >> order;
/* Check the domain allows at least some access to the device... */
if (domain->geometry.force_aperture) {
if (base > domain->geometry.aperture_end ||
base + size <= domain->geometry.aperture_start) {
#ifndef CONFIG_MTK_IOMMU_V2
pr_warn("specified DMA range outside IOMMU capability, base:0x%lx, size:0x%lx, aperture(0x%lx, 0x%lx)\n",
base, size, domain->geometry.aperture_start,
domain->geometry.aperture_end);
return -EFAULT;
#else
base = domain->geometry.aperture_start;
size = domain->geometry.aperture_end -
domain->geometry.aperture_start + 1;
#endif
}
/* ...then finally give it a kicking to make sure it fits */
base_pfn = max_t(unsigned long, base_pfn,
domain->geometry.aperture_start >> order);
}
/* start_pfn is always nonzero for an already-initialised domain */
if (iovad->start_pfn) {
if (1UL << order != iovad->granule ||
base_pfn != iovad->start_pfn) {
pr_warn("Incompatible range for DMA domain\n");
return -EFAULT;
}
return 0;
}
iovad->end_pfn = end_pfn;
init_iova_domain(iovad, 1UL << order, base_pfn);
if (!dev)
return 0;
return iova_reserve_iommu_regions(dev, domain);
}
EXPORT_SYMBOL(iommu_dma_init_domain);
/*
* Should be called prior to using dma-apis
*/
int iommu_dma_reserve_iova(struct device *dev, dma_addr_t base,
u64 size)
{
struct iommu_domain *domain;
struct iova_domain *iovad;
unsigned long pfn_lo, pfn_hi;
domain = iommu_get_domain_for_dev(dev);
if (!domain || !domain->iova_cookie)
return -EINVAL;
iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
/* iova will be freed automatically by put_iova_domain() */
pfn_lo = iova_pfn(iovad, base);
pfn_hi = iova_pfn(iovad, base + size - 1);
if (!reserve_iova(iovad, pfn_lo, pfn_hi))
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_dma_reserve_iova);
/*
* Should be called prior to using dma-apis.
*/
int iommu_dma_enable_best_fit_algo(struct device *dev)
{
struct iommu_domain *domain;
struct iova_domain *iovad;
domain = iommu_get_domain_for_dev(dev);
if (!domain || !domain->iova_cookie)
return -EINVAL;
iovad = &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
iovad->best_fit = true;
return 0;
}
EXPORT_SYMBOL_GPL(iommu_dma_enable_best_fit_algo);
/**
* dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
* page flags.
* @dir: Direction of DMA transfer
* @coherent: Is the DMA master cache-coherent?
* @attrs: DMA attributes for the mapping
*
* Return: corresponding IOMMU API page protection flags
*/
int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
unsigned long attrs)
{
int prot = coherent ? IOMMU_CACHE : 0;
if (attrs & DMA_ATTR_PRIVILEGED)
prot |= IOMMU_PRIV;
if (!(attrs & DMA_ATTR_EXEC_MAPPING))
prot |= IOMMU_NOEXEC;
if (attrs & DMA_ATTR_IOMMU_USE_UPSTREAM_HINT)
prot |= IOMMU_USE_UPSTREAM_HINT;
if (attrs & DMA_ATTR_IOMMU_USE_LLC_NWA)
prot |= IOMMU_USE_LLC_NWA;
switch (dir) {
case DMA_BIDIRECTIONAL:
return prot | IOMMU_READ | IOMMU_WRITE;
case DMA_TO_DEVICE:
return prot | IOMMU_READ;
case DMA_FROM_DEVICE:
return prot | IOMMU_WRITE;
default:
return 0;
}
}
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
size_t size, dma_addr_t dma_limit, struct device *dev)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
unsigned long shift, iova_len, iova = 0;
dma_addr_t limit;
#ifdef CONFIG_MTK_IOMMU_V2
bool size_align = true;
#endif
if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
cookie->msi_iova += size;
return cookie->msi_iova - size;
}
shift = iova_shift(iovad);
iova_len = size >> shift;
/*
* Freeing non-power-of-two-sized allocations back into the IOVA caches
* will come back to bite us badly, so we have to waste a bit of space
* rounding up anything cacheable to make sure that can't happen. The
* order of the unadjusted size will still match upon freeing.
*/
if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
iova_len = roundup_pow_of_two(iova_len);
if (dev->bus_dma_mask)
dma_limit &= dev->bus_dma_mask;
if (domain->geometry.force_aperture) {
dma_limit = min(dma_limit, domain->geometry.aperture_end);
#ifdef CONFIG_MTK_IOMMU_V2
/*
* if user use a smaller dev->dma_coherence_mask,
* then the IOVA boundary config will be failed,
* because iovad->dma_32bit_pfn is not the size limit,
* and the size limit is totally decided by the
* limit_pfn send from user.
*/
if (dma_limit <= domain->geometry.aperture_start) {
dev_notice(dev, "dma limit:0x%lx, is out of domain boundary(0x%lx~0x%lx)",
dma_limit, domain->geometry.aperture_start,
domain->geometry.aperture_end);
WARN_ON(1);
return 0;
}
if (size > (dma_limit -
domain->geometry.aperture_start + 1)) {
dev_notice(dev, "size:0x%lx, is out of dma limit(0x%lx~0x%lx)",
size, domain->geometry.aperture_start,
dma_limit);
WARN_ON(1);
return 0;
}
#endif
}
/*
* Ensure iova is within range specified in iommu_dma_init_domain().
* This also prevents unnecessary work iterating through the entire
* rb_tree.
*/
limit = min_t(dma_addr_t, DMA_BIT_MASK(32) >> shift,
iovad->end_pfn);
/* Try to get PCI devices a SAC address */
#ifdef CONFIG_MTK_IOMMU_V2
size_align = mtk_dev_is_size_alignment(dev);
if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
iova = alloc_iova_fast(iovad, iova_len,
DMA_BIT_MASK(32) >> shift, size_align);
if (!iova)
iova = alloc_iova_fast(iovad, iova_len,
dma_limit >> shift, size_align);
#else
if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
iova = alloc_iova_fast(iovad, iova_len, limit, false);
if (!iova) {
limit = min_t(dma_addr_t, dma_limit >> shift,
iovad->end_pfn);
iova = alloc_iova_fast(iovad, iova_len, limit, true);
}
#endif
#ifdef CONFIG_MTK_IOMMU_MISC_DBG
if (iova)
mtk_iova_dbg_alloc(dev, ((dma_addr_t)iova << shift), size);
#endif
return (dma_addr_t)iova << shift;
}
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
dma_addr_t iova, size_t size)
{
struct iova_domain *iovad = &cookie->iovad;
/* The MSI case is only ever cleaning up its most recent allocation */
if (cookie->type == IOMMU_DMA_MSI_COOKIE)
cookie->msi_iova -= size;
else
free_iova_fast(iovad, iova_pfn(iovad, iova),
size >> iova_shift(iovad));
#ifdef CONFIG_MTK_IOMMU_MISC_DBG
mtk_iova_dbg_free(iova, size);
#endif
}
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
size_t size)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
size_t iova_off = iova_offset(iovad, dma_addr);
dma_addr -= iova_off;
size = iova_align(iovad, size + iova_off);
WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
iommu_dma_free_iova(cookie, dma_addr, size);
}
static void __iommu_dma_free_pages(struct page **pages, int count)
{
while (count--)
__free_page(pages[count]);
kvfree(pages);
}
static struct page **__iommu_dma_alloc_pages(unsigned int count,
unsigned long order_mask, gfp_t gfp)
{
struct page **pages;
unsigned int i = 0, array_size = count * sizeof(*pages);
order_mask &= (2U << MAX_ORDER) - 1;
if (!order_mask)
return NULL;
if (array_size <= PAGE_SIZE)
pages = kzalloc(array_size, GFP_KERNEL);
else
pages = vzalloc(array_size);
if (!pages)
return NULL;
/* IOMMU can map any pages, so himem can also be used here */
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
while (count) {
struct page *page = NULL;
unsigned int order_size;
/*
* Higher-order allocations are a convenience rather
* than a necessity, hence using __GFP_NORETRY until
* falling back to minimum-order allocations.
*/
for (order_mask &= (2U << __fls(count)) - 1;
order_mask; order_mask &= ~order_size) {
unsigned int order = __fls(order_mask);
order_size = 1U << order;
page = alloc_pages((order_mask - order_size) ?
gfp | __GFP_NORETRY : gfp, order);
if (!page)
continue;
if (!order)
break;
if (!PageCompound(page)) {
split_page(page, order);
break;
} else if (!split_huge_page(page)) {
break;
}
__free_pages(page, order);
}
if (!page) {
__iommu_dma_free_pages(pages, i);
return NULL;
}
count -= order_size;
while (order_size--)
pages[i++] = page++;
}
return pages;
}
#ifdef CONFIG_ARM64
void iommu_dma_free_from_reserved_range(struct device *dev,
struct page **pages, size_t size, dma_addr_t *handle)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
unsigned long shift;
unsigned long pfn;
size_t unmap_sz;
if (!domain)
return;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
shift = iova_shift(iovad);
pfn = (*handle) >> shift;
unmap_sz = iommu_unmap(domain, pfn << shift, size);
WARN_ON(size > unmap_sz);
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
*handle = IOMMU_MAPPING_ERROR;
}
#endif
/**
* iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
* @dev: Device which owns this buffer
* @pages: Array of buffer pages as returned by iommu_dma_alloc()
* @size: Size of buffer in bytes
* @handle: DMA address of buffer
*
* Frees both the pages associated with the buffer, and the array
* describing them
*/
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
dma_addr_t *handle)
{
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
*handle = IOMMU_MAPPING_ERROR;
}
/**
* iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
* @dev: Device to allocate memory for. Must be a real device
* attached to an iommu_dma_domain
* @size: Size of buffer in bytes
* @gfp: Allocation flags
* @attrs: DMA attributes for this allocation
* @prot: IOMMU mapping flags
* @handle: Out argument for allocated DMA handle
* @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
* given VA/PA are visible to the given non-coherent device.
*
* If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
* but an IOMMU which supports smaller pages might not map the whole thing.
*
* Return: Array of struct page pointers describing the buffer,
* or NULL on failure.
*/
struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
unsigned long attrs, int prot, dma_addr_t *handle,
void (*flush_page)(struct device *, const void *, phys_addr_t))
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
struct page **pages;
struct sg_table sgt;
dma_addr_t iova;
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
*handle = IOMMU_MAPPING_ERROR;
min_size = alloc_sizes & -alloc_sizes;
if (min_size < PAGE_SIZE) {
min_size = PAGE_SIZE;
alloc_sizes |= PAGE_SIZE;
} else {
size = ALIGN(size, min_size);
}
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
alloc_sizes = min_size;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
if (!pages)
return NULL;
size = iova_align(iovad, size);
iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
if (!iova)
goto out_free_pages;
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
goto out_free_iova;
if (!(prot & IOMMU_CACHE)) {
struct sg_mapping_iter miter;
/*
* The CPU-centric flushing implied by SG_MITER_TO_SG isn't
* sufficient here, so skip it by using the "wrong" direction.
*/
sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
while (sg_miter_next(&miter))
flush_page(dev, miter.addr, page_to_phys(miter.page));
sg_miter_stop(&miter);
}
if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
< size) {
pr_notice("%s, %d, err iommu map sg\n", __func__, __LINE__);
goto out_free_sg;
}
*handle = iova;
sg_free_table(&sgt);
return pages;
out_free_sg:
sg_free_table(&sgt);
out_free_iova:
iommu_dma_free_iova(cookie, iova, size);
out_free_pages:
__iommu_dma_free_pages(pages, count);
return NULL;
}
/**
* iommu_dma_mmap - Map a buffer into provided user VMA
* @pages: Array representing buffer from iommu_dma_alloc()
* @size: Size of buffer in bytes
* @vma: VMA describing requested userspace mapping
*
* Maps the pages of the buffer in @pages into @vma. The caller is responsible
* for verifying the correct size and protection of @vma beforehand.
*/
int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
{
unsigned long uaddr = vma->vm_start;
unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
int ret = -ENXIO;
for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
ret = vm_insert_page(vma, uaddr, pages[i]);
if (ret)
break;
uaddr += PAGE_SIZE;
}
return ret;
}
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
size_t size, int prot)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
size_t iova_off = 0;
dma_addr_t iova;
if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
iova_off = iova_offset(&cookie->iovad, phys);
size = iova_align(&cookie->iovad, size + iova_off);
}
iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
if (!iova)
return IOMMU_MAPPING_ERROR;
if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
iommu_dma_free_iova(cookie, iova, size);
return IOMMU_MAPPING_ERROR;
}
return iova + iova_off;
}
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, int prot)
{
return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
}
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
}
/*
* Prepare a successfully-mapped scatterlist to give back to the caller.
*
* At this point the segments are already laid out by iommu_dma_map_sg() to
* avoid individually crossing any boundaries, so we merely need to check a
* segment's start address to avoid concatenating across one.
*/
int iommu_dma_finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
dma_addr_t dma_addr)
{
struct scatterlist *s, *cur = sg;
unsigned long seg_mask = dma_get_seg_boundary(dev);
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
int i, count = 0;
for_each_sg(sg, s, nents, i) {
/* Restore this segment's original unaligned fields first */
unsigned int s_iova_off = sg_dma_address(s);
unsigned int s_length = sg_dma_len(s);
unsigned int s_iova_len = s->length;
#ifdef CONFIG_MTK_IOMMU_V2
if (!sg_page(s)) {
pr_info("%s, page is null\n", __func__);
s_iova_off = 0;
}
#endif
s->offset += s_iova_off;
s->length = s_length;
sg_dma_address(s) = IOMMU_MAPPING_ERROR;
sg_dma_len(s) = 0;
/*
* Now fill in the real DMA data. If...
* - there is a valid output segment to append to
* - and this segment starts on an IOVA page boundary
* - but doesn't fall at a segment boundary
* - and wouldn't make the resulting output segment too long
*/
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
(cur_len + s_length <= max_len)) {
/* ...then concatenate it with the previous one */
cur_len += s_length;
} else {
/* Otherwise start the next output segment */
if (i > 0)
cur = sg_next(cur);
cur_len = s_length;
count++;
sg_dma_address(cur) = dma_addr + s_iova_off;
}
sg_dma_len(cur) = cur_len;
dma_addr += s_iova_len;
if (s_length + s_iova_off < s_iova_len)
cur_len = 0;
if (s_iova_off)
pr_info("[M4U] %s warning, 0x%x--0x%x, offset:%u, count:%d\n",
__func__, s_iova_len,
s_length, s_iova_off, count);
}
return count;
}
/*
* If mapping failed, then just restore the original list,
* but making sure the DMA fields are invalidated.
*/
void iommu_dma_invalidate_sg(struct scatterlist *sg, int nents)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
s->offset += sg_dma_address(s);
if (sg_dma_len(s))
s->length = sg_dma_len(s);
sg_dma_address(s) = IOMMU_MAPPING_ERROR;
sg_dma_len(s) = 0;
}
}
/*
* The DMA API client is passing in a scatterlist which could describe
* any old buffer layout, but the IOMMU API requires everything to be
* aligned to IOMMU pages. Hence the need for this complicated bit of
* impedance-matching, to be able to hand off a suitably-aligned list,
* but still preserve the original offsets and sizes for the caller.
*/
size_t iommu_dma_prepare_map_sg(struct device *dev, struct iova_domain *iovad,
struct scatterlist *sg, int nents)
{
struct scatterlist *s, *prev = NULL;
size_t iova_len = 0;
unsigned long mask = dma_get_seg_boundary(dev);
int i;
/*
* Work out how much IOVA space we need, and align the segments to
* IOVA granules for the IOMMU driver to handle. With some clever
* trickery we can modify the list in-place, but reversibly, by
* stashing the unaligned parts in the as-yet-unused DMA fields.
*/
for_each_sg(sg, s, nents, i) {
size_t s_iova_off = iova_offset(iovad, s->offset);
size_t s_length = s->length;
size_t pad_len = (mask - iova_len + 1) & mask;
/*
* FIXME: Mediatek workaround for the buffer that don't has
* "struct page *"
*/
#ifdef CONFIG_MTK_IOMMU_V2
#ifdef CONFIG_MTK_PSEUDO_M4U
if (IS_ERR(sg_page(s))) {
s_length = sg_dma_len(s);
s->length = s_length;
iova_len += s_length;
prev = s;
pr_info("%s, page is error\n", __func__);
continue;
}
#endif
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
if (s->length != sg_dma_len(s))
pr_info("%s, length is not equal dma_length, 0x%x--0x%x\n",
__func__, s->length,
(unsigned int)sg_dma_len(s));
#else
#ifndef CONFIG_MTK_PSEUDO_M4U
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
#else
if (!sg_dma_address(s) && !sg_dma_len(s)) {
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
} else {
/*
* pseudo m4u store the s_length in sg_dma_len, it may
* be in different field depend on the
* CONFIG_NEED_SG_DMA_LENGTH, get the length from the
* macro.
*/
s_length = sg_dma_len(s);
s->length = s_length;
}
#endif
#endif
/*
* Due to the alignment of our single IOVA allocation, we can
* depend on these assumptions about the segment boundary mask:
* - If mask size >= IOVA size, then the IOVA range cannot
* possibly fall across a boundary, so we don't care.
* - If mask size < IOVA size, then the IOVA range must start
* exactly on a boundary, therefore we can lay things out
* based purely on segment lengths without needing to know
* the actual addresses beforehand.
* - The mask must be a power of 2, so pad_len == 0 if
* iova_len == 0, thus we cannot dereference prev the first
* time through here (i.e. before it has a meaningful value).
*/
if (pad_len && pad_len < s_length - 1) {
prev->length += pad_len;
iova_len += pad_len;
}
iova_len += s_length;
prev = s;
}
return iova_len;
}
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, int prot)
{
struct iommu_domain *domain;
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
dma_addr_t iova;
size_t iova_len;
domain = iommu_get_domain_for_dev(dev);
if (!domain)
return 0;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
iova_len = iommu_dma_prepare_map_sg(dev, iovad, sg, nents);
iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
if (!iova) {
pr_notice("%s, %d, dev:%s domain:%p failed at alloc iova\n",
__func__, __LINE__, dev_name(dev), domain);
goto out_restore_sg;
}
/*
* We'll leave any physical concatenation to the IOMMU driver's
* implementation - it knows better than we do.
*/
if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) {
pr_notice("%s, %d, dev:%s domain:%p failed at map sg, iova:0x%pa, len:%lx\n",
__func__, __LINE__, dev_name(dev),
domain, &iova, iova_len);
goto out_free_iova;
}
return iommu_dma_finalise_sg(dev, sg, nents, iova);
out_free_iova:
iommu_dma_free_iova(cookie, iova, iova_len);
out_restore_sg:
iommu_dma_invalidate_sg(sg, nents);
return 0;
}
void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t start, end;
struct scatterlist *tmp;
int i;
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, so this is incredibly easy.
*/
start = sg_dma_address(sg);
for_each_sg(sg_next(sg), tmp, nents - 1, i) {
if (sg_dma_len(tmp) == 0)
break;
sg = tmp;
}
end = sg_dma_address(sg) + sg_dma_len(sg);
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
}
#ifdef CONFIG_ARM64
struct page **
iommu_dma_alloc_fix_iova(struct device *dev, size_t size, gfp_t gfp,
unsigned long attrs, int prot, dma_addr_t handle,
void (*flush_page)(struct device *, const void *, phys_addr_t))
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
struct page **pages;
struct sg_table sgt;
dma_addr_t iova = handle;
unsigned int count, min_size, alloc_sizes;
if (!domain)
return NULL;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
alloc_sizes = domain->pgsize_bitmap;
min_size = alloc_sizes & -alloc_sizes;
if (min_size < PAGE_SIZE) {
min_size = PAGE_SIZE;
alloc_sizes |= PAGE_SIZE;
} else {
size = ALIGN(size, min_size);
}
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
alloc_sizes = min_size;
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
if (!pages)
return NULL;
size = iova_align(iovad, size);
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
goto out_free_iova;
if (!(prot & IOMMU_CACHE)) {
struct sg_mapping_iter miter;
/*
* The CPU-centric flushing implied by SG_MITER_TO_SG isn't
* sufficient here, so skip it by using the "wrong" direction.
*/
sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
SG_MITER_FROM_SG);
while (sg_miter_next(&miter))
flush_page(dev, miter.addr, page_to_phys(miter.page));
sg_miter_stop(&miter);
}
if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
< size)
goto out_free_sg;
sg_free_table(&sgt);
return pages;
out_free_sg:
sg_free_table(&sgt);
out_free_iova:
iommu_dma_free_iova(cookie, iova, size);
__iommu_dma_free_pages(pages, count);
return NULL;
}
/*
* User have to provide the dma address in the reserved iova area for mapping
*/
int dma_map_sg_within_reserved_iova(struct device *dev, struct scatterlist *sg,
int nents, int prot, dma_addr_t dma_addr)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
struct scatterlist *s, *prev = NULL;
size_t iova_len = 0;
size_t map_len = 0;
int i;
if (!domain)
return -EINVAL;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
for_each_sg(sg, s, nents, i) {
size_t s_iova_off = iova_offset(iovad, s->offset);
size_t s_length = s->length;
sg_dma_address(s) = s_iova_off;
sg_dma_len(s) = s_length;
s->offset -= s_iova_off;
s_length = iova_align(iovad, s_length + s_iova_off);
s->length = s_length;
iova_len += s_length;
prev = s;
}
map_len = iommu_map_sg(domain, dma_addr, sg, nents, prot);
return iommu_dma_finalise_sg(dev, sg, nents, dma_addr);
}
EXPORT_SYMBOL(dma_map_sg_within_reserved_iova);
void dma_unmap_sg_within_reserved_iova(struct device *dev,
struct scatterlist *sg, int nents,
int prot, size_t size)
{
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
unsigned long shift;
unsigned long pfn;
if (!domain)
return;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
shift = iova_shift(iovad);
pfn = sg_dma_address(sg) >> shift;
/*
* The scatterlist segments are mapped into a single
* contiguous IOVA allocation, so this is incredibly easy.
*/
size -= iommu_unmap(domain, pfn << shift, size);
WARN_ON(size > 0);
}
EXPORT_SYMBOL(dma_unmap_sg_within_reserved_iova);
#endif
dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
return __iommu_dma_map(dev, phys, size,
dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
}
void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
}
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return dma_addr == IOMMU_MAPPING_ERROR;
}
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
phys_addr_t msi_addr, struct iommu_domain *domain)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iommu_dma_msi_page *msi_page;
dma_addr_t iova;
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
size_t size = cookie_msi_granule(cookie);
msi_addr &= ~(phys_addr_t)(size - 1);
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
if (msi_page->phys == msi_addr)
return msi_page;
msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
if (!msi_page)
return NULL;
iova = __iommu_dma_map(dev, msi_addr, size, prot);
if (iommu_dma_mapping_error(dev, iova))
goto out_free_page;
INIT_LIST_HEAD(&msi_page->list);
msi_page->phys = msi_addr;
msi_page->iova = iova;
list_add(&msi_page->list, &cookie->msi_page_list);
return msi_page;
out_free_page:
kfree(msi_page);
return NULL;
}
void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
{
struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
struct iommu_dma_cookie *cookie;
struct iommu_dma_msi_page *msi_page;
phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
unsigned long flags;
if (!domain || !domain->iova_cookie)
return;
cookie = domain->iova_cookie;
/*
* We disable IRQs to rule out a possible inversion against
* irq_desc_lock if, say, someone tries to retarget the affinity
* of an MSI from within an IPI handler.
*/
spin_lock_irqsave(&cookie->msi_lock, flags);
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
spin_unlock_irqrestore(&cookie->msi_lock, flags);
if (WARN_ON(!msi_page)) {
/*
* We're called from a void callback, so the best we can do is
* 'fail' by filling the message with obviously bogus values.
* Since we got this far due to an IOMMU being present, it's
* not like the existing address would have worked anyway...
*/
msg->address_hi = ~0U;
msg->address_lo = ~0U;
msg->data = ~0U;
} else {
msg->address_hi = upper_32_bits(msi_page->iova);
msg->address_lo &= cookie_msi_granule(cookie) - 1;
msg->address_lo += lower_32_bits(msi_page->iova);
}
}
#ifdef CONFIG_MTK_IOMMU_V2
static unsigned int domain_used_size;
static unsigned int domain_resev_size;
void iommu_dma_dump_iova(void *domain, unsigned long start,
unsigned long end, unsigned long size,
unsigned long target)
{
phys_addr_t p_start, p_end;
struct iommu_dma_cookie *cookie =
((struct iommu_domain *)domain)->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
p_start = iommu_iova_to_phys((struct iommu_domain *)domain, start);
p_end = iommu_iova_to_phys((struct iommu_domain *)domain, end);
// free_iova_fast() did not remove the RB node of small size
if (!p_start && !p_end &&
(order_base_2(size >> iova_shift(iovad)) <
IOVA_RANGE_CACHE_MAX_SIZE))
return;
domain_used_size += size / 1024;
if (!p_start)
domain_resev_size += size / 1024;
if (target &&
((start >= target + SZ_16M) ||
(end <= target - SZ_16M)))
return;
// the reserved region will not be managed in current domain
if (!p_start)
pr_notice(">>> iova:0x%lx~0x%lx, pa:0x%pa/0x%pa, size:0x%lx (reserved region, check the other domain?)\n",
start, end, &p_start, &p_end, size);
else if (!p_end)
pr_notice(">>> iova:0x%lx~0x%lx, pa:0x%pa/0x%pa, size:0x%lx (size not aligned, check IOVA list)\n",
start, end, &p_start, &p_end, size);
else
pr_notice(">>> iova:0x%lx~0x%lx, pa:0x%pa/0x%pa, size:0x%lx\n",
start, end, &p_start, &p_end, size);
}
void iommu_dma_dump_iovad(struct iommu_domain *domain,
unsigned long target)
{
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
unsigned long base = iovad->start_pfn << iova_shift(iovad);
unsigned long max = domain->geometry.aperture_end;
unsigned int domain_size = (max - base + 1) / 1024;
domain_used_size = 0;
domain_resev_size = 0;
iovad_scan_reserved_iova((void *)domain, iovad,
iommu_dma_dump_iova, target);
pr_notice("(0x%lx, 0x%lx) total:%uKB, used:(%uKB/%dper), resev:(%uKB/%dper), target:0x%lx\n",
base, max, domain_size,
domain_used_size,
domain_used_size * 100 / domain_size,
domain_resev_size,
domain_resev_size * 100 / domain_size,
target);
}
EXPORT_SYMBOL(iommu_dma_dump_iovad);
int iommu_dma_get_iovad_info(struct device *dev,
unsigned long *base, unsigned long *max)
{
struct iommu_domain *domain;
struct iommu_dma_cookie *cookie;
struct iova_domain *iovad;
domain = iommu_get_domain_for_dev(dev);
if (!domain)
return -EINVAL;
cookie = domain->iova_cookie;
iovad = &cookie->iovad;
*base = iovad->start_pfn << iova_shift(iovad);
*max = domain->geometry.aperture_end;
return 0;
}
EXPORT_SYMBOL(iommu_dma_get_iovad_info);
#endif