kernel_samsung_a34x-permissive/drivers/media/platform/vicodec/vicodec-codec.c
2024-04-28 15:49:01 +02:00

804 lines
20 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2016 Tom aan de Wiel
* Copyright 2018 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* 8x8 Fast Walsh Hadamard Transform in sequency order based on the paper:
*
* A Recursive Algorithm for Sequency-Ordered Fast Walsh Transforms,
* R.D. Brown, 1977
*/
#include <linux/string.h>
#include "vicodec-codec.h"
#define ALL_ZEROS 15
#define DEADZONE_WIDTH 20
static const uint8_t zigzag[64] = {
0,
1, 8,
2, 9, 16,
3, 10, 17, 24,
4, 11, 18, 25, 32,
5, 12, 19, 26, 33, 40,
6, 13, 20, 27, 34, 41, 48,
7, 14, 21, 28, 35, 42, 49, 56,
15, 22, 29, 36, 43, 50, 57,
23, 30, 37, 44, 51, 58,
31, 38, 45, 52, 59,
39, 46, 53, 60,
47, 54, 61,
55, 62,
63,
};
static int rlc(const s16 *in, __be16 *output, int blocktype)
{
s16 block[8 * 8];
s16 *wp = block;
int i = 0;
int x, y;
int ret = 0;
/* read in block from framebuffer */
int lastzero_run = 0;
int to_encode;
for (y = 0; y < 8; y++) {
for (x = 0; x < 8; x++) {
*wp = in[x + y * 8];
wp++;
}
}
/* keep track of amount of trailing zeros */
for (i = 63; i >= 0 && !block[zigzag[i]]; i--)
lastzero_run++;
*output++ = (blocktype == PBLOCK ? htons(PFRAME_BIT) : 0);
ret++;
to_encode = 8 * 8 - (lastzero_run > 14 ? lastzero_run : 0);
i = 0;
while (i < to_encode) {
int cnt = 0;
int tmp;
/* count leading zeros */
while ((tmp = block[zigzag[i]]) == 0 && cnt < 14) {
cnt++;
i++;
if (i == to_encode) {
cnt--;
break;
}
}
/* 4 bits for run, 12 for coefficient (quantization by 4) */
*output++ = htons((cnt | tmp << 4));
i++;
ret++;
}
if (lastzero_run > 14) {
*output = htons(ALL_ZEROS | 0);
ret++;
}
return ret;
}
/*
* This function will worst-case increase rlc_in by 65*2 bytes:
* one s16 value for the header and 8 * 8 coefficients of type s16.
*/
static s16 derlc(const __be16 **rlc_in, s16 *dwht_out)
{
/* header */
const __be16 *input = *rlc_in;
s16 ret = ntohs(*input++);
int dec_count = 0;
s16 block[8 * 8 + 16];
s16 *wp = block;
int i;
/*
* Now de-compress, it expands one byte to up to 15 bytes
* (or fills the remainder of the 64 bytes with zeroes if it
* is the last byte to expand).
*
* So block has to be 8 * 8 + 16 bytes, the '+ 16' is to
* allow for overflow if the incoming data was malformed.
*/
while (dec_count < 8 * 8) {
s16 in = ntohs(*input++);
int length = in & 0xf;
int coeff = in >> 4;
/* fill remainder with zeros */
if (length == 15) {
for (i = 0; i < 64 - dec_count; i++)
*wp++ = 0;
break;
}
for (i = 0; i < length; i++)
*wp++ = 0;
*wp++ = coeff;
dec_count += length + 1;
}
wp = block;
for (i = 0; i < 64; i++) {
int pos = zigzag[i];
int y = pos / 8;
int x = pos % 8;
dwht_out[x + y * 8] = *wp++;
}
*rlc_in = input;
return ret;
}
static const int quant_table[] = {
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3,
2, 2, 2, 2, 2, 2, 3, 6,
2, 2, 2, 2, 2, 3, 6, 6,
2, 2, 2, 2, 3, 6, 6, 6,
2, 2, 2, 3, 6, 6, 6, 6,
2, 2, 3, 6, 6, 6, 6, 8,
};
static const int quant_table_p[] = {
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 6,
3, 3, 3, 3, 3, 3, 6, 6,
3, 3, 3, 3, 3, 6, 6, 9,
3, 3, 3, 3, 6, 6, 9, 9,
3, 3, 3, 6, 6, 9, 9, 10,
};
static void quantize_intra(s16 *coeff, s16 *de_coeff)
{
const int *quant = quant_table;
int i, j;
for (j = 0; j < 8; j++) {
for (i = 0; i < 8; i++, quant++, coeff++, de_coeff++) {
*coeff >>= *quant;
if (*coeff >= -DEADZONE_WIDTH &&
*coeff <= DEADZONE_WIDTH)
*coeff = *de_coeff = 0;
else
*de_coeff = *coeff << *quant;
}
}
}
static void dequantize_intra(s16 *coeff)
{
const int *quant = quant_table;
int i, j;
for (j = 0; j < 8; j++)
for (i = 0; i < 8; i++, quant++, coeff++)
*coeff <<= *quant;
}
static void quantize_inter(s16 *coeff, s16 *de_coeff)
{
const int *quant = quant_table_p;
int i, j;
for (j = 0; j < 8; j++) {
for (i = 0; i < 8; i++, quant++, coeff++, de_coeff++) {
*coeff >>= *quant;
if (*coeff >= -DEADZONE_WIDTH &&
*coeff <= DEADZONE_WIDTH)
*coeff = *de_coeff = 0;
else
*de_coeff = *coeff << *quant;
}
}
}
static void dequantize_inter(s16 *coeff)
{
const int *quant = quant_table_p;
int i, j;
for (j = 0; j < 8; j++)
for (i = 0; i < 8; i++, quant++, coeff++)
*coeff <<= *quant;
}
static void fwht(const u8 *block, s16 *output_block, unsigned int stride,
unsigned int input_step, bool intra)
{
/* we'll need more than 8 bits for the transformed coefficients */
s32 workspace1[8], workspace2[8];
const u8 *tmp = block;
s16 *out = output_block;
int add = intra ? 256 : 0;
unsigned int i;
/* stage 1 */
stride *= input_step;
for (i = 0; i < 8; i++, tmp += stride, out += 8) {
if (input_step == 1) {
workspace1[0] = tmp[0] + tmp[1] - add;
workspace1[1] = tmp[0] - tmp[1];
workspace1[2] = tmp[2] + tmp[3] - add;
workspace1[3] = tmp[2] - tmp[3];
workspace1[4] = tmp[4] + tmp[5] - add;
workspace1[5] = tmp[4] - tmp[5];
workspace1[6] = tmp[6] + tmp[7] - add;
workspace1[7] = tmp[6] - tmp[7];
} else {
workspace1[0] = tmp[0] + tmp[2] - add;
workspace1[1] = tmp[0] - tmp[2];
workspace1[2] = tmp[4] + tmp[6] - add;
workspace1[3] = tmp[4] - tmp[6];
workspace1[4] = tmp[8] + tmp[10] - add;
workspace1[5] = tmp[8] - tmp[10];
workspace1[6] = tmp[12] + tmp[14] - add;
workspace1[7] = tmp[12] - tmp[14];
}
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
out[0] = workspace2[0] + workspace2[4];
out[1] = workspace2[0] - workspace2[4];
out[2] = workspace2[1] - workspace2[5];
out[3] = workspace2[1] + workspace2[5];
out[4] = workspace2[2] + workspace2[6];
out[5] = workspace2[2] - workspace2[6];
out[6] = workspace2[3] - workspace2[7];
out[7] = workspace2[3] + workspace2[7];
}
out = output_block;
for (i = 0; i < 8; i++, out++) {
/* stage 1 */
workspace1[0] = out[0] + out[1 * 8];
workspace1[1] = out[0] - out[1 * 8];
workspace1[2] = out[2 * 8] + out[3 * 8];
workspace1[3] = out[2 * 8] - out[3 * 8];
workspace1[4] = out[4 * 8] + out[5 * 8];
workspace1[5] = out[4 * 8] - out[5 * 8];
workspace1[6] = out[6 * 8] + out[7 * 8];
workspace1[7] = out[6 * 8] - out[7 * 8];
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
out[0 * 8] = workspace2[0] + workspace2[4];
out[1 * 8] = workspace2[0] - workspace2[4];
out[2 * 8] = workspace2[1] - workspace2[5];
out[3 * 8] = workspace2[1] + workspace2[5];
out[4 * 8] = workspace2[2] + workspace2[6];
out[5 * 8] = workspace2[2] - workspace2[6];
out[6 * 8] = workspace2[3] - workspace2[7];
out[7 * 8] = workspace2[3] + workspace2[7];
}
}
/*
* Not the nicest way of doing it, but P-blocks get twice the range of
* that of the I-blocks. Therefore we need a type bigger than 8 bits.
* Furthermore values can be negative... This is just a version that
* works with 16 signed data
*/
static void fwht16(const s16 *block, s16 *output_block, int stride, int intra)
{
/* we'll need more than 8 bits for the transformed coefficients */
s32 workspace1[8], workspace2[8];
const s16 *tmp = block;
s16 *out = output_block;
int i;
for (i = 0; i < 8; i++, tmp += stride, out += 8) {
/* stage 1 */
workspace1[0] = tmp[0] + tmp[1];
workspace1[1] = tmp[0] - tmp[1];
workspace1[2] = tmp[2] + tmp[3];
workspace1[3] = tmp[2] - tmp[3];
workspace1[4] = tmp[4] + tmp[5];
workspace1[5] = tmp[4] - tmp[5];
workspace1[6] = tmp[6] + tmp[7];
workspace1[7] = tmp[6] - tmp[7];
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
out[0] = workspace2[0] + workspace2[4];
out[1] = workspace2[0] - workspace2[4];
out[2] = workspace2[1] - workspace2[5];
out[3] = workspace2[1] + workspace2[5];
out[4] = workspace2[2] + workspace2[6];
out[5] = workspace2[2] - workspace2[6];
out[6] = workspace2[3] - workspace2[7];
out[7] = workspace2[3] + workspace2[7];
}
out = output_block;
for (i = 0; i < 8; i++, out++) {
/* stage 1 */
workspace1[0] = out[0] + out[1*8];
workspace1[1] = out[0] - out[1*8];
workspace1[2] = out[2*8] + out[3*8];
workspace1[3] = out[2*8] - out[3*8];
workspace1[4] = out[4*8] + out[5*8];
workspace1[5] = out[4*8] - out[5*8];
workspace1[6] = out[6*8] + out[7*8];
workspace1[7] = out[6*8] - out[7*8];
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
out[0*8] = workspace2[0] + workspace2[4];
out[1*8] = workspace2[0] - workspace2[4];
out[2*8] = workspace2[1] - workspace2[5];
out[3*8] = workspace2[1] + workspace2[5];
out[4*8] = workspace2[2] + workspace2[6];
out[5*8] = workspace2[2] - workspace2[6];
out[6*8] = workspace2[3] - workspace2[7];
out[7*8] = workspace2[3] + workspace2[7];
}
}
static void ifwht(const s16 *block, s16 *output_block, int intra)
{
/*
* we'll need more than 8 bits for the transformed coefficients
* use native unit of cpu
*/
int workspace1[8], workspace2[8];
int inter = intra ? 0 : 1;
const s16 *tmp = block;
s16 *out = output_block;
int i;
for (i = 0; i < 8; i++, tmp += 8, out += 8) {
/* stage 1 */
workspace1[0] = tmp[0] + tmp[1];
workspace1[1] = tmp[0] - tmp[1];
workspace1[2] = tmp[2] + tmp[3];
workspace1[3] = tmp[2] - tmp[3];
workspace1[4] = tmp[4] + tmp[5];
workspace1[5] = tmp[4] - tmp[5];
workspace1[6] = tmp[6] + tmp[7];
workspace1[7] = tmp[6] - tmp[7];
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
out[0] = workspace2[0] + workspace2[4];
out[1] = workspace2[0] - workspace2[4];
out[2] = workspace2[1] - workspace2[5];
out[3] = workspace2[1] + workspace2[5];
out[4] = workspace2[2] + workspace2[6];
out[5] = workspace2[2] - workspace2[6];
out[6] = workspace2[3] - workspace2[7];
out[7] = workspace2[3] + workspace2[7];
}
out = output_block;
for (i = 0; i < 8; i++, out++) {
/* stage 1 */
workspace1[0] = out[0] + out[1 * 8];
workspace1[1] = out[0] - out[1 * 8];
workspace1[2] = out[2 * 8] + out[3 * 8];
workspace1[3] = out[2 * 8] - out[3 * 8];
workspace1[4] = out[4 * 8] + out[5 * 8];
workspace1[5] = out[4 * 8] - out[5 * 8];
workspace1[6] = out[6 * 8] + out[7 * 8];
workspace1[7] = out[6 * 8] - out[7 * 8];
/* stage 2 */
workspace2[0] = workspace1[0] + workspace1[2];
workspace2[1] = workspace1[0] - workspace1[2];
workspace2[2] = workspace1[1] - workspace1[3];
workspace2[3] = workspace1[1] + workspace1[3];
workspace2[4] = workspace1[4] + workspace1[6];
workspace2[5] = workspace1[4] - workspace1[6];
workspace2[6] = workspace1[5] - workspace1[7];
workspace2[7] = workspace1[5] + workspace1[7];
/* stage 3 */
if (inter) {
int d;
out[0 * 8] = workspace2[0] + workspace2[4];
out[1 * 8] = workspace2[0] - workspace2[4];
out[2 * 8] = workspace2[1] - workspace2[5];
out[3 * 8] = workspace2[1] + workspace2[5];
out[4 * 8] = workspace2[2] + workspace2[6];
out[5 * 8] = workspace2[2] - workspace2[6];
out[6 * 8] = workspace2[3] - workspace2[7];
out[7 * 8] = workspace2[3] + workspace2[7];
for (d = 0; d < 8; d++)
out[8 * d] >>= 6;
} else {
int d;
out[0 * 8] = workspace2[0] + workspace2[4];
out[1 * 8] = workspace2[0] - workspace2[4];
out[2 * 8] = workspace2[1] - workspace2[5];
out[3 * 8] = workspace2[1] + workspace2[5];
out[4 * 8] = workspace2[2] + workspace2[6];
out[5 * 8] = workspace2[2] - workspace2[6];
out[6 * 8] = workspace2[3] - workspace2[7];
out[7 * 8] = workspace2[3] + workspace2[7];
for (d = 0; d < 8; d++) {
out[8 * d] >>= 6;
out[8 * d] += 128;
}
}
}
}
static void fill_encoder_block(const u8 *input, s16 *dst,
unsigned int stride, unsigned int input_step)
{
int i, j;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++, input += input_step)
*dst++ = *input;
input += (stride - 8) * input_step;
}
}
static int var_intra(const s16 *input)
{
int32_t mean = 0;
int32_t ret = 0;
const s16 *tmp = input;
int i;
for (i = 0; i < 8 * 8; i++, tmp++)
mean += *tmp;
mean /= 64;
tmp = input;
for (i = 0; i < 8 * 8; i++, tmp++)
ret += (*tmp - mean) < 0 ? -(*tmp - mean) : (*tmp - mean);
return ret;
}
static int var_inter(const s16 *old, const s16 *new)
{
int32_t ret = 0;
int i;
for (i = 0; i < 8 * 8; i++, old++, new++)
ret += (*old - *new) < 0 ? -(*old - *new) : (*old - *new);
return ret;
}
static int decide_blocktype(const u8 *cur, const u8 *reference,
s16 *deltablock, unsigned int stride,
unsigned int input_step)
{
s16 tmp[64];
s16 old[64];
s16 *work = tmp;
unsigned int k, l;
int vari;
int vard;
fill_encoder_block(cur, tmp, stride, input_step);
fill_encoder_block(reference, old, 8, 1);
vari = var_intra(tmp);
for (k = 0; k < 8; k++) {
for (l = 0; l < 8; l++) {
*deltablock = *work - *reference;
deltablock++;
work++;
reference++;
}
}
deltablock -= 64;
vard = var_inter(old, tmp);
return vari <= vard ? IBLOCK : PBLOCK;
}
static void fill_decoder_block(u8 *dst, const s16 *input, int stride)
{
int i, j;
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++, input++, dst++) {
if (*input < 0)
*dst = 0;
else if (*input > 255)
*dst = 255;
else
*dst = *input;
}
dst += stride - 8;
}
}
static void add_deltas(s16 *deltas, const u8 *ref, int stride)
{
int k, l;
for (k = 0; k < 8; k++) {
for (l = 0; l < 8; l++) {
*deltas += *ref++;
/*
* Due to quantizing, it might possible that the
* decoded coefficients are slightly out of range
*/
if (*deltas < 0)
*deltas = 0;
else if (*deltas > 255)
*deltas = 255;
deltas++;
}
ref += stride - 8;
}
}
static u32 encode_plane(u8 *input, u8 *refp, __be16 **rlco, __be16 *rlco_max,
struct cframe *cf, u32 height, u32 width,
unsigned int input_step,
bool is_intra, bool next_is_intra)
{
u8 *input_start = input;
__be16 *rlco_start = *rlco;
s16 deltablock[64];
__be16 pframe_bit = htons(PFRAME_BIT);
u32 encoding = 0;
unsigned int last_size = 0;
unsigned int i, j;
for (j = 0; j < height / 8; j++) {
for (i = 0; i < width / 8; i++) {
/* intra code, first frame is always intra coded. */
int blocktype = IBLOCK;
unsigned int size;
if (!is_intra)
blocktype = decide_blocktype(input, refp,
deltablock, width, input_step);
if (is_intra || blocktype == IBLOCK) {
fwht(input, cf->coeffs, width, input_step, 1);
quantize_intra(cf->coeffs, cf->de_coeffs);
blocktype = IBLOCK;
} else {
/* inter code */
encoding |= FRAME_PCODED;
fwht16(deltablock, cf->coeffs, 8, 0);
quantize_inter(cf->coeffs, cf->de_coeffs);
}
if (!next_is_intra) {
ifwht(cf->de_coeffs, cf->de_fwht, blocktype);
if (blocktype == PBLOCK)
add_deltas(cf->de_fwht, refp, 8);
fill_decoder_block(refp, cf->de_fwht, 8);
}
input += 8 * input_step;
refp += 8 * 8;
if (encoding & FRAME_UNENCODED)
continue;
size = rlc(cf->coeffs, *rlco, blocktype);
if (last_size == size &&
!memcmp(*rlco + 1, *rlco - size + 1, 2 * size - 2)) {
__be16 *last_rlco = *rlco - size;
s16 hdr = ntohs(*last_rlco);
if (!((*last_rlco ^ **rlco) & pframe_bit) &&
(hdr & DUPS_MASK) < DUPS_MASK)
*last_rlco = htons(hdr + 2);
else
*rlco += size;
} else {
*rlco += size;
}
if (*rlco >= rlco_max)
encoding |= FRAME_UNENCODED;
last_size = size;
}
input += width * 7 * input_step;
}
if (encoding & FRAME_UNENCODED) {
u8 *out = (u8 *)rlco_start;
input = input_start;
/*
* The compressed stream should never contain the magic
* header, so when we copy the YUV data we replace 0xff
* by 0xfe. Since YUV is limited range such values
* shouldn't appear anyway.
*/
for (i = 0; i < height * width; i++, input += input_step)
*out++ = (*input == 0xff) ? 0xfe : *input;
*rlco = (__be16 *)out;
}
return encoding;
}
u32 encode_frame(struct raw_frame *frm, struct raw_frame *ref_frm,
struct cframe *cf, bool is_intra, bool next_is_intra)
{
unsigned int size = frm->height * frm->width;
__be16 *rlco = cf->rlc_data;
__be16 *rlco_max;
u32 encoding;
rlco_max = rlco + size / 2 - 256;
encoding = encode_plane(frm->luma, ref_frm->luma, &rlco, rlco_max, cf,
frm->height, frm->width,
1, is_intra, next_is_intra);
if (encoding & FRAME_UNENCODED)
encoding |= LUMA_UNENCODED;
encoding &= ~FRAME_UNENCODED;
rlco_max = rlco + size / 8 - 256;
encoding |= encode_plane(frm->cb, ref_frm->cb, &rlco, rlco_max, cf,
frm->height / 2, frm->width / 2,
frm->chroma_step, is_intra, next_is_intra);
if (encoding & FRAME_UNENCODED)
encoding |= CB_UNENCODED;
encoding &= ~FRAME_UNENCODED;
rlco_max = rlco + size / 8 - 256;
encoding |= encode_plane(frm->cr, ref_frm->cr, &rlco, rlco_max, cf,
frm->height / 2, frm->width / 2,
frm->chroma_step, is_intra, next_is_intra);
if (encoding & FRAME_UNENCODED)
encoding |= CR_UNENCODED;
encoding &= ~FRAME_UNENCODED;
cf->size = (rlco - cf->rlc_data) * sizeof(*rlco);
return encoding;
}
static void decode_plane(struct cframe *cf, const __be16 **rlco, u8 *ref,
u32 height, u32 width, bool uncompressed)
{
unsigned int copies = 0;
s16 copy[8 * 8];
s16 stat;
unsigned int i, j;
if (uncompressed) {
memcpy(ref, *rlco, width * height);
*rlco += width * height / 2;
return;
}
/*
* When decoding each macroblock the rlco pointer will be increased
* by 65 * 2 bytes worst-case.
* To avoid overflow the buffer has to be 65/64th of the actual raw
* image size, just in case someone feeds it malicious data.
*/
for (j = 0; j < height / 8; j++) {
for (i = 0; i < width / 8; i++) {
u8 *refp = ref + j * 8 * width + i * 8;
if (copies) {
memcpy(cf->de_fwht, copy, sizeof(copy));
if (stat & PFRAME_BIT)
add_deltas(cf->de_fwht, refp, width);
fill_decoder_block(refp, cf->de_fwht, width);
copies--;
continue;
}
stat = derlc(rlco, cf->coeffs);
if (stat & PFRAME_BIT)
dequantize_inter(cf->coeffs);
else
dequantize_intra(cf->coeffs);
ifwht(cf->coeffs, cf->de_fwht,
(stat & PFRAME_BIT) ? 0 : 1);
copies = (stat & DUPS_MASK) >> 1;
if (copies)
memcpy(copy, cf->de_fwht, sizeof(copy));
if (stat & PFRAME_BIT)
add_deltas(cf->de_fwht, refp, width);
fill_decoder_block(refp, cf->de_fwht, width);
}
}
}
void decode_frame(struct cframe *cf, struct raw_frame *ref, u32 hdr_flags)
{
const __be16 *rlco = cf->rlc_data;
decode_plane(cf, &rlco, ref->luma, cf->height, cf->width,
hdr_flags & VICODEC_FL_LUMA_IS_UNCOMPRESSED);
decode_plane(cf, &rlco, ref->cb, cf->height / 2, cf->width / 2,
hdr_flags & VICODEC_FL_CB_IS_UNCOMPRESSED);
decode_plane(cf, &rlco, ref->cr, cf->height / 2, cf->width / 2,
hdr_flags & VICODEC_FL_CR_IS_UNCOMPRESSED);
}