kernel_samsung_a34x-permissive/drivers/media/v4l2-core/v4l2-fwnode.c
2024-04-28 15:49:01 +02:00

959 lines
24 KiB
C
Executable file

/*
* V4L2 fwnode binding parsing library
*
* The origins of the V4L2 fwnode library are in V4L2 OF library that
* formerly was located in v4l2-of.c.
*
* Copyright (c) 2016 Intel Corporation.
* Author: Sakari Ailus <sakari.ailus@linux.intel.com>
*
* Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
* Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* Copyright (C) 2012 Renesas Electronics Corp.
* Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*/
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <media/v4l2-async.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
enum v4l2_fwnode_bus_type {
V4L2_FWNODE_BUS_TYPE_GUESS = 0,
V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
V4L2_FWNODE_BUS_TYPE_CSI1,
V4L2_FWNODE_BUS_TYPE_CCP2,
NR_OF_V4L2_FWNODE_BUS_TYPE,
};
static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep)
{
struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
bool have_clk_lane = false;
unsigned int flags = 0, lanes_used = 0;
unsigned int i;
u32 v;
int rval;
rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0);
if (rval > 0) {
u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
bus->num_data_lanes =
min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
fwnode_property_read_u32_array(fwnode, "data-lanes", array,
bus->num_data_lanes);
for (i = 0; i < bus->num_data_lanes; i++) {
if (lanes_used & BIT(array[i]))
pr_warn("duplicated lane %u in data-lanes\n",
array[i]);
lanes_used |= BIT(array[i]);
bus->data_lanes[i] = array[i];
}
rval = fwnode_property_read_u32_array(fwnode,
"lane-polarities", NULL,
0);
if (rval > 0) {
if (rval != 1 + bus->num_data_lanes /* clock+data */) {
pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
1 + bus->num_data_lanes, rval);
return -EINVAL;
}
fwnode_property_read_u32_array(fwnode,
"lane-polarities", array,
1 + bus->num_data_lanes);
for (i = 0; i < 1 + bus->num_data_lanes; i++)
bus->lane_polarities[i] = array[i];
}
}
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
if (lanes_used & BIT(v))
pr_warn("duplicated lane %u in clock-lanes\n", v);
lanes_used |= BIT(v);
bus->clock_lane = v;
have_clk_lane = true;
}
if (fwnode_property_present(fwnode, "clock-noncontinuous"))
flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
else if (have_clk_lane || bus->num_data_lanes > 0)
flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
bus->flags = flags;
vep->bus_type = V4L2_MBUS_CSI2;
return 0;
}
static void v4l2_fwnode_endpoint_parse_parallel_bus(
struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)
{
struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
unsigned int flags = 0;
u32 v;
if (!fwnode_property_read_u32(fwnode, "hsync-active", &v))
flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
V4L2_MBUS_HSYNC_ACTIVE_LOW;
if (!fwnode_property_read_u32(fwnode, "vsync-active", &v))
flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
V4L2_MBUS_VSYNC_ACTIVE_LOW;
if (!fwnode_property_read_u32(fwnode, "field-even-active", &v))
flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
V4L2_MBUS_FIELD_EVEN_LOW;
if (flags)
vep->bus_type = V4L2_MBUS_PARALLEL;
else
vep->bus_type = V4L2_MBUS_BT656;
if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v))
flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
V4L2_MBUS_PCLK_SAMPLE_FALLING;
if (!fwnode_property_read_u32(fwnode, "data-active", &v))
flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
V4L2_MBUS_DATA_ACTIVE_LOW;
if (fwnode_property_present(fwnode, "slave-mode"))
flags |= V4L2_MBUS_SLAVE;
else
flags |= V4L2_MBUS_MASTER;
if (!fwnode_property_read_u32(fwnode, "bus-width", &v))
bus->bus_width = v;
if (!fwnode_property_read_u32(fwnode, "data-shift", &v))
bus->data_shift = v;
if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v))
flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v))
flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
V4L2_MBUS_DATA_ENABLE_LOW;
bus->flags = flags;
}
static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep,
u32 bus_type)
{
struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
u32 v;
if (!fwnode_property_read_u32(fwnode, "clock-inv", &v))
bus->clock_inv = v;
if (!fwnode_property_read_u32(fwnode, "strobe", &v))
bus->strobe = v;
if (!fwnode_property_read_u32(fwnode, "data-lanes", &v))
bus->data_lane = v;
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v))
bus->clock_lane = v;
if (bus_type == V4L2_FWNODE_BUS_TYPE_CCP2)
vep->bus_type = V4L2_MBUS_CCP2;
else
vep->bus_type = V4L2_MBUS_CSI1;
}
int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep)
{
u32 bus_type = 0;
int rval;
fwnode_graph_parse_endpoint(fwnode, &vep->base);
/* Zero fields from bus_type to until the end */
memset(&vep->bus_type, 0, sizeof(*vep) -
offsetof(typeof(*vep), bus_type));
fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
switch (bus_type) {
case V4L2_FWNODE_BUS_TYPE_GUESS:
rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep);
if (rval)
return rval;
/*
* Parse the parallel video bus properties only if none
* of the MIPI CSI-2 specific properties were found.
*/
if (vep->bus.mipi_csi2.flags == 0)
v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep);
return 0;
case V4L2_FWNODE_BUS_TYPE_CCP2:
case V4L2_FWNODE_BUS_TYPE_CSI1:
v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, bus_type);
return 0;
default:
pr_warn("unsupported bus type %u\n", bus_type);
return -EINVAL;
}
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
{
if (IS_ERR_OR_NULL(vep))
return;
kfree(vep->link_frequencies);
kfree(vep);
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
struct v4l2_fwnode_endpoint *v4l2_fwnode_endpoint_alloc_parse(
struct fwnode_handle *fwnode)
{
struct v4l2_fwnode_endpoint *vep;
int rval;
vep = kzalloc(sizeof(*vep), GFP_KERNEL);
if (!vep)
return ERR_PTR(-ENOMEM);
rval = v4l2_fwnode_endpoint_parse(fwnode, vep);
if (rval < 0)
goto out_err;
rval = fwnode_property_read_u64_array(fwnode, "link-frequencies",
NULL, 0);
if (rval > 0) {
vep->link_frequencies =
kmalloc_array(rval, sizeof(*vep->link_frequencies),
GFP_KERNEL);
if (!vep->link_frequencies) {
rval = -ENOMEM;
goto out_err;
}
vep->nr_of_link_frequencies = rval;
rval = fwnode_property_read_u64_array(
fwnode, "link-frequencies", vep->link_frequencies,
vep->nr_of_link_frequencies);
if (rval < 0)
goto out_err;
}
return vep;
out_err:
v4l2_fwnode_endpoint_free(vep);
return ERR_PTR(rval);
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
struct v4l2_fwnode_link *link)
{
const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
struct fwnode_handle *fwnode;
memset(link, 0, sizeof(*link));
fwnode = fwnode_get_parent(__fwnode);
fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
fwnode = fwnode_get_next_parent(fwnode);
if (is_of_node(fwnode) &&
of_node_cmp(to_of_node(fwnode)->name, "ports") == 0)
fwnode = fwnode_get_next_parent(fwnode);
link->local_node = fwnode;
fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
if (!fwnode) {
fwnode_handle_put(fwnode);
return -ENOLINK;
}
fwnode = fwnode_get_parent(fwnode);
fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
fwnode = fwnode_get_next_parent(fwnode);
if (is_of_node(fwnode) &&
of_node_cmp(to_of_node(fwnode)->name, "ports") == 0)
fwnode = fwnode_get_next_parent(fwnode);
link->remote_node = fwnode;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
{
fwnode_handle_put(link->local_node);
fwnode_handle_put(link->remote_node);
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
static int v4l2_async_notifier_realloc(struct v4l2_async_notifier *notifier,
unsigned int max_subdevs)
{
struct v4l2_async_subdev **subdevs;
if (max_subdevs <= notifier->max_subdevs)
return 0;
subdevs = kvmalloc_array(
max_subdevs, sizeof(*notifier->subdevs),
GFP_KERNEL | __GFP_ZERO);
if (!subdevs)
return -ENOMEM;
if (notifier->subdevs) {
memcpy(subdevs, notifier->subdevs,
sizeof(*subdevs) * notifier->num_subdevs);
kvfree(notifier->subdevs);
}
notifier->subdevs = subdevs;
notifier->max_subdevs = max_subdevs;
return 0;
}
static int v4l2_async_notifier_fwnode_parse_endpoint(
struct device *dev, struct v4l2_async_notifier *notifier,
struct fwnode_handle *endpoint, unsigned int asd_struct_size,
int (*parse_endpoint)(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd))
{
struct v4l2_async_subdev *asd;
struct v4l2_fwnode_endpoint *vep;
int ret = 0;
asd = kzalloc(asd_struct_size, GFP_KERNEL);
if (!asd)
return -ENOMEM;
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode =
fwnode_graph_get_remote_port_parent(endpoint);
if (!asd->match.fwnode) {
dev_warn(dev, "bad remote port parent\n");
ret = -EINVAL;
goto out_err;
}
vep = v4l2_fwnode_endpoint_alloc_parse(endpoint);
if (IS_ERR(vep)) {
ret = PTR_ERR(vep);
dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
ret);
goto out_err;
}
ret = parse_endpoint ? parse_endpoint(dev, vep, asd) : 0;
if (ret == -ENOTCONN)
dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep->base.port,
vep->base.id);
else if (ret < 0)
dev_warn(dev,
"driver could not parse port@%u/endpoint@%u (%d)\n",
vep->base.port, vep->base.id, ret);
v4l2_fwnode_endpoint_free(vep);
if (ret < 0)
goto out_err;
notifier->subdevs[notifier->num_subdevs] = asd;
notifier->num_subdevs++;
return 0;
out_err:
fwnode_handle_put(asd->match.fwnode);
kfree(asd);
return ret == -ENOTCONN ? 0 : ret;
}
static int __v4l2_async_notifier_parse_fwnode_endpoints(
struct device *dev, struct v4l2_async_notifier *notifier,
size_t asd_struct_size, unsigned int port, bool has_port,
int (*parse_endpoint)(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd))
{
struct fwnode_handle *fwnode;
unsigned int max_subdevs = notifier->max_subdevs;
int ret;
if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
return -EINVAL;
for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
dev_fwnode(dev), fwnode)); ) {
struct fwnode_handle *dev_fwnode;
bool is_available;
dev_fwnode = fwnode_graph_get_port_parent(fwnode);
is_available = fwnode_device_is_available(dev_fwnode);
fwnode_handle_put(dev_fwnode);
if (!is_available)
continue;
if (has_port) {
struct fwnode_endpoint ep;
ret = fwnode_graph_parse_endpoint(fwnode, &ep);
if (ret) {
fwnode_handle_put(fwnode);
return ret;
}
if (ep.port != port)
continue;
}
max_subdevs++;
}
/* No subdevs to add? Return here. */
if (max_subdevs == notifier->max_subdevs)
return 0;
ret = v4l2_async_notifier_realloc(notifier, max_subdevs);
if (ret)
return ret;
for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
dev_fwnode(dev), fwnode)); ) {
struct fwnode_handle *dev_fwnode;
bool is_available;
dev_fwnode = fwnode_graph_get_port_parent(fwnode);
is_available = fwnode_device_is_available(dev_fwnode);
fwnode_handle_put(dev_fwnode);
if (!is_available)
continue;
if (has_port) {
struct fwnode_endpoint ep;
ret = fwnode_graph_parse_endpoint(fwnode, &ep);
if (ret)
break;
if (ep.port != port)
continue;
}
if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
ret = -EINVAL;
break;
}
ret = v4l2_async_notifier_fwnode_parse_endpoint(
dev, notifier, fwnode, asd_struct_size, parse_endpoint);
if (ret < 0)
break;
}
fwnode_handle_put(fwnode);
return ret;
}
int v4l2_async_notifier_parse_fwnode_endpoints(
struct device *dev, struct v4l2_async_notifier *notifier,
size_t asd_struct_size,
int (*parse_endpoint)(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd))
{
return __v4l2_async_notifier_parse_fwnode_endpoints(
dev, notifier, asd_struct_size, 0, false, parse_endpoint);
}
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
int v4l2_async_notifier_parse_fwnode_endpoints_by_port(
struct device *dev, struct v4l2_async_notifier *notifier,
size_t asd_struct_size, unsigned int port,
int (*parse_endpoint)(struct device *dev,
struct v4l2_fwnode_endpoint *vep,
struct v4l2_async_subdev *asd))
{
return __v4l2_async_notifier_parse_fwnode_endpoints(
dev, notifier, asd_struct_size, port, true, parse_endpoint);
}
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
/*
* v4l2_fwnode_reference_parse - parse references for async sub-devices
* @dev: the device node the properties of which are parsed for references
* @notifier: the async notifier where the async subdevs will be added
* @prop: the name of the property
*
* Return: 0 on success
* -ENOENT if no entries were found
* -ENOMEM if memory allocation failed
* -EINVAL if property parsing failed
*/
static int v4l2_fwnode_reference_parse(
struct device *dev, struct v4l2_async_notifier *notifier,
const char *prop)
{
struct fwnode_reference_args args;
unsigned int index;
int ret;
for (index = 0;
!(ret = fwnode_property_get_reference_args(
dev_fwnode(dev), prop, NULL, 0, index, &args));
index++)
fwnode_handle_put(args.fwnode);
if (!index)
return -ENOENT;
/*
* Note that right now both -ENODATA and -ENOENT may signal
* out-of-bounds access. Return the error in cases other than that.
*/
if (ret != -ENOENT && ret != -ENODATA)
return ret;
ret = v4l2_async_notifier_realloc(notifier,
notifier->num_subdevs + index);
if (ret)
return ret;
for (index = 0; !fwnode_property_get_reference_args(
dev_fwnode(dev), prop, NULL, 0, index, &args);
index++) {
struct v4l2_async_subdev *asd;
if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
ret = -EINVAL;
goto error;
}
asd = kzalloc(sizeof(*asd), GFP_KERNEL);
if (!asd) {
ret = -ENOMEM;
goto error;
}
notifier->subdevs[notifier->num_subdevs] = asd;
asd->match.fwnode = args.fwnode;
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
notifier->num_subdevs++;
}
return 0;
error:
fwnode_handle_put(args.fwnode);
return ret;
}
/*
* v4l2_fwnode_reference_get_int_prop - parse a reference with integer
* arguments
* @fwnode: fwnode to read @prop from
* @notifier: notifier for @dev
* @prop: the name of the property
* @index: the index of the reference to get
* @props: the array of integer property names
* @nprops: the number of integer property names in @nprops
*
* First find an fwnode referred to by the reference at @index in @prop.
*
* Then under that fwnode, @nprops times, for each property in @props,
* iteratively follow child nodes starting from fwnode such that they have the
* property in @props array at the index of the child node distance from the
* root node and the value of that property matching with the integer argument
* of the reference, at the same index.
*
* The child fwnode reched at the end of the iteration is then returned to the
* caller.
*
* The core reason for this is that you cannot refer to just any node in ACPI.
* So to refer to an endpoint (easy in DT) you need to refer to a device, then
* provide a list of (property name, property value) tuples where each tuple
* uniquely identifies a child node. The first tuple identifies a child directly
* underneath the device fwnode, the next tuple identifies a child node
* underneath the fwnode identified by the previous tuple, etc. until you
* reached the fwnode you need.
*
* An example with a graph, as defined in Documentation/acpi/dsd/graph.txt:
*
* Scope (\_SB.PCI0.I2C2)
* {
* Device (CAM0)
* {
* Name (_DSD, Package () {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () {
* "compatible",
* Package () { "nokia,smia" }
* },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "port0", "PRT0" },
* }
* })
* Name (PRT0, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "port", 0 },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "endpoint0", "EP00" },
* }
* })
* Name (EP00, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "endpoint", 0 },
* Package () {
* "remote-endpoint",
* Package() {
* \_SB.PCI0.ISP, 4, 0
* }
* },
* }
* })
* }
* }
*
* Scope (\_SB.PCI0)
* {
* Device (ISP)
* {
* Name (_DSD, Package () {
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "port4", "PRT4" },
* }
* })
*
* Name (PRT4, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "port", 4 },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "endpoint0", "EP40" },
* }
* })
*
* Name (EP40, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "endpoint", 0 },
* Package () {
* "remote-endpoint",
* Package () {
* \_SB.PCI0.I2C2.CAM0,
* 0, 0
* }
* },
* }
* })
* }
* }
*
* From the EP40 node under ISP device, you could parse the graph remote
* endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
*
* @fwnode: fwnode referring to EP40 under ISP.
* @prop: "remote-endpoint"
* @index: 0
* @props: "port", "endpoint"
* @nprops: 2
*
* And you'd get back fwnode referring to EP00 under CAM0.
*
* The same works the other way around: if you use EP00 under CAM0 as the
* fwnode, you'll get fwnode referring to EP40 under ISP.
*
* The same example in DT syntax would look like this:
*
* cam: cam0 {
* compatible = "nokia,smia";
*
* port {
* port = <0>;
* endpoint {
* endpoint = <0>;
* remote-endpoint = <&isp 4 0>;
* };
* };
* };
*
* isp: isp {
* ports {
* port@4 {
* port = <4>;
* endpoint {
* endpoint = <0>;
* remote-endpoint = <&cam 0 0>;
* };
* };
* };
* };
*
* Return: 0 on success
* -ENOENT if no entries (or the property itself) were found
* -EINVAL if property parsing otherwise failed
* -ENOMEM if memory allocation failed
*/
static struct fwnode_handle *v4l2_fwnode_reference_get_int_prop(
struct fwnode_handle *fwnode, const char *prop, unsigned int index,
const char * const *props, unsigned int nprops)
{
struct fwnode_reference_args fwnode_args;
u64 *args = fwnode_args.args;
struct fwnode_handle *child;
int ret;
/*
* Obtain remote fwnode as well as the integer arguments.
*
* Note that right now both -ENODATA and -ENOENT may signal
* out-of-bounds access. Return -ENOENT in that case.
*/
ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
index, &fwnode_args);
if (ret)
return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
/*
* Find a node in the tree under the referred fwnode corresponding to
* the integer arguments.
*/
fwnode = fwnode_args.fwnode;
while (nprops--) {
u32 val;
/* Loop over all child nodes under fwnode. */
fwnode_for_each_child_node(fwnode, child) {
if (fwnode_property_read_u32(child, *props, &val))
continue;
/* Found property, see if its value matches. */
if (val == *args)
break;
}
fwnode_handle_put(fwnode);
/* No property found; return an error here. */
if (!child) {
fwnode = ERR_PTR(-ENOENT);
break;
}
props++;
args++;
fwnode = child;
}
return fwnode;
}
/*
* v4l2_fwnode_reference_parse_int_props - parse references for async
* sub-devices
* @dev: struct device pointer
* @notifier: notifier for @dev
* @prop: the name of the property
* @props: the array of integer property names
* @nprops: the number of integer properties
*
* Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
* property @prop with integer arguments with child nodes matching in properties
* @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
* accordingly.
*
* While it is technically possible to use this function on DT, it is only
* meaningful on ACPI. On Device tree you can refer to any node in the tree but
* on ACPI the references are limited to devices.
*
* Return: 0 on success
* -ENOENT if no entries (or the property itself) were found
* -EINVAL if property parsing otherwisefailed
* -ENOMEM if memory allocation failed
*/
static int v4l2_fwnode_reference_parse_int_props(
struct device *dev, struct v4l2_async_notifier *notifier,
const char *prop, const char * const *props, unsigned int nprops)
{
struct fwnode_handle *fwnode;
unsigned int index;
int ret;
index = 0;
do {
fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
prop, index,
props, nprops);
if (IS_ERR(fwnode)) {
/*
* Note that right now both -ENODATA and -ENOENT may
* signal out-of-bounds access. Return the error in
* cases other than that.
*/
if (PTR_ERR(fwnode) != -ENOENT &&
PTR_ERR(fwnode) != -ENODATA)
return PTR_ERR(fwnode);
break;
}
fwnode_handle_put(fwnode);
index++;
} while (1);
ret = v4l2_async_notifier_realloc(notifier,
notifier->num_subdevs + index);
if (ret)
return -ENOMEM;
for (index = 0; !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(
dev_fwnode(dev), prop, index, props,
nprops))); index++) {
struct v4l2_async_subdev *asd;
if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
ret = -EINVAL;
goto error;
}
asd = kzalloc(sizeof(struct v4l2_async_subdev), GFP_KERNEL);
if (!asd) {
ret = -ENOMEM;
goto error;
}
notifier->subdevs[notifier->num_subdevs] = asd;
asd->match.fwnode = fwnode;
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
notifier->num_subdevs++;
}
return PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
error:
fwnode_handle_put(fwnode);
return ret;
}
int v4l2_async_notifier_parse_fwnode_sensor_common(
struct device *dev, struct v4l2_async_notifier *notifier)
{
static const char * const led_props[] = { "led" };
static const struct {
const char *name;
const char * const *props;
unsigned int nprops;
} props[] = {
{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
{ "lens-focus", NULL, 0 },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(props); i++) {
int ret;
if (props[i].props && is_acpi_node(dev_fwnode(dev)))
ret = v4l2_fwnode_reference_parse_int_props(
dev, notifier, props[i].name,
props[i].props, props[i].nprops);
else
ret = v4l2_fwnode_reference_parse(
dev, notifier, props[i].name);
if (ret && ret != -ENOENT) {
dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
props[i].name, ret);
return ret;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
{
struct v4l2_async_notifier *notifier;
int ret;
if (WARN_ON(!sd->dev))
return -ENODEV;
notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
if (!notifier)
return -ENOMEM;
ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
notifier);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_subdev_notifier_register(sd, notifier);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_register_subdev(sd);
if (ret < 0)
goto out_unregister;
sd->subdev_notifier = notifier;
return 0;
out_unregister:
v4l2_async_notifier_unregister(notifier);
out_cleanup:
v4l2_async_notifier_cleanup(notifier);
kfree(notifier);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");