kernel_samsung_a34x-permissive/drivers/misc/mediatek/dramc/mt6885/mtk_dramc.c
2024-04-28 15:49:01 +02:00

2111 lines
53 KiB
C
Executable file

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 MediaTek Inc.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/kallsyms.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/vmalloc.h>
#include <linux/memblock.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <asm/cacheflush.h>
/* #include <mach/mtk_clkmgr.h> */
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_fdt.h>
#include <asm/setup.h>
#include <mt-plat/mtk_io.h>
/* #include <mt-plat/dma.h> */
#include <mt-plat/sync_write.h>
#include "mtk_dramc.h"
#include "dramc.h"
#include "mtk_devinfo.h"
#ifdef DVFS_READY
#include <mtk_spm_vcore_dvfs.h>
#endif
#ifdef EMI_READY
#include <mt_emi_api.h>
#endif
#ifdef CONFIG_OF_RESERVED_MEM
#define DRAM_R0_DUMMY_READ_RESERVED_KEY "reserve-memory-dram_r0_dummy_read"
#define DRAM_R1_DUMMY_READ_RESERVED_KEY "reserve-memory-dram_r1_dummy_read"
#include <linux/of_reserved_mem.h>
#endif
#include <mt-plat/aee.h>
#include <mt-plat/mtk_chip.h>
void __iomem *SYS_TIMER_BASE_ADDR;
void __iomem *DRAMC_AO_CHA_BASE_ADDR;
void __iomem *DRAMC_AO_CHB_BASE_ADDR;
void __iomem *DRAMC_NAO_CHA_BASE_ADDR;
void __iomem *DRAMC_NAO_CHB_BASE_ADDR;
void __iomem *DDRPHY_AO_CHA_BASE_ADDR;
void __iomem *DDRPHY_AO_CHB_BASE_ADDR;
void __iomem *DDRPHY_NAO_CHA_BASE_ADDR;
void __iomem *DDRPHY_NAO_CHB_BASE_ADDR;
#define DRAM_RSV_SIZE 0x1000
#ifdef SW_TX_TRACKING
static unsigned int mr18_cur;
static unsigned int mr19_cur;
#endif
static DEFINE_MUTEX(dram_dfs_mutex);
unsigned char No_DummyRead;
static unsigned int DRAM_TYPE;
static unsigned int CH_NUM;
static unsigned int CBT_MODE;
unsigned int lp4_highfreq_3600;
/*extern bool spm_vcorefs_is_dvfs_in_porgress(void);*/
#define Reg_Sync_Writel(addr, val) writel(val, IOMEM(addr))
#define Reg_Readl(addr) readl(IOMEM(addr))
static unsigned int dram_rank_num;
phys_addr_t dram_rank0_addr, dram_rank1_addr;
struct dram_info *g_dram_info_dummy_read, *get_dram_info;
struct dram_info dram_info_dummy_read;
static unsigned int cbt_mode_rank[2];
#define DRAMC_RSV_TAG "[DRAMC_RSV]"
#define dramc_rsv_aee_warn(string, args...) do {\
pr_err("[ERR]"string, ##args); \
aee_kernel_warning(DRAMC_RSV_TAG, "[ERR]"string, ##args); \
} while (0)
__weak void *mt_spm_base_get(void)
{
return 0;
}
/* Return 0 if success, -1 if failure */
static int __init dram_dummy_read_fixup(void)
{
int ret = 0;
ret = acquire_buffer_from_memory_lowpower(&dram_rank1_addr);
/* Success to acquire memory */
if (ret == 0) {
pr_info("%s: %pa\n", __func__, &dram_rank1_addr);
return 0;
}
/* error occurs */
pr_alert("%s: failed to acquire last 1 page(%d)\n", __func__, ret);
return -1;
}
static int __init dt_scan_dram_info(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = (char *)of_get_flat_dt_prop(node, "device_type", NULL);
const __be32 *reg, *endp;
unsigned long l;
/* We are scanning "memory" nodes only */
if (type == NULL) {
/* The longtrail doesn't have a device_type on the memory node*/
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;
reg = (const __be32 *)of_get_flat_dt_prop(node,
(const char *)"reg", (int *)&l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(__be32));
if (node) {
get_dram_info =
(struct dram_info *)of_get_flat_dt_prop(node,
"orig_dram_info", NULL);
if (get_dram_info == NULL) {
No_DummyRead = 1;
return 0;
}
g_dram_info_dummy_read = &dram_info_dummy_read;
dram_info_dummy_read.rank_num = get_dram_info->rank_num;
dram_rank_num = get_dram_info->rank_num;
pr_info("[DRAMC] dram info dram rank number = %d\n",
g_dram_info_dummy_read->rank_num);
if (dram_rank_num == SINGLE_RANK) {
dram_info_dummy_read.rank_info[0].start =
dram_rank0_addr;
dram_info_dummy_read.rank_info[1].start =
dram_rank0_addr;
pr_info("[DRAMC] dram info dram rank0 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[0].start);
} else if (dram_rank_num == DUAL_RANK) {
/* No dummy read address for rank1, try to fix it up */
if (dram_rank1_addr == 0 &&
dram_dummy_read_fixup() != 0) {
No_DummyRead = 1;
dramc_rsv_aee_warn(
"dram dummy read reserve fail on rank1\n");
}
dram_info_dummy_read.rank_info[0].start =
dram_rank0_addr;
dram_info_dummy_read.rank_info[1].start =
dram_rank1_addr;
pr_info("[DRAMC] dram info dram rank0 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[0].start);
pr_info("[DRAMC] dram info dram rank1 base = 0x%llx\n",
g_dram_info_dummy_read->rank_info[1].start);
} else {
No_DummyRead = 1;
pr_err("[DRAMC] dram info dram rank number incorrect !!!\n");
}
}
return node;
}
#if defined(SW_TX_TRACKING) || defined(DRAMC_MEMTEST_DEBUG_SUPPORT)
static unsigned int read_dram_mode_reg(
unsigned int mr_index, unsigned int *mr_value,
void __iomem *dramc_ao_chx_base,
void __iomem *dramc_nao_chx_base)
{
unsigned int response;
unsigned int time_cnt;
unsigned int temp;
/* assign MR index */
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x1FFF<<8);
Reg_Sync_Writel(DRAMC_AO_MRS, temp | (mr_index<<8));
/* fire MRR by MRREN 0->1 */
temp = Reg_Readl(DRAMC_AO_SPCMD);
Reg_Sync_Writel(DRAMC_AO_SPCMD, temp | 0x2);
/* wait MRR finish response or timeout handling */
time_cnt = 100;
do {
udelay(1);
response = Reg_Readl(DRAMC_NAO_SPCMDRESP) & 0x2;
time_cnt--;
} while ((response == 0) && (time_cnt > 0));
if (time_cnt == 0)
return TX_TIMEOUT_MRR_ENABLE;
/* Read out MR value or timeout handling */
time_cnt = 10;
do {
udelay(1);
*mr_value = Reg_Readl(DRAMC_NAO_MRR_STATUS) & 0xFFFF;
time_cnt--;
} while ((*mr_value == 0) && (time_cnt > 0));
#if 0
if (time_cnt == 0)
pr_warn("[DRAMC] read mode reg time out 2\n");
#endif
/* set MRR fire bit MRREN to 0 for next MRR */
temp = Reg_Readl(DRAMC_AO_SPCMD);
Reg_Sync_Writel(DRAMC_AO_SPCMD, temp & ~0x2);
/* wait for the ready response */
time_cnt = 100;
do {
udelay(1);
response = Reg_Readl(DRAMC_NAO_SPCMDRESP) & 0x2;
time_cnt--;
} while ((response == 2) && (time_cnt > 0));
if (time_cnt == 0)
return TX_TIMEOUT_MRR_DISABLE;
return TX_DONE;
}
#if defined(DRAMC_MEMTEST_DEBUG_SUPPORT)
unsigned int read_dram_mode_reg_by_rank(
unsigned int mr_index, unsigned int *mr_value,
unsigned int rank, unsigned int channel)
{
unsigned int temp;
void __iomem *dramc_ao_chx_base;
void __iomem *dramc_nao_chx_base;
void __iomem *ddrphy_chx_base;
ssize_t ret;
unsigned long save_flags;
unsigned int res;
ret = 0;
if (channel == 0) {
dramc_ao_chx_base = DRAMC_AO_CHA_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHA_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHA_BASE_ADDR;
} else {
dramc_ao_chx_base = DRAMC_AO_CHB_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHB_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHB_BASE_ADDR;
}
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
pr_warn("[DRAMC] can NOT get SPM HW SEMAPHORE!\n");
local_irq_restore(save_flags);
return -1;
}
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3<<26);
Reg_Sync_Writel(DRAMC_AO_MRS, temp | (rank<<26));
res = read_dram_mode_reg(mr_index, mr_value,
dramc_ao_chx_base, dramc_nao_chx_base);
if (res != TX_DONE)
ret = -1;
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3<<26);
Reg_Sync_Writel(DRAMC_AO_MRS, temp);
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] release SPM HW SEMAPHORE fail!\n");
local_irq_restore(save_flags);
return ret;
}
#endif
#endif
#ifdef SW_TX_TRACKING
static unsigned int start_dram_dqs_osc(void __iomem *dramc_ao_chx_base,
void __iomem *dramc_nao_chx_base)
{
unsigned int response;
unsigned int time_cnt;
unsigned int temp;
unsigned int res;
temp = Reg_Readl(DRAMC_AO_SPCMD) | (0x1<<10);
Reg_Sync_Writel(DRAMC_AO_SPCMD, temp);
time_cnt = 100;
do {
udelay(1);
response = Reg_Readl(DRAMC_NAO_SPCMDRESP) & (0x1<<10);
time_cnt--;
} while ((response == 0) && (time_cnt > 0));
if (time_cnt == 0)
res = TX_TIMEOUT_DQSOSC;
else
res = TX_DONE;
temp = Reg_Readl(DRAMC_AO_SPCMD) & ~(0x1<<10);
Reg_Sync_Writel(DRAMC_AO_SPCMD, temp);
return res;
}
static unsigned int auto_dram_dqs_osc(unsigned int rank,
void __iomem *dramc_ao_chx_base, void __iomem *dramc_nao_chx_base)
{
unsigned int backup_mrs, backup_pd_ctrl, backup_ckectrl;
unsigned int temp;
unsigned int res;
backup_mrs = Reg_Readl(DRAMC_AO_MRS);
backup_pd_ctrl = Reg_Readl(DRAMC_AO_PD_CTRL);
backup_ckectrl = Reg_Readl(DRAMC_AO_CKECTRL);
/* disable DQS OSC 2 ranks simutaneously and specify rank index */
temp = Reg_Readl(DRAMC_AO_RKCFG) & ~(0x1<<11);
Reg_Sync_Writel(DRAMC_AO_RKCFG, temp);
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3 << 24);
Reg_Sync_Writel(DRAMC_AO_MRS, temp | (rank << 24));
/* set DRAMC clock free run and CKE always on */
temp = Reg_Readl(DRAMC_AO_PD_CTRL) & 0xFFFFFFFD;
Reg_Sync_Writel(DRAMC_AO_PD_CTRL, temp);
temp &= 0xBFFFFFFF;
Reg_Sync_Writel(DRAMC_AO_PD_CTRL, temp);
temp |= 0x1 << 26;
Reg_Sync_Writel(DRAMC_AO_PD_CTRL, temp);
if (rank == 0) {
temp = Reg_Readl(DRAMC_AO_CKECTRL) & ~(0x1<<7);
Reg_Sync_Writel(DRAMC_AO_CKECTRL, temp | (0x1<<6));
} else {
temp = Reg_Readl(DRAMC_AO_CKECTRL) & ~(0x1<<5);
Reg_Sync_Writel(DRAMC_AO_CKECTRL, temp | (0x1<<4));
}
res = start_dram_dqs_osc(dramc_ao_chx_base, dramc_nao_chx_base);
if (res != TX_DONE)
goto ret_auto_dram_dqs_osc;
udelay(1);
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3<<26);
Reg_Sync_Writel(DRAMC_AO_MRS, temp | (rank<<26));
res =
read_dram_mode_reg(18, &mr18_cur, dramc_ao_chx_base,
dramc_nao_chx_base);
if (res != TX_DONE)
goto ret_auto_dram_dqs_osc;
res =
read_dram_mode_reg(19, &mr19_cur, dramc_ao_chx_base,
dramc_nao_chx_base);
if (res != TX_DONE)
goto ret_auto_dram_dqs_osc;
res = TX_DONE;
#if 0 /* print message for debugging */
/* byte 0 */
dqs_cnt = (mr18_cur & 0xFF) | ((mr19_cur & 0xFF) << 8);
if (dqs_cnt != 0)
dqs_osc[0] = mr23_value*16000000/(dqs_cnt * frequency);
else
dqs_osc[0] = 0;
/* byte 1 */
dqs_cnt = (mr18_cur >> 8) | (mr19_cur & 0xFF00);
if (dqs_cnt != 0)
dqs_osc[1] = mr23_value*16000000/(dqs_cnt * frequency);
else
dqs_osc[1] = 0;
pr_info("[DRAMC] Rank %d, (LSB)MR18= 0x%x, (MSB)MR19= 0x%x, tDQSOscB0 = %d ps tDQSOscB1 = %d ps\n",
rank, mr18_cur, mr19_cur, dqs_osc[0], dqs_osc[1]);
#endif
ret_auto_dram_dqs_osc:
Reg_Sync_Writel(DRAMC_AO_MRS, backup_mrs);
Reg_Sync_Writel(DRAMC_AO_CKECTRL, backup_ckectrl);
Reg_Sync_Writel(DRAMC_AO_PD_CTRL, backup_pd_ctrl);
return res;
}
static unsigned int dramc_tx_tracking(int channel)
{
void __iomem *dramc_ao_chx_base;
void __iomem *dramc_nao_chx_base;
void __iomem *ddrphy_chx_base;
unsigned int shu_level, opp_level;
unsigned int shu_index;
unsigned int shu_offset_dramc, shu_offset_ddrphy;
unsigned int dqsosc_inc[2], dqsosc_dec[2];
unsigned int pi_orig[3][2][2]; /* [shuffle][rank][byte] */
unsigned int pi_new[3][2][2]; /* [shuffle][rank][byte] */
unsigned int dqm_orig[3][2][2];
unsigned int dqm_new[3][2][2];
unsigned int pi_adjust;
unsigned int mr1819_base[2][2];
unsigned int mr1819_cur[2];
unsigned int mr1819_delta;
unsigned int mr4_on_off;
unsigned int response;
unsigned int time_cnt;
unsigned int temp;
unsigned int rank, byte;
unsigned int tx_freq_ratio[3];
unsigned int pi_adj, max_pi_adj[3];
unsigned int res;
if (channel == 0) {
dramc_ao_chx_base = DRAMC_AO_CHA_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHA_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHA_BASE_ADDR;
} else {
dramc_ao_chx_base = DRAMC_AO_CHB_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHB_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHB_BASE_ADDR;
}
shu_level = (Reg_Readl(DRAMC_AO_SHUSTATUS) >> 1) & 0x3;
opp_level = shu_level + 1;
if (lp4_highfreq_3600) {
tx_freq_ratio[0] =
dram_steps_freq(0) * 8 / dram_steps_freq(opp_level);
tx_freq_ratio[1] =
dram_steps_freq(2) * 8 / dram_steps_freq(opp_level);
tx_freq_ratio[2] =
dram_steps_freq(3) * 8 / dram_steps_freq(opp_level);
max_pi_adj[0] = 11;
max_pi_adj[1] = 10;
max_pi_adj[2] = 4;
} else {
tx_freq_ratio[0] =
dram_steps_freq(1) * 8 / dram_steps_freq(opp_level);
tx_freq_ratio[1] =
dram_steps_freq(2) * 8 / dram_steps_freq(opp_level);
tx_freq_ratio[2] =
dram_steps_freq(3) * 8 / dram_steps_freq(opp_level);
max_pi_adj[0] = 10;
max_pi_adj[1] = 7;
max_pi_adj[2] = 4;
}
shu_offset_dramc = 0x600 * shu_level;
dqsosc_inc[0] =
(Reg_Readl(DRAMC_AO_DQSOSCTHRD + shu_offset_dramc) >> 0) & 0xFFF;
dqsosc_dec[0] =
(Reg_Readl(DRAMC_AO_DQSOSCTHRD + shu_offset_dramc) >> 12) & 0xFFF;
dqsosc_inc[1] =
(Reg_Readl(DRAMC_AO_DQSOSC_PRD + shu_offset_dramc) >> 8) & 0xF00;
dqsosc_inc[1] |=
(Reg_Readl(DRAMC_AO_DQSOSCTHRD + shu_offset_dramc) >> 24) & 0xFF;
dqsosc_dec[1] =
(Reg_Readl(DRAMC_AO_DQSOSC_PRD + shu_offset_dramc) >> 20) & 0xFFF;
/* mr1819_base[rank][byte] */
mr1819_base[0][0] =
(Reg_Readl(DRAMC_AO_SHU1RK0_DQSOSC + shu_offset_dramc) >> 0) & 0xFFFF;
mr1819_base[1][0] =
(Reg_Readl(DRAMC_AO_SHU1RK1_DQSOSC + shu_offset_dramc) >> 0) & 0xFFFF;
if (CBT_MODE == BYTE_MODE) {
mr1819_base[0][1] =
(Reg_Readl(DRAMC_AO_SHU1RK0_DQSOSC + shu_offset_dramc) >> 16) &
0xFFFF;
mr1819_base[1][1] =
(Reg_Readl(DRAMC_AO_SHU1RK1_DQSOSC + shu_offset_dramc) >> 16) &
0xFFFF;
} else if (CBT_MODE == R0_NORMAL_R1_BYTE) {
mr1819_base[0][1] = mr1819_base[0][0];
mr1819_base[1][1] =
(Reg_Readl(DRAMC_AO_SHU1RK1_DQSOSC + shu_offset_dramc) >> 16) &
0xFFFF;
} else if (CBT_MODE == R0_BYTE_R1_NORMAL) {
mr1819_base[0][1] =
(Reg_Readl(DRAMC_AO_SHU1RK0_DQSOSC + shu_offset_dramc) >> 16) &
0xFFFF;
mr1819_base[1][1] = mr1819_base[1][0];
} else { /* normal mode */
mr1819_base[0][1] = mr1819_base[0][0];
mr1819_base[1][1] = mr1819_base[1][0];
}
/* pi_orig[shuffle][rank][byte] */
for (shu_index = 0; shu_index < 3; shu_index++) {
shu_offset_dramc = 0x600 * shu_index;
temp = Reg_Readl(DRAMC_AO_SHU1RK0_PI + shu_offset_dramc);
pi_orig[shu_index][0][0] = (temp >> 8) & 0x3F;
pi_orig[shu_index][0][1] = (temp >> 0) & 0x3F;
dqm_orig[shu_index][0][0] = (temp >> 24) & 0x3F;
dqm_orig[shu_index][0][1] = (temp >> 16) & 0x3F;
temp = Reg_Readl(DRAMC_AO_SHU1RK1_PI + shu_offset_dramc);
pi_orig[shu_index][1][0] = (temp >> 8) & 0x3F;
pi_orig[shu_index][1][1] = (temp >> 0) & 0x3F;
dqm_orig[shu_index][1][0] = (temp >> 24) & 0x3F;
dqm_orig[shu_index][1][1] = (temp >> 16) & 0x3F;
}
temp = Reg_Readl(DRAMC_AO_SPCMDCTRL);
mr4_on_off = (temp >> 29) & 0x1;
Reg_Sync_Writel(DRAMC_AO_SPCMDCTRL, temp | (1<<29));
for (rank = 0; rank < 2; rank++) {
res =
auto_dram_dqs_osc(rank, dramc_ao_chx_base, dramc_nao_chx_base);
if (res != TX_DONE)
goto ret_dramc_tx_tracking;
mr1819_cur[0] = (mr18_cur & 0xFF) | ((mr19_cur & 0xFF) << 8);
if (cbt_mode_rank[rank] == RANK_BYTE)
mr1819_cur[1] = (mr18_cur >> 8) | (mr19_cur & 0xFF00);
else /* Normal Mode */
mr1819_cur[1] = mr1819_cur[0];
/* inc: mr1819_cur > mr1819_base, PI- */
/* dec: mr1819_cur < mr1819_base, PI+ */
for (byte = 0; byte < 2; byte++) {
if (mr1819_cur[byte] >= mr1819_base[rank][byte]) {
mr1819_delta =
mr1819_cur[byte] - mr1819_base[rank][byte];
pi_adjust = mr1819_delta / dqsosc_inc[rank];
for (shu_index = 0;
shu_index < 3; shu_index++) {
pi_adj =
pi_adjust * tx_freq_ratio[shu_index] /
tx_freq_ratio[shu_level];
if (pi_adj > max_pi_adj[shu_index]) {
res = TX_FAIL_VARIATION;
goto ret_dramc_tx_tracking;
}
pi_new[shu_index][rank][byte] =
(pi_orig[shu_index][rank][byte]
- pi_adj) & 0x3F;
dqm_new[shu_index][rank][byte] =
(dqm_orig[shu_index][rank][byte]
- pi_adj) & 0x3F;
#if 0 /* print message for debugging */
pr_info("[DRAMC], CH%d RK%d B%d, shu=%d base=%X cur=%X delta=%d INC=%d PI=0x%x Adj=%d newPI=0x%x\n",
channel, rank, byte, shu_index, mr1819_base[rank][byte], mr1819_cur[byte],
mr1819_delta, dqsosc_inc[rank], pi_orig[shu_index][rank][byte],
(pi_adjust * tx_freq_ratio[shu_index] / tx_freq_ratio[shu_level]),
pi_new[shu_index][rank][byte]);
#endif
}
} else {
mr1819_delta =
mr1819_base[rank][byte] - mr1819_cur[byte];
pi_adjust = mr1819_delta / dqsosc_dec[rank];
for (shu_index = 0;
shu_index < 3; shu_index++) {
pi_adj =
pi_adjust * tx_freq_ratio[shu_index] /
tx_freq_ratio[shu_level];
if (pi_adj > max_pi_adj[shu_index]) {
res = TX_FAIL_VARIATION;
goto ret_dramc_tx_tracking;
}
pi_new[shu_index][rank][byte] =
(pi_orig[shu_index][rank][byte]
+ pi_adj) & 0x3F;
dqm_new[shu_index][rank][byte] =
(dqm_orig[shu_index][rank][byte]
+ pi_adj) & 0x3F;
#if 0 /* print message for debugging */
pr_info("[DRAMC], CH%d RK%d B%d, shu=%d base=%X cur=%X delta=%d DEC=%d PI=0x%x Adj=%d newPI=0x%x\n",
channel, rank, byte, shu_index, mr1819_base[rank][byte], mr1819_cur[byte],
mr1819_delta, dqsosc_dec[rank], pi_orig[shu_index][rank][byte],
(pi_adjust * tx_freq_ratio[shu_index] / tx_freq_ratio[shu_level]),
pi_new[shu_index][rank][byte]);
#endif
}
}
}
}
temp = Reg_Readl(DRAMC_AO_DQSOSCR);
Reg_Sync_Writel(DRAMC_AO_DQSOSCR, temp | (0x1<<5));
Reg_Sync_Writel(DRAMC_AO_DQSOSCR, temp | (0x3<<5));
for (shu_index = 0; shu_index < 3; shu_index++) {
shu_offset_ddrphy = 0x500 * shu_index;
temp = Reg_Readl(
DDRPHY_SHU1_R0_B0_DQ7 + shu_offset_ddrphy) &
~((0x3F << 8) | (0x3F << 16));
Reg_Sync_Writel(
DDRPHY_SHU1_R0_B0_DQ7 + shu_offset_ddrphy, temp |
(dqm_new[shu_index][0][0] << 16) |
(pi_new[shu_index][0][0] << 8));
temp = Reg_Readl(
DDRPHY_SHU1_R0_B1_DQ7 + shu_offset_ddrphy) &
~((0x3F << 8) | (0x3F << 16));
Reg_Sync_Writel(
DDRPHY_SHU1_R0_B1_DQ7 + shu_offset_ddrphy, temp |
(dqm_new[shu_index][0][1] << 16) |
(pi_new[shu_index][0][1] << 8));
temp = Reg_Readl(
DDRPHY_SHU1_R1_B0_DQ7 + shu_offset_ddrphy) &
~((0x3F << 8) | (0x3F << 16));
Reg_Sync_Writel(
DDRPHY_SHU1_R1_B0_DQ7 + shu_offset_ddrphy, temp |
(dqm_new[shu_index][1][0] << 16) |
(pi_new[shu_index][1][0] << 8));
temp = Reg_Readl(
DDRPHY_SHU1_R1_B1_DQ7 + shu_offset_ddrphy) &
~((0x3F << 8) | (0x3F << 16));
Reg_Sync_Writel(
DDRPHY_SHU1_R1_B1_DQ7 + shu_offset_ddrphy, temp |
(dqm_new[shu_index][1][1] << 16) |
(pi_new[shu_index][1][1] << 8));
}
time_cnt = 100;
do {
udelay(1);
response = Reg_Readl(DRAMC_NAO_MISC_STATUSA) & (1 << 29);
time_cnt--;
} while ((response == 0) && (time_cnt > 0));
if (time_cnt == 0) {
pr_err("[DRAMC] write DDRPHY time out\n");
res = TX_TIMEOUT_DDRPHY;
} else
res = TX_DONE;
ret_dramc_tx_tracking:
temp = Reg_Readl(DRAMC_AO_DQSOSCR);
Reg_Sync_Writel(DRAMC_AO_DQSOSCR, temp & ~(0x1<<5));
Reg_Sync_Writel(DRAMC_AO_DQSOSCR, temp & ~(0x3<<5));
temp = Reg_Readl(DRAMC_AO_SPCMDCTRL) & ~(1<<29);
Reg_Sync_Writel(DRAMC_AO_SPCMDCTRL, temp | (mr4_on_off<<29));
return res;
}
void dump_tx_log(unsigned int res)
{
switch (res) {
case TX_TIMEOUT_MRR_ENABLE:
pr_err("[DRAMC] TX MRR enable timeout\n");
break;
case TX_TIMEOUT_MRR_DISABLE:
pr_err("[DRAMC] TX MRR disable timeout\n");
break;
case TX_TIMEOUT_DQSOSC:
pr_err("[DRAMC] TX DQS OSC timeout\n");
break;
case TX_TIMEOUT_DDRPHY:
pr_err("[DRAMC] TX DDRPHY update timeout\n");
break;
case TX_FAIL_DATA_RATE:
pr_err("[DRAMC] TX read data rate fail\n");
break;
case TX_FAIL_VARIATION:
pr_err("[DRAMC] TX variation is too large\n");
break;
default:
pr_err("[DRAMC] TX unknown error\n");
break;
}
}
#endif
#ifdef CONFIG_MTK_DRAMC_PASR
#define __ETT__ 0
int enter_pasr_dpd_config(unsigned char segment_rank0,
unsigned char segment_rank1)
{
unsigned int rank_pasr_segment[2];
unsigned int iRankIdx = 0, iChannelIdx = 0, cnt = 1000;
unsigned int u4value_24 = 0;
unsigned int u4value_64 = 0;
unsigned int u4value_38 = 0;
void __iomem *u4rg_24; /* CKE control */
void __iomem *u4rg_64; /* MR4 ZQCS */
void __iomem *u4rg_38; /* MIOCKCTRLOFF */
void __iomem *u4rg_5C; /* MRS */
void __iomem *u4rg_60; /* MRWEN */
void __iomem *u4rg_88; /* MRW_RESPONSE */
#if !__ETT__
unsigned long save_flags;
pr_info("[DRAMC0] PASR r0 = 0x%x r1 = 0x%x\n",
(segment_rank0 & 0xFF), (segment_rank1 & 0xFF));
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
pr_warn("[DRAMC0] can NOT get SPM HW SEMAPHORE!\n");
local_irq_restore(save_flags);
return -1;
}
/* pr_info("[DRAMC0] get SPM HW SEMAPHORE!\n"); */
#endif
rank_pasr_segment[0] = segment_rank0 & 0xFF; /* for rank0 */
rank_pasr_segment[1] = segment_rank1 & 0xFF; /* for rank1 */
/* #if PASR_TEST_SCENARIO == PASR_SUPPORT_2_CHANNEL*/
#ifdef EMI_READY
for (iChannelIdx = 0; iChannelIdx < get_ch_num(); iChannelIdx++) {
#else
for (iChannelIdx = 0; iChannelIdx < 2; iChannelIdx++) {
#endif
if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) {
if (iChannelIdx == 0) { /*Channel-A*/
u4rg_24 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x24);
u4rg_64 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x64);
u4rg_38 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x38);
u4rg_5C = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x5C);
u4rg_60 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x60);
u4rg_88 = IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x88);
} else { /*Channel-B*/
u4rg_24 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x24);
u4rg_64 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x64);
u4rg_38 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x38);
u4rg_5C = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x5C);
u4rg_60 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x60);
u4rg_88 = IOMEM(DRAMC_NAO_CHB_BASE_ADDR + 0x88);
}
} else if (DRAM_TYPE == TYPE_LPDDR3) {
if (iChannelIdx == 1)
break;
u4rg_24 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x24);
u4rg_64 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x64);
u4rg_38 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x38);
u4rg_5C = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x5C);
u4rg_60 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x60);
u4rg_88 = IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x88);
} else
break;
u4value_64 = readl(u4rg_64);
u4value_38 = readl(u4rg_38);
u4value_24 = readl(u4rg_24);
/* Disable MR4 => 0x64[29] = 1 */
writel(readl(u4rg_64) | 0x20000000, u4rg_64);
/* Disable ZQCS => LPDDR4: 0x64[30] = 0 LPDDR3: 0x64[31] = 0 */
writel(readl(u4rg_64) & 0x3FFFFFFF, u4rg_64);
#if !__ETT__
mb(); /* flush memory */
#endif
udelay(2);
/* DCMEN2 = 0 */
writel(readl(u4rg_38) & 0xFFFFFFFD, u4rg_38);
/* PHYCLKDYNGEN = 0 */
writel(readl(u4rg_38) & 0xBFFFFFFF, u4rg_38);
/* MIOCKCTRLOFF = 1 */
writel(readl(u4rg_38) | 0x04000000, u4rg_38);
writel((readl(u4rg_24) & (~((0x1<<5) | (0x1<<7)))) |
((0x1<<4) | (0x1<<6)), u4rg_24);
/* CKE0 CKE1 fix on no matter the setting of CKE2RANK*/
#ifdef EMI_READY
for (iRankIdx = 0; iRankIdx < get_rk_num(); iRankIdx++) {
#else
for (iRankIdx = 0; iRankIdx < 2; iRankIdx++) {
#endif
writel(((iRankIdx << 24) | rank_pasr_segment[iRankIdx] |
(0x00000011 << 8)), u4rg_5C);
writel(readl(u4rg_60) | 0x00000001, u4rg_60);
cnt = 1000;
do {
if (cnt-- == 0) {
if (iRankIdx == 0)
pr_warn("[DRAMC0] R0 PASR MRW fail!\n");
else
pr_warn("[DRAMC0] R1 PASR MRW fail!\n");
#if !__ETT__
if (release_dram_ctrl() != 0)
pr_warn("[DRAMC0] release SPM HW SEMAPHORE fail!\n");
local_irq_restore(save_flags);
#endif
return -1;
}
udelay(1);
} while ((readl(u4rg_88) & 0x00000001) == 0x0);
writel(readl(u4rg_60) & 0xfffffffe, u4rg_60);
}
writel(u4value_64, u4rg_64);
writel(u4value_24, u4rg_24);
writel(u4value_38, u4rg_38);
writel(0, u4rg_5C);
}
#if !__ETT__
if (release_dram_ctrl() != 0)
pr_warn("[DRAMC0] release SPM HW SEMAPHORE fail!\n");
/* pr_info("[DRAMC0] release SPM HW SEMAPHORE success!\n"); */
local_irq_restore(save_flags);
#endif
return 0;
}
int exit_pasr_dpd_config(void)
{
int ret;
ret = enter_pasr_dpd_config(0, 0);
return ret;
}
#else
int enter_pasr_dpd_config(unsigned char segment_rank0,
unsigned char segment_rank1)
{
return 0;
}
int exit_pasr_dpd_config(void)
{
return 0;
}
#endif
#define MEM_TEST_SIZE 0x2000
#define PATTERN1 0x5A5A5A5A
#define PATTERN2 0xA5A5A5A5
int Binning_DRAM_complex_mem_test(void)
{
unsigned char *MEM8_BASE;
unsigned short *MEM16_BASE;
unsigned int *MEM32_BASE;
unsigned int *MEM_BASE;
unsigned long mem_ptr;
unsigned char pattern8;
unsigned short pattern16;
unsigned int i, j, size, pattern32;
unsigned int value;
unsigned int len = MEM_TEST_SIZE;
void *ptr;
int ret = 1;
ptr = vmalloc(MEM_TEST_SIZE);
if (!ptr) {
/*pr_err("fail to vmalloc\n");*/
/*ASSERT(0);*/
ret = -24;
goto fail;
}
MEM8_BASE = (unsigned char *)ptr;
MEM16_BASE = (unsigned short *)ptr;
MEM32_BASE = (unsigned int *)ptr;
MEM_BASE = (unsigned int *)ptr;
/* pr_info("Test DRAM start address 0x%lx\n", (unsigned long)ptr); */
pr_info("Test DRAM start address %p\n", ptr);
pr_info("Test DRAM SIZE 0x%x\n", MEM_TEST_SIZE);
size = len >> 2;
/* === Verify the tied bits (tied high) === */
for (i = 0; i < size; i++)
MEM32_BASE[i] = 0;
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0) {
/* return -1; */
ret = -1;
goto fail;
} else
MEM32_BASE[i] = 0xffffffff;
}
/* === Verify the tied bits (tied low) === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffffffff) {
/* return -2; */
ret = -2;
goto fail;
} else
MEM32_BASE[i] = 0x00;
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
for (i = 0; i < len; i++)
MEM8_BASE[i] = pattern8++;
pattern8 = 0x00;
for (i = 0; i < len; i++) {
if (MEM8_BASE[i] != pattern8++) {
/* return -3; */
ret = -3;
goto fail;
}
}
/* === Verify pattern 2 (0x00~0xff) === */
pattern8 = 0x00;
for (i = j = 0; i < len; i += 2, j++) {
if (MEM8_BASE[i] == pattern8)
MEM16_BASE[j] = pattern8;
if (MEM16_BASE[j] != pattern8) {
/* return -4; */
ret = -4;
goto fail;
}
pattern8 += 2;
}
/* === Verify pattern 3 (0x00~0xffff) === */
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++)
MEM16_BASE[i] = pattern16++;
pattern16 = 0x00;
for (i = 0; i < (len >> 1); i++) {
if (MEM16_BASE[i] != pattern16++) {
/* return -5; */
ret = -5;
goto fail;
}
}
/* === Verify pattern 4 (0x00~0xffffffff) === */
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++)
MEM32_BASE[i] = pattern32++;
pattern32 = 0x00;
for (i = 0; i < (len >> 2); i++) {
if (MEM32_BASE[i] != pattern32++) {
/* return -6; */
ret = -6;
goto fail;
}
}
/* === Pattern 5: Filling memory range with 0x44332211 === */
for (i = 0; i < size; i++)
MEM32_BASE[i] = 0x44332211;
/* === Read Check then Fill Memory with a5a5a5a5 Pattern === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0x44332211) {
/* return -7; */
ret = -7;
goto fail;
} else {
MEM32_BASE[i] = 0xa5a5a5a5;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 0h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5a5a5a5) {
/* return -8; */
ret = -8;
goto fail;
} else {
MEM8_BASE[i * 4] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 2h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5a5a500) {
/* return -9; */
ret = -9;
goto fail;
} else {
MEM8_BASE[i * 4 + 2] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 1h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa500a500) {
/* return -10; */
ret = -10;
goto fail;
} else {
MEM8_BASE[i * 4 + 1] = 0x00;
}
}
/* === Read Check then Fill Memory with */
/* 00 Byte Pattern at offset 3h === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xa5000000) {
/* return -11; */
ret = -11;
goto fail;
} else {
MEM8_BASE[i * 4 + 3] = 0x00;
}
}
/* === Read Check then Fill Memory with ffff */
/* Word Pattern at offset 1h == */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0x00000000) {
/* return -12; */
ret = -12;
goto fail;
} else {
MEM16_BASE[i * 2 + 1] = 0xffff;
}
}
/* === Read Check then Fill Memory with ffff */
/* Word Pattern at offset 0h == */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffff0000) {
/* return -13; */
ret = -13;
goto fail;
} else {
MEM16_BASE[i * 2] = 0xffff;
}
}
/*=== Read Check === */
for (i = 0; i < size; i++) {
if (MEM32_BASE[i] != 0xffffffff) {
/* return -14; */
ret = -14;
goto fail;
}
}
/* Additional verification */
/* === stage 1 => write 0 === */
for (i = 0; i < size; i++)
MEM_BASE[i] = PATTERN1;
/* === stage 2 => read 0, write 0xF === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -15; */
ret = -15;
goto fail;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 3 => read 0xF, write 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN2) {
/* return -16; */
ret = -16;
goto fail;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 4 => read 0, write 0xF === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -17; */
ret = -17;
goto fail;
}
MEM_BASE[i] = PATTERN2;
}
/* === stage 5 => read 0xF, write 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN2) {
/* return -18; */
ret = -18;
goto fail;
}
MEM_BASE[i] = PATTERN1;
}
/* === stage 6 => read 0 === */
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != PATTERN1) {
/* return -19; */
ret = -19;
goto fail;
}
}
/* === 1/2/4-byte combination test === */
mem_ptr = (unsigned long)MEM_BASE;
while (mem_ptr < ((unsigned long)MEM_BASE + (size << 2))) {
*((unsigned char *)mem_ptr) = 0x78;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x56;
mem_ptr += 1;
*((unsigned short *)mem_ptr) = 0x1234;
mem_ptr += 2;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned short *)mem_ptr) = 0x5678;
mem_ptr += 2;
*((unsigned char *)mem_ptr) = 0x34;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x12;
mem_ptr += 1;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned char *)mem_ptr) = 0x78;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x56;
mem_ptr += 1;
*((unsigned short *)mem_ptr) = 0x1234;
mem_ptr += 2;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
*((unsigned short *)mem_ptr) = 0x5678;
mem_ptr += 2;
*((unsigned char *)mem_ptr) = 0x34;
mem_ptr += 1;
*((unsigned char *)mem_ptr) = 0x12;
mem_ptr += 1;
*((unsigned int *)mem_ptr) = 0x12345678;
mem_ptr += 4;
}
for (i = 0; i < size; i++) {
value = MEM_BASE[i];
if (value != 0x12345678) {
/* return -20; */
ret = -20;
goto fail;
}
}
/* === Verify pattern 1 (0x00~0xff) === */
pattern8 = 0x00;
MEM8_BASE[0] = pattern8;
for (i = 0; i < size * 4; i++) {
unsigned char waddr8, raddr8;
waddr8 = i + 1;
raddr8 = i;
if (i < size * 4 - 1)
MEM8_BASE[waddr8] = pattern8 + 1;
if (MEM8_BASE[raddr8] != pattern8) {
/* return -21; */
ret = -21;
goto fail;
}
pattern8++;
}
/* === Verify pattern 2 (0x00~0xffff) === */
pattern16 = 0x00;
MEM16_BASE[0] = pattern16;
for (i = 0; i < size * 2; i++) {
if (i < size * 2 - 1)
MEM16_BASE[i + 1] = pattern16 + 1;
if (MEM16_BASE[i] != pattern16) {
/* return -22; */
ret = -22;
goto fail;
}
pattern16++;
}
/* === Verify pattern 3 (0x00~0xffffffff) === */
pattern32 = 0x00;
MEM32_BASE[0] = pattern32;
for (i = 0; i < size; i++) {
if (i < size - 1)
MEM32_BASE[i + 1] = pattern32 + 1;
if (MEM32_BASE[i] != pattern32) {
/* return -23; */
ret = -23;
goto fail;
}
pattern32++;
}
pr_info("complex R/W mem test pass\n");
fail:
vfree(ptr);
return ret;
}
unsigned int ucDram_Register_Read(unsigned int u4reg_addr)
{
return 0; /* for mbw dummy use */
}
unsigned int lpDram_Register_Read(unsigned int Reg_base, unsigned int Offset)
{
if ((Reg_base == DRAMC_NAO_CHA) && (Offset < 0x1000))
return readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == DRAMC_NAO_CHB) && (Offset < 0x1000))
return readl(IOMEM(DRAMC_NAO_CHB_BASE_ADDR + Offset));
else if ((Reg_base == DRAMC_AO_CHA) && (Offset < 0x2000))
return readl(IOMEM(DRAMC_AO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == DRAMC_AO_CHB) && (Offset < 0x2000))
return readl(IOMEM(DRAMC_AO_CHB_BASE_ADDR + Offset));
else if ((Reg_base == PHY_NAO_CHA) && (Offset < 0x1000))
return readl(IOMEM(DDRPHY_NAO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == PHY_NAO_CHB) && (Offset < 0x1000))
return readl(IOMEM(DDRPHY_NAO_CHB_BASE_ADDR + Offset));
else if ((Reg_base == PHY_AO_CHA) && (Offset < 0x2000))
return readl(IOMEM(DDRPHY_AO_CHA_BASE_ADDR + Offset));
else if ((Reg_base == PHY_AO_CHB) && (Offset < 0x2000))
return readl(IOMEM(DDRPHY_AO_CHB_BASE_ADDR + Offset));
else
return 0;
}
EXPORT_SYMBOL(lpDram_Register_Read);
unsigned int get_dram_data_rate(void)
{
unsigned int u4ShuLevel, u4SDM_PCW, u4PREDIV, u4POSDIV;
unsigned int u4CKDIV4, u4VCOFreq, u4DataRate = 0;
int channels;
channels = get_emi_ch_num();
u4ShuLevel = get_shuffle_status();
u4SDM_PCW = readl(
IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0xd94 + 0x500 * u4ShuLevel)) >> 16;
u4PREDIV = (readl(
IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0xda0 + 0x500 * u4ShuLevel))
& 0x000c0000) >> 18;
u4POSDIV = readl(
IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0xda0 + 0x500 * u4ShuLevel))
& 0x00000007;
u4CKDIV4 = (readl(
IOMEM(DDRPHY_AO_CHA_BASE_ADDR + 0xd18 + 0x500 * u4ShuLevel))
& 0x08000000) >> 27;
u4VCOFreq = ((52>>u4PREDIV)*(u4SDM_PCW>>8))>>u4POSDIV;
u4DataRate = u4VCOFreq>>u4CKDIV4;
/* pr_info("[DRAMC Driver] PCW=0x%X, u4PREDIV=%d, */
/* u4POSDIV=%d, CKDIV4=%d, DataRate=%d\n", */
/* u4SDM_PCW, u4PREDIV, u4POSDIV, u4CKDIV4, u4DataRate); */
if (DRAM_TYPE == TYPE_LPDDR3) {
if (u4DataRate == 1859)
u4DataRate = 1866;
else if (u4DataRate == 1599)
u4DataRate = 1600;
else if (u4DataRate == 1196)
u4DataRate = 1200;
else
u4DataRate = 0;
} else if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) {
if (u4DataRate == 3588)
u4DataRate = 3600;
else if (u4DataRate == 3198)
u4DataRate = 3200;
else if (u4DataRate == 2392)
u4DataRate = 2400;
else if (u4DataRate == 1599)
u4DataRate = 1600;
else
u4DataRate = 0;
} else
u4DataRate = 0;
return u4DataRate;
}
EXPORT_SYMBOL(get_dram_data_rate);
unsigned int read_dram_temperature(unsigned char channel)
{
unsigned int value = 0;
if (channel == CHANNEL_A) {
value =
(readl(IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x3b8)) >> 8) & 0x7;
} else if (channel == CHANNEL_B) {
value =
(readl(IOMEM(DRAMC_NAO_CHB_BASE_ADDR + 0x3b8)) >> 8) & 0x7;
}
return value;
}
unsigned int get_shuffle_status(void)
{
return (readl(PDEF_DRAMC0_CHA_REG_0E4) & 0x6) >> 1;
/* HPM = 0, LPM = 1, ULPM = 2; */
}
int get_ddr_type(void)
{
return DRAM_TYPE;
}
EXPORT_SYMBOL(get_ddr_type);
int get_emi_ch_num(void)
{
#ifdef EMI_READY
return get_ch_num();
#else
return 0;
#endif
}
EXPORT_SYMBOL(get_emi_ch_num);
int dram_steps_freq(unsigned int step)
{
int freq = -1;
int channels;
channels = get_emi_ch_num();
switch (step) {
case 0:
if (DRAM_TYPE == TYPE_LPDDR3)
freq = 1866;
else if ((DRAM_TYPE == TYPE_LPDDR4)
|| (DRAM_TYPE == TYPE_LPDDR4X))
freq = (lp4_highfreq_3600) ? 3600 : 3200;
break;
case 1:
if (DRAM_TYPE == TYPE_LPDDR3)
freq = 1600;
else if ((DRAM_TYPE == TYPE_LPDDR4)
|| (DRAM_TYPE == TYPE_LPDDR4X))
freq = 3200;
break;
case 2:
if (DRAM_TYPE == TYPE_LPDDR3)
freq = 1600;
else if ((DRAM_TYPE == TYPE_LPDDR4)
|| (DRAM_TYPE == TYPE_LPDDR4X))
freq = (lp4_highfreq_3600) ? 3200 : 2400;
break;
case 3:
if (DRAM_TYPE == TYPE_LPDDR3)
freq = 1200;
else if ((DRAM_TYPE == TYPE_LPDDR4)
|| (DRAM_TYPE == TYPE_LPDDR4X))
freq = 1600;
break;
default:
return -1;
}
return freq;
}
EXPORT_SYMBOL(dram_steps_freq);
int dram_can_support_fh(void)
{
if ((No_DummyRead) ||
((get_dram_data_rate() == 3600) &&
(get_devinfo_with_index(30) & 0x20)))
return 0;
else
return 1;
}
EXPORT_SYMBOL(dram_can_support_fh);
#ifdef CONFIG_OF_RESERVED_MEM
int dram_dummy_read_reserve_mem_of_init(struct reserved_mem *rmem)
{
phys_addr_t rptr = 0;
unsigned int rsize = 0;
rptr = rmem->base;
rsize = (unsigned int)rmem->size;
if (strstr(DRAM_R0_DUMMY_READ_RESERVED_KEY, rmem->name)) {
if (rsize < DRAM_RSV_SIZE) {
pr_err("[DRAMC] Can NOT reserve memory for Rank0\n");
No_DummyRead = 1;
return 0;
}
dram_rank0_addr = rptr;
dram_rank_num++;
pr_info("[dummy_read_reserve_init] dram_rank0_addr = %pa, size = 0x%x\n",
&dram_rank0_addr, rsize);
}
if (strstr(DRAM_R1_DUMMY_READ_RESERVED_KEY, rmem->name)) {
if (rsize < DRAM_RSV_SIZE) {
pr_err("[DRAMC] Can NOT reserve memory for Rank1\n");
No_DummyRead = 1;
return 0;
}
dram_rank1_addr = rptr;
dram_rank_num++;
pr_info("[dummy_read_reserve_init] dram_rank1_addr = %pa, size = 0x%x\n",
&dram_rank1_addr, rsize);
}
return 0;
}
RESERVEDMEM_OF_DECLARE(dram_reserve_r0_dummy_read_init,
DRAM_R0_DUMMY_READ_RESERVED_KEY,
dram_dummy_read_reserve_mem_of_init);
RESERVEDMEM_OF_DECLARE(dram_reserve_r1_dummy_read_init,
DRAM_R1_DUMMY_READ_RESERVED_KEY,
dram_dummy_read_reserve_mem_of_init);
#endif
static ssize_t complex_mem_test_show(struct device_driver *driver, char *buf)
{
int ret;
ret = Binning_DRAM_complex_mem_test();
if (ret > 0)
return snprintf(buf, PAGE_SIZE, "MEM Test all pass\n");
else
return snprintf(buf, PAGE_SIZE, "MEM TEST failed %d\n", ret);
}
static ssize_t complex_mem_test_store(struct device_driver *driver,
const char *buf, size_t count)
{
/*snprintf(buf, "do nothing\n");*/
return count;
}
static ssize_t read_dram_data_rate_show(struct device_driver *driver, char *buf)
{
return snprintf(buf, PAGE_SIZE, "DRAM data rate = %d\n",
get_dram_data_rate());
}
static ssize_t read_dram_data_rate_store(struct device_driver *driver,
const char *buf, size_t count)
{
return count;
}
#ifdef INTERFACE_READ_MR4
static ssize_t read_mr4_show(struct device_driver *driver, char *buf)
{
unsigned int rank, channel, temp;
unsigned int mr4[2][2];
void __iomem *dramc_ao_chx_base;
void __iomem *dramc_nao_chx_base;
void __iomem *ddrphy_chx_base;
ssize_t ret;
unsigned long save_flags;
unsigned int res;
ret = 0;
ret = snprintf(buf, PAGE_SIZE, "NO MR4\n");
mr4[0][0] = mr4[0][1] = mr4[1][0] = mr4[1][1] = 0;
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
pr_warn("[DRAMC0] can NOT get SPM HW SEMAPHORE!\n");
local_irq_restore(save_flags);
return 0;
}
for (rank = 0; rank < 2; rank++) {
for (channel = 0; channel < 2; channel++) {
if (channel == 0) {
dramc_ao_chx_base = DRAMC_AO_CHA_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHA_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHA_BASE_ADDR;
} else {
dramc_ao_chx_base = DRAMC_AO_CHB_BASE_ADDR;
dramc_nao_chx_base = DRAMC_NAO_CHB_BASE_ADDR;
ddrphy_chx_base = DDRPHY_AO_CHB_BASE_ADDR;
}
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3<<26);
Reg_Sync_Writel(DRAMC_AO_MRS, temp | (rank<<26));
res = read_dram_mode_reg(4, &mr4[rank][channel],
dramc_ao_chx_base, dramc_nao_chx_base);
if (res != TX_DONE)
goto ret_read_mr4;
}
}
ret_read_mr4:
temp = Reg_Readl(DRAMC_AO_MRS) & ~(0x3<<26);
Reg_Sync_Writel(DRAMC_AO_MRS, temp);
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] release SPM HW SEMAPHORE fail!\n");
local_irq_restore(save_flags);
ret = snprintf(buf, PAGE_SIZE,
"MR4: R0CHA=0x%x, R0CHB=0x%x, R1CHA=0x%x, R1CHB=0x%x\n",
mr4[0][0], mr4[0][1], mr4[1][0], mr4[1][1]);
return ret;
}
static ssize_t read_mr4_store(struct device_driver *driver,
const char *buf, size_t count)
{
return count;
}
#endif
static DRIVER_ATTR_RW(complex_mem_test);
static DRIVER_ATTR_RW(read_dram_data_rate);
#ifdef INTERFACE_READ_MR4
static DRIVER_ATTR_RW(read_mr4);
#endif
static struct timer_list zqcs_timer;
static unsigned char low_freq_counter;
DEFINE_SPINLOCK(sw_zq_tx_lock);
void zqcs_timer_callback(unsigned long data)
{
#ifdef SW_ZQCS
unsigned int Response, TimeCnt, CHCounter, RankCounter;
void __iomem *u4rg_24;
void __iomem *u4rg_38;
void __iomem *u4rg_5C;
void __iomem *u4rg_60;
void __iomem *u4rg_88;
#endif
#ifdef SW_TX_TRACKING
unsigned int res[2];
#endif
#if defined(SW_ZQCS) || defined(SW_TX_TRACKING)
unsigned long save_flags, spinlock_save_flags;
#ifdef DVFS_READY
unsigned int timeout;
#endif
if ((get_dram_data_rate() >= 3200) || (low_freq_counter >= 10))
low_freq_counter = 0;
else {
low_freq_counter++;
mod_timer(&zqcs_timer, jiffies + msecs_to_jiffies(280));
return;
}
#ifdef DVFS_READY
if (mt_spm_base_get()) {
if (spm_vcorefs_get_md_srcclkena()) {
if (lp4_highfreq_3600)
spm_request_dvfs_opp(0, OPP_0);
else
spm_request_dvfs_opp(0, OPP_1);
for (timeout = 100; timeout; timeout--) {
if (((!lp4_highfreq_3600) &&
get_dram_data_rate() >= 3200) ||
((lp4_highfreq_3600) &&
get_dram_data_rate() >= 3600))
break;
udelay(1);
}
if (timeout == 0)
pr_info("[DRAMC] request OPP0 timeout!\n");
else
udelay(100);
}
}
#endif
#endif
#ifdef SW_ZQCS
spin_lock_irqsave(&sw_zq_tx_lock, spinlock_save_flags);
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
pr_info("[DRAMC] can NOT get SPM HW SEMAPHORE!\n");
goto tx_start;
}
#ifdef DVFS_READY
writel(readl(PDEF_SYS_TIMER), PDEF_SPM_TX_TIMESTAMP);
#endif
/* CH0_Rank0 --> CH1Rank0 */
#ifdef EMI_READY
for (RankCounter = 0; RankCounter < get_rk_num(); RankCounter++) {
#else
for (RankCounter = 0; RankCounter < 2; RankCounter++) {
#endif
#ifdef EMI_READY
for (CHCounter = 0; CHCounter < get_ch_num(); CHCounter++) {
#else
for (CHCounter = 0; CHCounter < 2; CHCounter++) {
#endif
TimeCnt = 100;
if (CHCounter == 0) {
u4rg_24 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x24);
u4rg_38 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x38);
u4rg_5C = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x5C);
u4rg_60 = IOMEM(DRAMC_AO_CHA_BASE_ADDR + 0x60);
u4rg_88 = IOMEM(DRAMC_NAO_CHA_BASE_ADDR + 0x88);
} else if (CHCounter == 1) {
u4rg_24 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x24);
u4rg_38 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x38);
u4rg_5C = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x5C);
u4rg_60 = IOMEM(DRAMC_AO_CHB_BASE_ADDR + 0x60);
u4rg_88 = IOMEM(DRAMC_NAO_CHB_BASE_ADDR + 0x88);
}
/* DCMEN2 */
writel(readl(u4rg_38) & 0xFFFFFFFD, u4rg_38);
/* DMPHYCLKDYNGEN */
writel(readl(u4rg_38) & 0xBFFFFFFF, u4rg_38);
/* DMMIOCKCTRLOFF */
writel(readl(u4rg_38) | 0x04000000, u4rg_38);
/* DMCKEFIXON */
writel(readl(u4rg_24) | 0x40, u4rg_24);
/* DMCKE1FIXON */
writel(readl(u4rg_24) | 0x10, u4rg_24);
if (RankCounter == 0)
writel(readl(u4rg_5C) & 0xFCFFFFFF, u4rg_5C);
else if (RankCounter == 1) {
writel(
(readl(u4rg_5C) & 0xFCFFFFFF) | 0x01000000,
u4rg_5C); /* Rank 1 */
}
/* for ZQCal Start */
writel(readl(u4rg_60) | 0x10, u4rg_60);
do {
Response = readl(u4rg_88) & 0x10;
TimeCnt--;
/* Wait tZQCAL(min) 1us for next polling */
udelay(1);
} while ((Response == 0) && (TimeCnt > 0));
/* ZQCal Stop */
writel(readl(u4rg_60) & 0xFFFFFFEF, u4rg_60);
if (TimeCnt == 0) { /* time out */
/* DMCKE1FIXON */
writel(readl(u4rg_24) & 0xFFFFFFEF, u4rg_24);
/* DMCKEFIXON */
writel(readl(u4rg_24) & 0xFFFFFFBF, u4rg_24);
/* DMMIOCKCTRLOFF */
writel(readl(u4rg_38) & 0xFBFFFFFF, u4rg_38);
/* DMPHYCLKDYNGEN */
writel(readl(u4rg_38) | 0x40000000, u4rg_38);
/* DCMEN2 */
writel(readl(u4rg_38) | 0x00000002, u4rg_38);
if (release_dram_ctrl() != 0)
pr_warn("[DRAMC] release SPM HW SEMAPHORE fail!\n");
mod_timer(&zqcs_timer,
jiffies + msecs_to_jiffies(280));
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock,
spinlock_save_flags);
pr_info("CA%x Rank%x ZQCal Start time out\n",
CHCounter, RankCounter);
return;
}
udelay(1);
TimeCnt = 100;
/* for ZQCal latch */
writel(readl(u4rg_60) | 0x40, u4rg_60);
do {
Response = readl(u4rg_88) & 0x40;
TimeCnt--;
/* Wait tZQCAL(min) 1us for next polling */
udelay(1);
} while ((Response == 0) && (TimeCnt > 0));
/* ZQ latch Stop*/
writel(readl(u4rg_60) & 0xFFFFFFBF, u4rg_60);
/* DMCKE1FIXON */
writel(readl(u4rg_24) & 0xFFFFFFEF, u4rg_24);
/* DMCKEFIXON */
writel(readl(u4rg_24) & 0xFFFFFFBF, u4rg_24);
/* DMMIOCKCTRLOFF */
writel(readl(u4rg_38) & 0xFBFFFFFF, u4rg_38);
/* DMPHYCLKDYNGEN */
writel(readl(u4rg_38) | 0x40000000, u4rg_38);
/* DCMEN2 */
writel(readl(u4rg_38) | 0x00000002, u4rg_38);
if (TimeCnt == 0) { /* time out */
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] release SPM HW SEMAPHORE fail!\n");
mod_timer(&zqcs_timer, jiffies + msecs_to_jiffies(280));
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock,
spinlock_save_flags);
pr_info("CA%x Rank%x ZQCal latch time out\n",
CHCounter, RankCounter);
return;
}
udelay(1);
}
}
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] release SPM HW SEMAPHORE fail!\n");
tx_start:
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock, spinlock_save_flags);
#endif
#ifdef SW_TX_TRACKING
res[0] = TX_DONE;
res[1] = TX_DONE;
udelay(200);
spin_lock_irqsave(&sw_zq_tx_lock, spinlock_save_flags);
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock, spinlock_save_flags);
pr_info("[DRAMC] TX 0 can NOT get SPM HW SEMAPHORE!\n");
} else {
#ifdef DVFS_READY
writel(readl(PDEF_SYS_TIMER), PDEF_SPM_TX_TIMESTAMP);
#endif
res[0] = dramc_tx_tracking(0);
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] TX 0 release SPM HW SEMAPHORE fail!\n");
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock, spinlock_save_flags);
}
udelay(200);
spin_lock_irqsave(&sw_zq_tx_lock, spinlock_save_flags);
local_irq_save(save_flags);
if (acquire_dram_ctrl() != 0) {
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock, spinlock_save_flags);
pr_info("[DRAMC] TX 1 can NOT get SPM HW SEMAPHORE!\n");
} else {
#ifdef DVFS_READY
writel(readl(PDEF_SYS_TIMER), PDEF_SPM_TX_TIMESTAMP);
#endif
res[1] = dramc_tx_tracking(1);
if (release_dram_ctrl() != 0)
pr_info("[DRAMC] TX 1 release SPM HW SEMAPHORE fail!\n");
local_irq_restore(save_flags);
spin_unlock_irqrestore(&sw_zq_tx_lock, spinlock_save_flags);
}
#endif
#if defined(SW_ZQCS) || defined(SW_TX_TRACKING)
#ifdef DVFS_READY
spm_request_dvfs_opp(0, OPP_3);
#endif
mod_timer(&zqcs_timer, jiffies + msecs_to_jiffies(280));
#endif
#ifdef SW_TX_TRACKING
if (res[0] != TX_DONE)
dump_tx_log(res[0]);
if (res[1] != TX_DONE)
dump_tx_log(res[1]);
#endif
}
void del_zqcs_timer(void)
{
del_timer_sync(&zqcs_timer);
}
void add_zqcs_timer(void)
{
/* add_timer(&zqcs_timer); */
mod_timer(&zqcs_timer, jiffies + msecs_to_jiffies(280));
}
static int dram_probe(struct platform_device *pdev)
{
int ret = 0;
unsigned int i;
struct resource *res;
void __iomem *base_temp[8];
struct device_node *node = NULL;
pr_debug("[DRAMC] module probe.\n");
for (i = 0; i < (sizeof(base_temp) / sizeof(*base_temp)); i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
base_temp[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base_temp[i])) {
pr_err("[DRAMC] unable to map %d base\n", i);
return -EINVAL;
}
}
DRAMC_AO_CHA_BASE_ADDR = base_temp[0];
DRAMC_AO_CHB_BASE_ADDR = base_temp[1];
DRAMC_NAO_CHA_BASE_ADDR = base_temp[2];
DRAMC_NAO_CHB_BASE_ADDR = base_temp[3];
DDRPHY_AO_CHA_BASE_ADDR = base_temp[4];
DDRPHY_AO_CHB_BASE_ADDR = base_temp[5];
DDRPHY_NAO_CHA_BASE_ADDR = base_temp[6];
DDRPHY_NAO_CHB_BASE_ADDR = base_temp[7];
pr_info("[DRAMC]get DRAMC_AO_CHA_BASE_ADDR @ %p\n",
DRAMC_AO_CHA_BASE_ADDR);
pr_info("[DRAMC]get DRAMC_AO_CHB_BASE_ADDR @ %p\n",
DRAMC_AO_CHB_BASE_ADDR);
pr_info("[DRAMC]get DDRPHY_AO_CHA_BASE_ADDR @ %p\n",
DDRPHY_AO_CHA_BASE_ADDR);
pr_info("[DRAMC]get DDRPHY_AO_CHB_BASE_ADDR @ %p\n",
DDRPHY_AO_CHB_BASE_ADDR);
pr_info("[DRAMC]get DRAMC_NAO_CHA_BASE_ADDR @ %p\n",
DRAMC_NAO_CHA_BASE_ADDR);
pr_info("[DRAMC]get DRAMC_NAO_CHB_BASE_ADDR @ %p\n",
DRAMC_NAO_CHB_BASE_ADDR);
pr_info("[DRAMC]get DDRPHY_NAO_CHA_BASE_ADDR @ %p\n",
DDRPHY_NAO_CHA_BASE_ADDR);
pr_info("[DRAMC]get DDRPHY_NAO_CHB_BASE_ADDR @ %p\n",
DDRPHY_NAO_CHB_BASE_ADDR);
node = of_find_compatible_node(NULL, NULL, "mediatek,sleep");
if (node) {
SLEEP_BASE_ADDR = of_iomap(node, 0);
pr_info("[DRAMC]get SLEEP_BASE_ADDR @ %p\n",
SLEEP_BASE_ADDR);
} else {
pr_err("[DRAMC]can't find SLEEP_BASE_ADDR compatible node\n");
return -1;
}
node = of_find_compatible_node(NULL, NULL, "mediatek,sys_timer");
if (node) {
SYS_TIMER_BASE_ADDR = of_iomap(node, 0);
pr_info("[DRAMC]get SYS_TIMER_BASE_ADDR @ %p\n",
SYS_TIMER_BASE_ADDR);
} else {
pr_info("[DRAMC]can't find SYS_TIMER_BASE_ADDR compatible node\n");
return -1;
}
#ifdef EMI_READY
DRAM_TYPE = get_dram_type();
#else
DRAM_TYPE = TYPE_LPDDR4X;
#endif
pr_info("[DRAMC Driver] dram type =%d\n", DRAM_TYPE);
if (!DRAM_TYPE) {
pr_err("[DRAMC Driver] dram type error !!\n");
return -1;
}
#ifdef EMI_READY
CH_NUM = get_ch_num();
pr_info("[DRAMC Driver] Channel num =%d\n", CH_NUM);
if (!CH_NUM) {
pr_err("[DRAMC Driver] channel number error !!\n");
return -1;
}
#else
CH_NUM = 2;
#endif
CBT_MODE = (readl(PDEF_DRAMC0_CHA_REG_01C) & 0x6000) >> 13;
pr_info("[DRAMC Driver] cbt mode =%d\n", CBT_MODE);
switch (CBT_MODE) {
case NORMAL_MODE:
cbt_mode_rank[0] = RANK_NORMAL;
cbt_mode_rank[1] = RANK_NORMAL;
break;
case BYTE_MODE:
cbt_mode_rank[0] = RANK_BYTE;
cbt_mode_rank[1] = RANK_BYTE;
break;
case R0_NORMAL_R1_BYTE:
cbt_mode_rank[0] = RANK_NORMAL;
cbt_mode_rank[1] = RANK_BYTE;
break;
case R0_BYTE_R1_NORMAL:
cbt_mode_rank[0] = RANK_BYTE;
cbt_mode_rank[1] = RANK_NORMAL;
break;
default:
pr_err("[DRAMC] CBT mode error!!!\n");
break;
}
if ((get_dram_data_rate() == 3600) &&
(!(get_devinfo_with_index(30) & 0x20)))
lp4_highfreq_3600 = 1;
pr_info("[DRAMC Driver] Dram Data Rate = %d\n", get_dram_data_rate());
pr_info("[DRAMC Driver] shuffle_status = %d\n", get_shuffle_status());
if ((DRAM_TYPE == TYPE_LPDDR4) || (DRAM_TYPE == TYPE_LPDDR4X)) {
low_freq_counter = 10;
init_timer_deferrable(&zqcs_timer);
zqcs_timer.function = zqcs_timer_callback;
zqcs_timer.data = 0;
if (mod_timer(&zqcs_timer, jiffies + msecs_to_jiffies(280)))
pr_info("[DRAMC Driver] Error in ZQCS mod_timer\n");
}
ret = driver_create_file(pdev->dev.driver,
&driver_attr_complex_mem_test);
if (ret) {
pr_warn("fail to create the complex_mem_test sysfs files\n");
return ret;
}
ret = driver_create_file(pdev->dev.driver,
&driver_attr_read_dram_data_rate);
if (ret) {
pr_warn("fail to create the read dram data rate sysfs files\n");
return ret;
}
#ifdef INTERFACE_READ_MR4
ret = driver_create_file(pdev->dev.driver,
&driver_attr_read_mr4);
if (ret) {
pr_warn("fail to create the read mr4 sysfs files\n");
return ret;
}
#endif
if (dram_can_support_fh())
pr_info("[DRAMC Driver] dram can support DFS\n");
else
pr_info("[DRAMC Driver] dram can not support DFS\n");
return ret;
}
static int dram_remove(struct platform_device *dev)
{
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id dram_of_ids[] = {
{.compatible = "mediatek,dramc",},
{}
};
#endif
static struct platform_driver dram_test_drv = {
.probe = dram_probe,
.remove = dram_remove,
.driver = {
.name = "emi_clk_test",
.owner = THIS_MODULE,
#ifdef CONFIG_OF
.of_match_table = dram_of_ids,
#endif
},
};
/* int __init dram_test_init(void) */
static int __init dram_test_init(void)
{
int ret = 0;
ret = platform_driver_register(&dram_test_drv);
if (ret) {
pr_warn("[DRAMC] init fail, ret 0x%x\n", ret);
return ret;
}
if (of_scan_flat_dt(dt_scan_dram_info, NULL) > 0) {
pr_info("[DRAMC]find dt_scan_dram_info\n");
} else {
pr_err("[DRAMC]can't find dt_scan_dram_info\n");
return -1;
}
return ret;
}
static void __exit dram_test_exit(void)
{
platform_driver_unregister(&dram_test_drv);
}
postcore_initcall(dram_test_init);
module_exit(dram_test_exit);
void *mt_dramc_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DRAMC_AO_CHA_BASE_ADDR;
case 1:
return DRAMC_AO_CHB_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_dramc_chn_base_get);
void *mt_dramc_nao_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DRAMC_NAO_CHA_BASE_ADDR;
case 1:
return DRAMC_NAO_CHB_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_dramc_nao_chn_base_get);
void *mt_ddrphy_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DDRPHY_AO_CHA_BASE_ADDR;
case 1:
return DDRPHY_AO_CHB_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_ddrphy_chn_base_get);
void *mt_ddrphy_nao_chn_base_get(int channel)
{
switch (channel) {
case 0:
return DDRPHY_NAO_CHA_BASE_ADDR;
case 1:
return DDRPHY_NAO_CHB_BASE_ADDR;
default:
return NULL;
}
}
EXPORT_SYMBOL(mt_ddrphy_nao_chn_base_get);
unsigned int mt_dramc_chn_get(unsigned int emi_cona)
{
switch ((emi_cona >> 8) & 0x3) {
case 0:
return 1;
case 1:
return 2;
default:
pr_err("[LastDRAMC] invalid channel num (emi_cona = 0x%x)\n",
emi_cona);
}
return 0;
}
unsigned int mt_dramc_chp_get(unsigned int emi_cona)
{
unsigned int chp;
chp = (emi_cona >> 2) & 0x3;
return chp + 7;
}
phys_addr_t mt_dramc_rankbase_get(unsigned int rank)
{
if (rank >= get_dram_info->rank_num)
return 0;
return get_dram_info->rank_info[rank].start;
}
unsigned int mt_dramc_ta_support_ranks(void)
{
return dram_rank_num;
}
#ifdef LAST_DRAMC_IP_BASED
phys_addr_t mt_dramc_ta_reserve_addr(unsigned int rank)
{
switch (rank) {
case 0:
return dram_rank0_addr;
case 1:
return dram_rank1_addr;
default:
return 0;
}
}
#endif
MODULE_DESCRIPTION("MediaTek DRAMC Driver v0.1");