kernel_samsung_a34x-permissive/drivers/misc/mediatek/sensors-1.0/magnetometer/mag.c
2024-04-28 15:49:01 +02:00

819 lines
19 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016 MediaTek Inc.
*/
#define pr_fmt(fmt) "<MAG> " fmt
#include "inc/mag.h"
#include "sensor_performance.h"
#include <linux/vmalloc.h>
struct mag_context *mag_context_obj /* = NULL*/;
static struct mag_init_info *msensor_init_list[MAX_CHOOSE_G_NUM] = {0};
static void initTimer(struct hrtimer *timer,
enum hrtimer_restart (*callback)(struct hrtimer *))
{
hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->function = callback;
}
static void startTimer(struct hrtimer *timer, int delay_ms, bool first)
{
struct mag_context *obj = (struct mag_context *)container_of(timer,
struct mag_context, hrTimer);
if (obj == NULL) {
pr_err("NULL pointer\n");
return;
}
if (first) {
obj->target_ktime =
ktime_add_ns(ktime_get(), (int64_t)delay_ms * 1000000);
} else {
do {
obj->target_ktime = ktime_add_ns(
obj->target_ktime, (int64_t)delay_ms * 1000000);
} while (ktime_to_ns(obj->target_ktime) <
ktime_to_ns(ktime_get()));
}
hrtimer_start(timer, obj->target_ktime, HRTIMER_MODE_ABS);
}
#ifndef CONFIG_NANOHUB
static void stopTimer(struct hrtimer *timer)
{
hrtimer_cancel(timer);
}
#endif
static void mag_work_func(struct work_struct *work)
{
struct mag_context *cxt = NULL;
struct hwm_sensor_data sensor_data;
int64_t m_pre_ns, cur_ns;
int64_t delay_ms;
struct timespec time;
int err;
int x, y, z, status;
cxt = mag_context_obj;
delay_ms = atomic_read(&cxt->delay);
memset(&sensor_data, 0, sizeof(sensor_data));
time.tv_sec = time.tv_nsec = 0;
get_monotonic_boottime(&time);
cur_ns = time.tv_sec * 1000000000LL + time.tv_nsec;
err = cxt->mag_dev_data.get_data(&x, &y, &z, &status);
if (err) {
pr_err("get data fails!!\n");
return;
}
cxt->drv_data.x = x;
cxt->drv_data.y = y;
cxt->drv_data.z = z;
cxt->drv_data.status = status;
m_pre_ns = cxt->drv_data.timestamp;
cxt->drv_data.timestamp = cur_ns;
if (true == cxt->is_first_data_after_enable) {
m_pre_ns = cur_ns;
cxt->is_first_data_after_enable = false;
/* filter -1 value */
if (cxt->drv_data.x == MAG_INVALID_VALUE ||
cxt->drv_data.y == MAG_INVALID_VALUE ||
cxt->drv_data.z == MAG_INVALID_VALUE) {
pr_debug(" read invalid data\n");
goto mag_loop;
}
}
while ((cur_ns - m_pre_ns) >= delay_ms * 1800000LL) {
struct mag_data tmp_data = cxt->drv_data;
m_pre_ns += delay_ms * 1000000LL;
tmp_data.timestamp = m_pre_ns;
mag_data_report(&tmp_data);
}
mag_data_report(&cxt->drv_data);
mag_loop:
if (true == cxt->is_polling_run)
startTimer(&cxt->hrTimer, atomic_read(&cxt->delay), false);
}
enum hrtimer_restart mag_poll(struct hrtimer *timer)
{
struct mag_context *obj = (struct mag_context *)container_of(timer,
struct mag_context, hrTimer);
queue_work(obj->mag_workqueue, &obj->report);
return HRTIMER_NORESTART;
}
static struct mag_context *mag_context_alloc_object(void)
{
struct mag_context *obj = kzalloc(sizeof(*obj), GFP_KERNEL);
pr_debug("%s start\n", __func__);
if (!obj) {
pr_err("Alloc magel object error!\n");
return NULL;
}
atomic_set(&obj->delay, 200); /* set work queue delay time 200ms */
atomic_set(&obj->wake, 0);
INIT_WORK(&obj->report, mag_work_func);
obj->mag_workqueue = NULL;
obj->mag_workqueue = create_workqueue("mag_polling");
if (!obj->mag_workqueue) {
kfree(obj);
return NULL;
}
initTimer(&obj->hrTimer, mag_poll);
obj->is_first_data_after_enable = false;
obj->is_polling_run = false;
obj->is_batch_enable = false;
mutex_init(&obj->mag_op_mutex);
obj->power = 0;
obj->enable = 0;
obj->delay_ns = -1;
obj->latency_ns = -1;
pr_debug("%s end\n", __func__);
return obj;
}
#ifndef CONFIG_NANOHUB
static int mag_enable_and_batch(void)
{
struct mag_context *cxt = mag_context_obj;
int err;
/* power on -> power off */
if (cxt->power == 1 && cxt->enable == 0) {
pr_debug("MAG disable\n");
/* stop polling firstly, if needed */
if (cxt->mag_ctl.is_report_input_direct == false &&
cxt->is_polling_run == true) {
smp_mb(); /* for memory barrier */
stopTimer(&cxt->hrTimer);
smp_mb(); /* for memory barrier */
cancel_work_sync(&cxt->report);
cxt->drv_data.x = MAG_INVALID_VALUE;
cxt->drv_data.y = MAG_INVALID_VALUE;
cxt->drv_data.z = MAG_INVALID_VALUE;
cxt->is_polling_run = false;
pr_debug("mag stop polling done\n");
}
/* turn off the power */
err = cxt->mag_ctl.enable(0);
if (err) {
pr_err("mag turn off power err = %d\n", err);
return -1;
}
pr_debug("mag turn off power done\n");
cxt->power = 0;
cxt->delay_ns = -1;
pr_debug("MAG disable done\n");
return 0;
}
/* power off -> power on */
if (cxt->power == 0 && cxt->enable == 1) {
pr_debug("MAG power on\n");
err = cxt->mag_ctl.enable(1);
if (err) {
pr_err("mag turn on power err = %d\n", err);
return -1;
}
pr_debug("mag turn on power done\n");
cxt->power = 1;
pr_debug("MAG power on done\n");
}
/* rate change */
if (cxt->power == 1 && cxt->delay_ns >= 0) {
pr_debug("MAG set batch\n");
/* set ODR, fifo timeout latency */
if (cxt->mag_ctl.is_support_batch)
err = cxt->mag_ctl.batch(0, cxt->delay_ns,
cxt->latency_ns);
else
err = cxt->mag_ctl.batch(0, cxt->delay_ns, 0);
if (err) {
pr_err("mag set batch(ODR) err %d\n", err);
return -1;
}
pr_debug("mag set ODR, fifo latency done\n");
/* start polling, if needed */
if (cxt->mag_ctl.is_report_input_direct == false) {
uint64_t mdelay = cxt->delay_ns;
do_div(mdelay, 1000000);
atomic_set(&cxt->delay, mdelay);
/* the first sensor start polling timer */
if (cxt->is_polling_run == false) {
cxt->is_polling_run = true;
cxt->is_first_data_after_enable = true;
startTimer(&cxt->hrTimer,
atomic_read(&cxt->delay), true);
}
pr_debug("mag set polling delay %d ms\n",
atomic_read(&cxt->delay));
}
pr_debug("MAG batch done\n");
}
return 0;
}
#endif
/*----------------------------------------------------------------------------*/
static ssize_t magdev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int len = 0;
pr_debug("sensor test: mag function!\n");
return len;
}
static ssize_t magactive_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct mag_context *cxt = mag_context_obj;
int err = 0;
pr_debug("%s buf=%s\n", __func__, buf);
mutex_lock(&mag_context_obj->mag_op_mutex);
if (!strncmp(buf, "1", 1))
cxt->enable = 1;
else if (!strncmp(buf, "0", 1))
cxt->enable = 0;
else {
pr_err("%s error !!\n", __func__);
err = -1;
goto err_out;
}
#ifdef CONFIG_NANOHUB
err = cxt->mag_ctl.enable(cxt->enable);
if (err) {
pr_err("mag turn on power err = %d\n", err);
goto err_out;
}
#else
err = mag_enable_and_batch();
#endif
err_out:
mutex_unlock(&mag_context_obj->mag_op_mutex);
pr_debug("%s done\n", __func__);
if (err)
return err;
else
return count;
}
/*----------------------------------------------------------------------------*/
static ssize_t magactive_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mag_context *cxt = NULL;
int div = 0;
cxt = mag_context_obj;
div = cxt->mag_dev_data.div;
pr_debug("mag mag_dev_data m_div value: %d\n", div);
return snprintf(buf, PAGE_SIZE, "%d\n", div);
}
static ssize_t magbatch_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct mag_context *cxt = mag_context_obj;
int handle = 0, flag = 0, err = 0;
pr_debug("%s %s\n", __func__, buf);
err = sscanf(buf, "%d,%d,%lld,%lld", &handle, &flag, &cxt->delay_ns,
&cxt->latency_ns);
if (err != 4) {
pr_err("%s param error: err = %d\n", __func__, err);
return -1;
}
mutex_lock(&mag_context_obj->mag_op_mutex);
#ifdef CONFIG_NANOHUB
if (cxt->mag_ctl.is_support_batch)
err = cxt->mag_ctl.batch(0, cxt->delay_ns, cxt->latency_ns);
else
err = cxt->mag_ctl.batch(0, cxt->delay_ns, 0);
if (err)
pr_err("mag set batch(ODR) err %d\n", err);
#else
err = mag_enable_and_batch();
#endif
mutex_unlock(&mag_context_obj->mag_op_mutex);
pr_debug("%s done: %d\n", __func__, cxt->is_batch_enable);
if (err)
return err;
else
return count;
}
static ssize_t magbatch_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
int len = 0;
pr_debug(" not support now\n");
return len;
}
static ssize_t magflush_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", 0);
}
static ssize_t magflush_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct mag_context *cxt = NULL;
int handle = 0, err = 0;
err = kstrtoint(buf, 10, &handle);
if (err != 0)
pr_err("%s param error: err = %d\n", __func__, err);
pr_debug("%s param: handle %d\n", __func__, handle);
mutex_lock(&mag_context_obj->mag_op_mutex);
cxt = mag_context_obj;
if (cxt->mag_ctl.flush != NULL)
err = cxt->mag_ctl.flush();
else
pr_debug(
"MAG DRIVER OLD ARCHITECTURE DON'T SUPPORT ACC COMMON VERSION FLUSH\n");
if (err < 0)
pr_err("mag enable flush err %d\n", err);
mutex_unlock(&mag_context_obj->mag_op_mutex);
if (err)
return err;
else
return count;
}
static ssize_t magcali_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", 0);
}
static ssize_t magcali_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct mag_context *cxt = NULL;
int err = 0;
uint8_t *cali_buf = NULL;
cali_buf = vzalloc(count);
if (cali_buf == NULL)
return -EFAULT;
memcpy(cali_buf, buf, count);
mutex_lock(&mag_context_obj->mag_op_mutex);
cxt = mag_context_obj;
if (cxt->mag_ctl.set_cali != NULL)
err = cxt->mag_ctl.set_cali(cali_buf, count);
else
pr_debug(
"MAG DRIVER OLD ARCHITECTURE DON'T SUPPORT MAG COMMON VERSION FLUSH\n");
if (err < 0)
pr_err("mag set cali err %d\n", err);
mutex_unlock(&mag_context_obj->mag_op_mutex);
vfree(cali_buf);
return count;
}
/* need work around again */
static ssize_t magdevnum_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", 0);
}
static ssize_t maglibinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mag_context *cxt = mag_context_obj;
if (!buf)
return -1;
memcpy(buf, &cxt->mag_ctl.libinfo, sizeof(struct mag_libinfo_t));
return sizeof(struct mag_libinfo_t);
}
static int msensor_remove(struct platform_device *pdev)
{
pr_debug("%s\n", __func__);
return 0;
}
static int msensor_probe(struct platform_device *pdev)
{
pr_debug("%s\n", __func__);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id msensor_of_match[] = {
{
.compatible = "mediatek,msensor",
},
{},
};
#endif
static struct platform_driver msensor_driver = {
.probe = msensor_probe,
.remove = msensor_remove,
.driver = {
.name = "msensor",
#ifdef CONFIG_OF
.of_match_table = msensor_of_match,
#endif
}
};
static int mag_real_driver_init(void)
{
int i = 0;
int err = 0;
pr_debug("%s start\n", __func__);
for (i = 0; i < MAX_CHOOSE_G_NUM; i++) {
pr_debug(" i=%d\n", i);
if (msensor_init_list[i] != 0) {
pr_debug(" mag try to init driver %s\n",
msensor_init_list[i]->name);
err = msensor_init_list[i]->init();
if (err == 0) {
pr_debug(" mag real driver %s probe ok\n",
msensor_init_list[i]->name);
break;
}
}
}
if (i == MAX_CHOOSE_G_NUM) {
pr_debug("%s fail\n", __func__);
err = -1;
}
return err;
}
int mag_driver_add(struct mag_init_info *obj)
{
int err = 0;
int i = 0;
pr_debug("%s\n", __func__);
if (!obj) {
pr_err("%s fail, mag_init_info is NULL\n", __func__);
return -1;
}
for (i = 0; i < MAX_CHOOSE_G_NUM; i++) {
if ((i == 0) && (msensor_init_list[0] == NULL)) {
pr_debug("register mensor driver for the first time\n");
if (platform_driver_register(&msensor_driver))
pr_err(
"failed to register msensor driver already exist\n");
}
if (msensor_init_list[i] == NULL) {
obj->platform_diver_addr = &msensor_driver;
msensor_init_list[i] = obj;
break;
}
}
if (i >= MAX_CHOOSE_G_NUM) {
pr_err("MAG driver add err\n");
err = -1;
}
return err;
}
EXPORT_SYMBOL_GPL(mag_driver_add);
static int magnetic_open(struct inode *inode, struct file *file)
{
nonseekable_open(inode, file);
return 0;
}
static ssize_t magnetic_read(struct file *file, char __user *buffer,
size_t count, loff_t *ppos)
{
ssize_t read_cnt = 0;
read_cnt = sensor_event_read(mag_context_obj->mdev.minor, file, buffer,
count, ppos);
return read_cnt;
}
static unsigned int magnetic_poll(struct file *file, poll_table *wait)
{
return sensor_event_poll(mag_context_obj->mdev.minor, file, wait);
}
static const struct file_operations mag_fops = {
.owner = THIS_MODULE,
.open = magnetic_open,
.read = magnetic_read,
.poll = magnetic_poll,
};
static int mag_misc_init(struct mag_context *cxt)
{
int err = 0;
cxt->mdev.minor = ID_MAGNETIC;
cxt->mdev.name = MAG_MISC_DEV_NAME;
cxt->mdev.fops = &mag_fops;
err = sensor_attr_register(&cxt->mdev);
if (err)
pr_err("unable to register mag misc device!!\n");
return err;
}
DEVICE_ATTR_RO(magdev);
DEVICE_ATTR_RW(magactive);
DEVICE_ATTR_RW(magbatch);
DEVICE_ATTR_RW(magflush);
DEVICE_ATTR_RW(magcali);
DEVICE_ATTR_RO(magdevnum);
DEVICE_ATTR_RO(maglibinfo);
static struct attribute *mag_attributes[] = {
&dev_attr_magdev.attr,
&dev_attr_magactive.attr,
&dev_attr_magbatch.attr,
&dev_attr_magflush.attr,
&dev_attr_magcali.attr,
&dev_attr_magdevnum.attr,
&dev_attr_maglibinfo.attr,
NULL
};
static struct attribute_group mag_attribute_group = {
.attrs = mag_attributes
};
int mag_register_data_path(struct mag_data_path *data)
{
struct mag_context *cxt = NULL;
cxt = mag_context_obj;
cxt->mag_dev_data.div = data->div;
cxt->mag_dev_data.get_data = data->get_data;
cxt->mag_dev_data.get_raw_data = data->get_raw_data;
pr_debug("mag register data path div: %d\n", cxt->mag_dev_data.div);
return 0;
}
int mag_register_control_path(struct mag_control_path *ctl)
{
struct mag_context *cxt = NULL;
int err = 0;
cxt = mag_context_obj;
cxt->mag_ctl.set_delay = ctl->set_delay;
cxt->mag_ctl.enable = ctl->enable;
cxt->mag_ctl.open_report_data = ctl->open_report_data;
cxt->mag_ctl.batch = ctl->batch;
cxt->mag_ctl.flush = ctl->flush;
cxt->mag_ctl.set_cali = ctl->set_cali;
cxt->mag_ctl.is_report_input_direct = ctl->is_report_input_direct;
cxt->mag_ctl.is_support_batch = ctl->is_support_batch;
cxt->mag_ctl.is_use_common_factory = ctl->is_use_common_factory;
memcpy(cxt->mag_ctl.libinfo.libname, ctl->libinfo.libname,
sizeof(cxt->mag_ctl.libinfo.libname));
cxt->mag_ctl.libinfo.layout = ctl->libinfo.layout;
cxt->mag_ctl.libinfo.deviceid = ctl->libinfo.deviceid;
if (cxt->mag_ctl.set_delay == NULL || cxt->mag_ctl.enable == NULL ||
cxt->mag_ctl.open_report_data == NULL) {
pr_debug("mag register control path fail\n");
return -1;
}
/* add misc dev for sensor hal control cmd */
err = mag_misc_init(mag_context_obj);
if (err) {
pr_err("unable to register mag misc device!!\n");
return -2;
}
err = sysfs_create_group(&mag_context_obj->mdev.this_device->kobj,
&mag_attribute_group);
if (err < 0) {
pr_err("unable to create mag attribute file\n");
return -3;
}
kobject_uevent(&mag_context_obj->mdev.this_device->kobj, KOBJ_ADD);
return 0;
}
static int x1, y1, z1;
static long pc;
static int check_repeat_data(int x, int y, int z)
{
if ((x1 == x) && (y1 == y) && (z1 == z))
pc++;
else
pc = 0;
x1 = x;
y1 = y;
z1 = z;
if (pc > 100) {
pr_debug("Mag sensor output repeat data\n");
pc = 0;
}
return 0;
}
int mag_data_report(struct mag_data *data)
{
/* pr_debug("update!valus: %d, %d, %d, %d\n" , x, y, z, status); */
struct sensor_event event;
int err = 0;
memset(&event, 0, sizeof(struct sensor_event));
check_repeat_data(data->x, data->y, data->z);
event.flush_action = DATA_ACTION;
event.status = data->status;
event.time_stamp = data->timestamp;
event.word[0] = data->x;
event.word[1] = data->y;
event.word[2] = data->z;
event.word[3] = data->reserved[0];
event.word[4] = data->reserved[1];
event.word[5] = data->reserved[2];
event.reserved = data->reserved[0];
if (event.reserved == 1)
mark_timestamp(ID_MAGNETIC, DATA_REPORT, ktime_get_boot_ns(),
event.time_stamp);
err = sensor_input_event(mag_context_obj->mdev.minor, &event);
return err;
}
int mag_bias_report(struct mag_data *data)
{
/* pr_debug("update!valus: %d, %d, %d, %d\n" , x, y, z, status); */
struct sensor_event event;
int err = 0;
memset(&event, 0, sizeof(struct sensor_event));
event.flush_action = BIAS_ACTION;
event.word[0] = data->x;
event.word[1] = data->y;
event.word[2] = data->z;
err = sensor_input_event(mag_context_obj->mdev.minor, &event);
return err;
}
int mag_cali_report(int32_t *param)
{
struct sensor_event event;
int err = 0;
memset(&event, 0, sizeof(struct sensor_event));
event.flush_action = CALI_ACTION;
event.word[0] = param[0];
event.word[1] = param[1];
event.word[2] = param[2];
event.word[3] = param[3];
event.word[4] = param[4];
event.word[5] = param[5];
err = sensor_input_event(mag_context_obj->mdev.minor, &event);
return err;
}
int mag_flush_report(void)
{
struct sensor_event event;
int err = 0;
memset(&event, 0, sizeof(struct sensor_event));
pr_debug_ratelimited("flush\n");
event.flush_action = FLUSH_ACTION;
err = sensor_input_event(mag_context_obj->mdev.minor, &event);
return err;
}
int mag_info_record(struct mag_libinfo_t *p_mag_info)
{
struct mag_context *cxt = NULL;
int err = 0;
cxt = mag_context_obj;
memcpy(cxt->mag_ctl.libinfo.libname,
p_mag_info->libname, sizeof(cxt->mag_ctl.libinfo.libname));
cxt->mag_ctl.libinfo.layout = p_mag_info->layout;
cxt->mag_ctl.libinfo.deviceid = p_mag_info->deviceid;
return err;
}
static int mag_probe(void)
{
int err;
pr_debug("%s ++++!!\n", __func__);
mag_context_obj = mag_context_alloc_object();
if (!mag_context_obj) {
err = -ENOMEM;
pr_err("unable to allocate devobj!\n");
goto exit_alloc_data_failed;
}
/* init real mageleration driver */
err = mag_real_driver_init();
if (err) {
pr_err("mag_real_driver_init fail\n");
goto real_driver_init_fail;
}
pr_debug("%s OK !!\n", __func__);
return 0;
real_driver_init_fail:
kfree(mag_context_obj);
exit_alloc_data_failed:
pr_err("%s fail !!!\n", __func__);
return err;
}
static int mag_remove(void)
{
int err = 0;
pr_debug("%s\n", __func__);
sysfs_remove_group(&mag_context_obj->mdev.this_device->kobj,
&mag_attribute_group);
err = sensor_attr_deregister(&mag_context_obj->mdev);
if (err)
pr_err("misc_deregister fail: %d\n", err);
kfree(mag_context_obj);
platform_driver_unregister(&msensor_driver);
return 0;
}
static int __init mag_init(void)
{
pr_debug("%s\n", __func__);
if (mag_probe()) {
pr_err("failed to register mag driver\n");
return -ENODEV;
}
return 0;
}
static void __exit mag_exit(void)
{
mag_remove();
platform_driver_unregister(&msensor_driver);
}
late_initcall(mag_init);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MAGELEROMETER device driver");
MODULE_AUTHOR("Mediatek");