kernel_samsung_a34x-permissive/drivers/mtd/nand/raw/fsl_elbc_nand.c
2024-04-28 15:49:01 +02:00

981 lines
29 KiB
C
Executable file

/* Freescale Enhanced Local Bus Controller NAND driver
*
* Copyright © 2006-2007, 2010 Freescale Semiconductor
*
* Authors: Nick Spence <nick.spence@freescale.com>,
* Scott Wood <scottwood@freescale.com>
* Jack Lan <jack.lan@freescale.com>
* Roy Zang <tie-fei.zang@freescale.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include <asm/fsl_lbc.h>
#define MAX_BANKS 8
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
/* mtd information per set */
struct fsl_elbc_mtd {
struct nand_chip chip;
struct fsl_lbc_ctrl *ctrl;
struct device *dev;
int bank; /* Chip select bank number */
u8 __iomem *vbase; /* Chip select base virtual address */
int page_size; /* NAND page size (0=512, 1=2048) */
unsigned int fmr; /* FCM Flash Mode Register value */
};
/* Freescale eLBC FCM controller information */
struct fsl_elbc_fcm_ctrl {
struct nand_controller controller;
struct fsl_elbc_mtd *chips[MAX_BANKS];
u8 __iomem *addr; /* Address of assigned FCM buffer */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes; /* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
unsigned int index; /* Pointer to next byte to 'read' */
unsigned int status; /* status read from LTESR after last op */
unsigned int mdr; /* UPM/FCM Data Register value */
unsigned int use_mdr; /* Non zero if the MDR is to be set */
unsigned int oob; /* Non zero if operating on OOB data */
unsigned int counter; /* counter for the initializations */
unsigned int max_bitflips; /* Saved during READ0 cmd */
};
/* These map to the positions used by the FCM hardware ECC generator */
static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (16 * section) + 6;
if (priv->fmr & FMR_ECCM)
oobregion->offset += 2;
oobregion->length = chip->ecc.bytes;
return 0;
}
static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
if (section > chip->ecc.steps)
return -ERANGE;
if (!section) {
oobregion->offset = 0;
if (mtd->writesize > 512)
oobregion->offset++;
oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
} else {
oobregion->offset = (16 * section) -
((priv->fmr & FMR_ECCM) ? 5 : 7);
if (section < chip->ecc.steps)
oobregion->length = 13;
else
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
.ecc = fsl_elbc_ooblayout_ecc,
.free = fsl_elbc_ooblayout_free,
};
/*
* ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
* interfere with ECC positions, that's why we implement our own descriptors.
* OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/*=================================*/
/*
* Set up the FCM hardware block and page address fields, and the fcm
* structure addr field to point to the correct FCM buffer in memory
*/
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
int buf_num;
elbc_fcm_ctrl->page = page_addr;
if (priv->page_size) {
/*
* large page size chip : FPAR[PI] save the lowest 6 bits,
* FBAR[BLK] save the other bits.
*/
out_be32(&lbc->fbar, page_addr >> 6);
out_be32(&lbc->fpar,
((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
(oob ? FPAR_LP_MS : 0) | column);
buf_num = (page_addr & 1) << 2;
} else {
/*
* small page size chip : FPAR[PI] save the lowest 5 bits,
* FBAR[BLK] save the other bits.
*/
out_be32(&lbc->fbar, page_addr >> 5);
out_be32(&lbc->fpar,
((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
(oob ? FPAR_SP_MS : 0) | column);
buf_num = page_addr & 7;
}
elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
elbc_fcm_ctrl->index = column;
/* for OOB data point to the second half of the buffer */
if (oob)
elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
dev_vdbg(priv->dev, "set_addr: bank=%d, "
"elbc_fcm_ctrl->addr=0x%p (0x%p), "
"index %x, pes %d ps %d\n",
buf_num, elbc_fcm_ctrl->addr, priv->vbase,
elbc_fcm_ctrl->index,
chip->phys_erase_shift, chip->page_shift);
}
/*
* execute FCM command and wait for it to complete
*/
static int fsl_elbc_run_command(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
/* Setup the FMR[OP] to execute without write protection */
out_be32(&lbc->fmr, priv->fmr | 3);
if (elbc_fcm_ctrl->use_mdr)
out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
dev_vdbg(priv->dev,
"fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
dev_vdbg(priv->dev,
"fsl_elbc_run_command: fbar=%08x fpar=%08x "
"fbcr=%08x bank=%d\n",
in_be32(&lbc->fbar), in_be32(&lbc->fpar),
in_be32(&lbc->fbcr), priv->bank);
ctrl->irq_status = 0;
/* execute special operation */
out_be32(&lbc->lsor, priv->bank);
/* wait for FCM complete flag or timeout */
wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
FCM_TIMEOUT_MSECS * HZ/1000);
elbc_fcm_ctrl->status = ctrl->irq_status;
/* store mdr value in case it was needed */
if (elbc_fcm_ctrl->use_mdr)
elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
elbc_fcm_ctrl->use_mdr = 0;
if (elbc_fcm_ctrl->status != LTESR_CC) {
dev_info(priv->dev,
"command failed: fir %x fcr %x status %x mdr %x\n",
in_be32(&lbc->fir), in_be32(&lbc->fcr),
elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
return -EIO;
}
if (chip->ecc.mode != NAND_ECC_HW)
return 0;
elbc_fcm_ctrl->max_bitflips = 0;
if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
uint32_t lteccr = in_be32(&lbc->lteccr);
/*
* if command was a full page read and the ELBC
* has the LTECCR register, then bits 12-15 (ppc order) of
* LTECCR indicates which 512 byte sub-pages had fixed errors.
* bits 28-31 are uncorrectable errors, marked elsewhere.
* for small page nand only 1 bit is used.
* if the ELBC doesn't have the lteccr register it reads 0
* FIXME: 4 bits can be corrected on NANDs with 2k pages, so
* count the number of sub-pages with bitflips and update
* ecc_stats.corrected accordingly.
*/
if (lteccr & 0x000F000F)
out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
if (lteccr & 0x000F0000) {
mtd->ecc_stats.corrected++;
elbc_fcm_ctrl->max_bitflips = 1;
}
}
return 0;
}
static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
{
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
if (priv->page_size) {
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_CM1 << FIR_OP3_SHIFT) |
(FIR_OP_RBW << FIR_OP4_SHIFT));
out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
(NAND_CMD_READSTART << FCR_CMD1_SHIFT));
} else {
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_RBW << FIR_OP3_SHIFT));
if (oob)
out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
else
out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
}
}
/* cmdfunc send commands to the FCM */
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
elbc_fcm_ctrl->use_mdr = 0;
/* clear the read buffer */
elbc_fcm_ctrl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
elbc_fcm_ctrl->index = 0;
switch (command) {
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ1:
column += 256;
/* fall-through */
case NAND_CMD_READ0:
dev_dbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
" 0x%x, column: 0x%x.\n", page_addr, column);
out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
set_addr(mtd, 0, page_addr, 0);
elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
elbc_fcm_ctrl->index += column;
fsl_elbc_do_read(chip, 0);
fsl_elbc_run_command(mtd);
return;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
dev_vdbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
" 0x%x, column: 0x%x.\n", page_addr, column);
out_be32(&lbc->fbcr, mtd->oobsize - column);
set_addr(mtd, column, page_addr, 1);
elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
fsl_elbc_do_read(chip, 1);
fsl_elbc_run_command(mtd);
return;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_UA << FIR_OP1_SHIFT) |
(FIR_OP_RBW << FIR_OP2_SHIFT));
out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
/*
* although currently it's 8 bytes for READID, we always read
* the maximum 256 bytes(for PARAM)
*/
out_be32(&lbc->fbcr, 256);
elbc_fcm_ctrl->read_bytes = 256;
elbc_fcm_ctrl->use_mdr = 1;
elbc_fcm_ctrl->mdr = column;
set_addr(mtd, 0, 0, 0);
fsl_elbc_run_command(mtd);
return;
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
dev_vdbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
"page_addr: 0x%x.\n", page_addr);
set_addr(mtd, 0, page_addr, 0);
return;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_PA << FIR_OP1_SHIFT) |
(FIR_OP_CM2 << FIR_OP2_SHIFT) |
(FIR_OP_CW1 << FIR_OP3_SHIFT) |
(FIR_OP_RS << FIR_OP4_SHIFT));
out_be32(&lbc->fcr,
(NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
(NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
(NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
out_be32(&lbc->fbcr, 0);
elbc_fcm_ctrl->read_bytes = 0;
elbc_fcm_ctrl->use_mdr = 1;
fsl_elbc_run_command(mtd);
return;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN: {
__be32 fcr;
dev_vdbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
"page_addr: 0x%x, column: 0x%x.\n",
page_addr, column);
elbc_fcm_ctrl->column = column;
elbc_fcm_ctrl->use_mdr = 1;
if (column >= mtd->writesize) {
/* OOB area */
column -= mtd->writesize;
elbc_fcm_ctrl->oob = 1;
} else {
WARN_ON(column != 0);
elbc_fcm_ctrl->oob = 0;
}
fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
(NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
(NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
if (priv->page_size) {
out_be32(&lbc->fir,
(FIR_OP_CM2 << FIR_OP0_SHIFT) |
(FIR_OP_CA << FIR_OP1_SHIFT) |
(FIR_OP_PA << FIR_OP2_SHIFT) |
(FIR_OP_WB << FIR_OP3_SHIFT) |
(FIR_OP_CM3 << FIR_OP4_SHIFT) |
(FIR_OP_CW1 << FIR_OP5_SHIFT) |
(FIR_OP_RS << FIR_OP6_SHIFT));
} else {
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_CM2 << FIR_OP1_SHIFT) |
(FIR_OP_CA << FIR_OP2_SHIFT) |
(FIR_OP_PA << FIR_OP3_SHIFT) |
(FIR_OP_WB << FIR_OP4_SHIFT) |
(FIR_OP_CM3 << FIR_OP5_SHIFT) |
(FIR_OP_CW1 << FIR_OP6_SHIFT) |
(FIR_OP_RS << FIR_OP7_SHIFT));
if (elbc_fcm_ctrl->oob)
/* OOB area --> READOOB */
fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
else
/* First 256 bytes --> READ0 */
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
}
out_be32(&lbc->fcr, fcr);
set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
return;
}
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG: {
dev_vdbg(priv->dev,
"fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
"writing %d bytes.\n", elbc_fcm_ctrl->index);
/* if the write did not start at 0 or is not a full page
* then set the exact length, otherwise use a full page
* write so the HW generates the ECC.
*/
if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
out_be32(&lbc->fbcr,
elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
else
out_be32(&lbc->fbcr, 0);
fsl_elbc_run_command(mtd);
return;
}
/* CMD_STATUS must read the status byte while CEB is active */
/* Note - it does not wait for the ready line */
case NAND_CMD_STATUS:
out_be32(&lbc->fir,
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
(FIR_OP_RBW << FIR_OP1_SHIFT));
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
out_be32(&lbc->fbcr, 1);
set_addr(mtd, 0, 0, 0);
elbc_fcm_ctrl->read_bytes = 1;
fsl_elbc_run_command(mtd);
/* The chip always seems to report that it is
* write-protected, even when it is not.
*/
setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
return;
/* RESET without waiting for the ready line */
case NAND_CMD_RESET:
dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
fsl_elbc_run_command(mtd);
return;
default:
dev_err(priv->dev,
"fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
command);
}
}
static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
{
/* The hardware does not seem to support multiple
* chips per bank.
*/
}
/*
* Write buf to the FCM Controller Data Buffer
*/
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
unsigned int bufsize = mtd->writesize + mtd->oobsize;
if (len <= 0) {
dev_err(priv->dev, "write_buf of %d bytes", len);
elbc_fcm_ctrl->status = 0;
return;
}
if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
dev_err(priv->dev,
"write_buf beyond end of buffer "
"(%d requested, %u available)\n",
len, bufsize - elbc_fcm_ctrl->index);
len = bufsize - elbc_fcm_ctrl->index;
}
memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
/*
* This is workaround for the weird elbc hangs during nand write,
* Scott Wood says: "...perhaps difference in how long it takes a
* write to make it through the localbus compared to a write to IMMR
* is causing problems, and sync isn't helping for some reason."
* Reading back the last byte helps though.
*/
in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
elbc_fcm_ctrl->index += len;
}
/*
* read a byte from either the FCM hardware buffer if it has any data left
* otherwise issue a command to read a single byte.
*/
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
/* If there are still bytes in the FCM, then use the next byte. */
if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
dev_err(priv->dev, "read_byte beyond end of buffer\n");
return ERR_BYTE;
}
/*
* Read from the FCM Controller Data Buffer
*/
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
int avail;
if (len < 0)
return;
avail = min((unsigned int)len,
elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
elbc_fcm_ctrl->index += avail;
if (len > avail)
dev_err(priv->dev,
"read_buf beyond end of buffer "
"(%d requested, %d available)\n",
len, avail);
}
/* This function is called after Program and Erase Operations to
* check for success or failure.
*/
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
if (elbc_fcm_ctrl->status != LTESR_CC)
return NAND_STATUS_FAIL;
/* The chip always seems to report that it is
* write-protected, even when it is not.
*/
return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
}
static int fsl_elbc_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
unsigned int al;
/* calculate FMR Address Length field */
al = 0;
if (chip->pagemask & 0xffff0000)
al++;
if (chip->pagemask & 0xff000000)
al++;
priv->fmr |= al << FMR_AL_SHIFT;
dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
chip->numchips);
dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
chip->chipsize);
dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
chip->pagemask);
dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
chip->chip_delay);
dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
chip->badblockpos);
dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
chip->chip_shift);
dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
chip->page_shift);
dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
chip->phys_erase_shift);
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
chip->ecc.mode);
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
chip->ecc.steps);
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
chip->ecc.bytes);
dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
chip->ecc.total);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
mtd->ooblayout);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
mtd->erasesize);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
mtd->writesize);
dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
mtd->oobsize);
/* adjust Option Register and ECC to match Flash page size */
if (mtd->writesize == 512) {
priv->page_size = 0;
clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
} else if (mtd->writesize == 2048) {
priv->page_size = 1;
setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
} else {
dev_err(priv->dev,
"fsl_elbc_init: page size %d is not supported\n",
mtd->writesize);
return -ENOTSUPP;
}
return 0;
}
static const struct nand_controller_ops fsl_elbc_controller_ops = {
.attach_chip = fsl_elbc_attach_chip,
};
static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
nand_read_page_op(chip, page, 0, buf, mtd->writesize);
if (oob_required)
fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
mtd->ecc_stats.failed++;
return elbc_fcm_ctrl->max_bitflips;
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required, int page)
{
nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return nand_prog_page_end_op(chip);
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, uint32_t data_len,
const uint8_t *buf, int oob_required, int page)
{
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
fsl_elbc_write_buf(mtd, buf, mtd->writesize);
fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return nand_prog_page_end_op(chip);
}
static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
{
struct fsl_lbc_ctrl *ctrl = priv->ctrl;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
struct nand_chip *chip = &priv->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
/* Fill in fsl_elbc_mtd structure */
mtd->dev.parent = priv->dev;
nand_set_flash_node(chip, priv->dev->of_node);
/* set timeout to maximum */
priv->fmr = 15 << FMR_CWTO_SHIFT;
if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
priv->fmr |= FMR_ECCM;
/* fill in nand_chip structure */
/* set up function call table */
chip->read_byte = fsl_elbc_read_byte;
chip->write_buf = fsl_elbc_write_buf;
chip->read_buf = fsl_elbc_read_buf;
chip->select_chip = fsl_elbc_select_chip;
chip->cmdfunc = fsl_elbc_cmdfunc;
chip->waitfunc = fsl_elbc_wait;
chip->set_features = nand_get_set_features_notsupp;
chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
/* set up nand options */
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->controller = &elbc_fcm_ctrl->controller;
nand_set_controller_data(chip, priv);
chip->ecc.read_page = fsl_elbc_read_page;
chip->ecc.write_page = fsl_elbc_write_page;
chip->ecc.write_subpage = fsl_elbc_write_subpage;
/* If CS Base Register selects full hardware ECC then use it */
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
BR_DECC_CHK_GEN) {
chip->ecc.mode = NAND_ECC_HW;
mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
chip->ecc.size = 512;
chip->ecc.bytes = 3;
chip->ecc.strength = 1;
} else {
/* otherwise fall back to default software ECC */
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
}
return 0;
}
static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
{
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
kfree(mtd->name);
if (priv->vbase)
iounmap(priv->vbase);
elbc_fcm_ctrl->chips[priv->bank] = NULL;
kfree(priv);
return 0;
}
static DEFINE_MUTEX(fsl_elbc_nand_mutex);
static int fsl_elbc_nand_probe(struct platform_device *pdev)
{
struct fsl_lbc_regs __iomem *lbc;
struct fsl_elbc_mtd *priv;
struct resource res;
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
static const char *part_probe_types[]
= { "cmdlinepart", "RedBoot", "ofpart", NULL };
int ret;
int bank;
struct device *dev;
struct device_node *node = pdev->dev.of_node;
struct mtd_info *mtd;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
lbc = fsl_lbc_ctrl_dev->regs;
dev = fsl_lbc_ctrl_dev->dev;
/* get, allocate and map the memory resource */
ret = of_address_to_resource(node, 0, &res);
if (ret) {
dev_err(dev, "failed to get resource\n");
return ret;
}
/* find which chip select it is connected to */
for (bank = 0; bank < MAX_BANKS; bank++)
if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
(in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
(in_be32(&lbc->bank[bank].br) &
in_be32(&lbc->bank[bank].or) & BR_BA)
== fsl_lbc_addr(res.start))
break;
if (bank >= MAX_BANKS) {
dev_err(dev, "address did not match any chip selects\n");
return -ENODEV;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_lock(&fsl_elbc_nand_mutex);
if (!fsl_lbc_ctrl_dev->nand) {
elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
if (!elbc_fcm_ctrl) {
mutex_unlock(&fsl_elbc_nand_mutex);
ret = -ENOMEM;
goto err;
}
elbc_fcm_ctrl->counter++;
nand_controller_init(&elbc_fcm_ctrl->controller);
fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
} else {
elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
}
mutex_unlock(&fsl_elbc_nand_mutex);
elbc_fcm_ctrl->chips[bank] = priv;
priv->bank = bank;
priv->ctrl = fsl_lbc_ctrl_dev;
priv->dev = &pdev->dev;
dev_set_drvdata(priv->dev, priv);
priv->vbase = ioremap(res.start, resource_size(&res));
if (!priv->vbase) {
dev_err(dev, "failed to map chip region\n");
ret = -ENOMEM;
goto err;
}
mtd = nand_to_mtd(&priv->chip);
mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
if (!nand_to_mtd(&priv->chip)->name) {
ret = -ENOMEM;
goto err;
}
ret = fsl_elbc_chip_init(priv);
if (ret)
goto err;
priv->chip.controller->ops = &fsl_elbc_controller_ops;
ret = nand_scan(&priv->chip, 1);
if (ret)
goto err;
/* First look for RedBoot table or partitions on the command
* line, these take precedence over device tree information */
ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
if (ret)
goto cleanup_nand;
pr_info("eLBC NAND device at 0x%llx, bank %d\n",
(unsigned long long)res.start, priv->bank);
return 0;
cleanup_nand:
nand_cleanup(&priv->chip);
err:
fsl_elbc_chip_remove(priv);
return ret;
}
static int fsl_elbc_nand_remove(struct platform_device *pdev)
{
struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
nand_release(&priv->chip);
fsl_elbc_chip_remove(priv);
mutex_lock(&fsl_elbc_nand_mutex);
elbc_fcm_ctrl->counter--;
if (!elbc_fcm_ctrl->counter) {
fsl_lbc_ctrl_dev->nand = NULL;
kfree(elbc_fcm_ctrl);
}
mutex_unlock(&fsl_elbc_nand_mutex);
return 0;
}
static const struct of_device_id fsl_elbc_nand_match[] = {
{ .compatible = "fsl,elbc-fcm-nand", },
{}
};
MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
static struct platform_driver fsl_elbc_nand_driver = {
.driver = {
.name = "fsl,elbc-fcm-nand",
.of_match_table = fsl_elbc_nand_match,
},
.probe = fsl_elbc_nand_probe,
.remove = fsl_elbc_nand_remove,
};
module_platform_driver(fsl_elbc_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");