kernel_samsung_a34x-permissive/drivers/mtd/nand/raw/nandsim.c
2024-04-28 15:49:01 +02:00

2401 lines
66 KiB
C
Executable file

/*
* NAND flash simulator.
*
* Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
*
* Copyright (C) 2004 Nokia Corporation
*
* Note: NS means "NAND Simulator".
* Note: Input means input TO flash chip, output means output FROM chip.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
*/
#define pr_fmt(fmt) "[nandsim]" fmt
#include <linux/init.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/vmalloc.h>
#include <linux/math64.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_bch.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
/* Default simulator parameters values */
#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
!defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
!defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
!defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
#endif
#ifndef CONFIG_NANDSIM_ACCESS_DELAY
#define CONFIG_NANDSIM_ACCESS_DELAY 25
#endif
#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
#endif
#ifndef CONFIG_NANDSIM_ERASE_DELAY
#define CONFIG_NANDSIM_ERASE_DELAY 2
#endif
#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
#endif
#ifndef CONFIG_NANDSIM_INPUT_CYCLE
#define CONFIG_NANDSIM_INPUT_CYCLE 50
#endif
#ifndef CONFIG_NANDSIM_BUS_WIDTH
#define CONFIG_NANDSIM_BUS_WIDTH 8
#endif
#ifndef CONFIG_NANDSIM_DO_DELAYS
#define CONFIG_NANDSIM_DO_DELAYS 0
#endif
#ifndef CONFIG_NANDSIM_LOG
#define CONFIG_NANDSIM_LOG 0
#endif
#ifndef CONFIG_NANDSIM_DBG
#define CONFIG_NANDSIM_DBG 0
#endif
#ifndef CONFIG_NANDSIM_MAX_PARTS
#define CONFIG_NANDSIM_MAX_PARTS 32
#endif
static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
static uint log = CONFIG_NANDSIM_LOG;
static uint dbg = CONFIG_NANDSIM_DBG;
static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
static unsigned int parts_num;
static char *badblocks = NULL;
static char *weakblocks = NULL;
static char *weakpages = NULL;
static unsigned int bitflips = 0;
static char *gravepages = NULL;
static unsigned int overridesize = 0;
static char *cache_file = NULL;
static unsigned int bbt;
static unsigned int bch;
static u_char id_bytes[8] = {
[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
[4 ... 7] = 0xFF,
};
module_param_array(id_bytes, byte, NULL, 0400);
module_param_named(first_id_byte, id_bytes[0], byte, 0400);
module_param_named(second_id_byte, id_bytes[1], byte, 0400);
module_param_named(third_id_byte, id_bytes[2], byte, 0400);
module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
module_param(access_delay, uint, 0400);
module_param(programm_delay, uint, 0400);
module_param(erase_delay, uint, 0400);
module_param(output_cycle, uint, 0400);
module_param(input_cycle, uint, 0400);
module_param(bus_width, uint, 0400);
module_param(do_delays, uint, 0400);
module_param(log, uint, 0400);
module_param(dbg, uint, 0400);
module_param_array(parts, ulong, &parts_num, 0400);
module_param(badblocks, charp, 0400);
module_param(weakblocks, charp, 0400);
module_param(weakpages, charp, 0400);
module_param(bitflips, uint, 0400);
module_param(gravepages, charp, 0400);
module_param(overridesize, uint, 0400);
module_param(cache_file, charp, 0400);
module_param(bbt, uint, 0400);
module_param(bch, uint, 0400);
MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command");
MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)");
MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
MODULE_PARM_DESC(log, "Perform logging if not zero");
MODULE_PARM_DESC(dbg, "Output debug information if not zero");
MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
/* Page and erase block positions for the following parameters are independent of any partitions */
MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
" separated by commas e.g. 113:2 means eb 113"
" can be erased only twice before failing");
MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
" separated by commas e.g. 1401:2 means page 1401"
" can be written only twice before failing");
MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
" separated by commas e.g. 1401:2 means page 1401"
" can be read only twice before failing");
MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
"The size is specified in erase blocks and as the exponent of a power of two"
" e.g. 5 means a size of 32 erase blocks");
MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
"be correctable in 512-byte blocks");
/* The largest possible page size */
#define NS_LARGEST_PAGE_SIZE 4096
/* Simulator's output macros (logging, debugging, warning, error) */
#define NS_LOG(args...) \
do { if (log) pr_debug(" log: " args); } while(0)
#define NS_DBG(args...) \
do { if (dbg) pr_debug(" debug: " args); } while(0)
#define NS_WARN(args...) \
do { pr_warn(" warning: " args); } while(0)
#define NS_ERR(args...) \
do { pr_err(" error: " args); } while(0)
#define NS_INFO(args...) \
do { pr_info(" " args); } while(0)
/* Busy-wait delay macros (microseconds, milliseconds) */
#define NS_UDELAY(us) \
do { if (do_delays) udelay(us); } while(0)
#define NS_MDELAY(us) \
do { if (do_delays) mdelay(us); } while(0)
/* Is the nandsim structure initialized ? */
#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
/* Good operation completion status */
#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
/* Operation failed completion status */
#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
/* Calculate the page offset in flash RAM image by (row, column) address */
#define NS_RAW_OFFSET(ns) \
(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
/* Calculate the OOB offset in flash RAM image by (row, column) address */
#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
/* After a command is input, the simulator goes to one of the following states */
#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
#define STATE_CMD_STATUS 0x00000007 /* read status */
#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
#define STATE_CMD_READID 0x0000000A /* read ID */
#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
#define STATE_CMD_RESET 0x0000000C /* reset */
#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
#define STATE_CMD_MASK 0x0000000F /* command states mask */
/* After an address is input, the simulator goes to one of these states */
#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
#define STATE_ADDR_MASK 0x00000070 /* address states mask */
/* During data input/output the simulator is in these states */
#define STATE_DATAIN 0x00000100 /* waiting for data input */
#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
/* Previous operation is done, ready to accept new requests */
#define STATE_READY 0x00000000
/* This state is used to mark that the next state isn't known yet */
#define STATE_UNKNOWN 0x10000000
/* Simulator's actions bit masks */
#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
#define ACTION_SECERASE 0x00300000 /* erase sector */
#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
#define ACTION_MASK 0x00700000 /* action mask */
#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
#define NS_OPER_STATES 6 /* Maximum number of states in operation */
#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */
/* Remove action bits from state */
#define NS_STATE(x) ((x) & ~ACTION_MASK)
/*
* Maximum previous states which need to be saved. Currently saving is
* only needed for page program operation with preceded read command
* (which is only valid for 512-byte pages).
*/
#define NS_MAX_PREVSTATES 1
/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
#define NS_MAX_HELD_PAGES 16
/*
* A union to represent flash memory contents and flash buffer.
*/
union ns_mem {
u_char *byte; /* for byte access */
uint16_t *word; /* for 16-bit word access */
};
/*
* The structure which describes all the internal simulator data.
*/
struct nandsim {
struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
unsigned int nbparts;
uint busw; /* flash chip bus width (8 or 16) */
u_char ids[8]; /* chip's ID bytes */
uint32_t options; /* chip's characteristic bits */
uint32_t state; /* current chip state */
uint32_t nxstate; /* next expected state */
uint32_t *op; /* current operation, NULL operations isn't known yet */
uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
uint16_t npstates; /* number of previous states saved */
uint16_t stateidx; /* current state index */
/* The simulated NAND flash pages array */
union ns_mem *pages;
/* Slab allocator for nand pages */
struct kmem_cache *nand_pages_slab;
/* Internal buffer of page + OOB size bytes */
union ns_mem buf;
/* NAND flash "geometry" */
struct {
uint64_t totsz; /* total flash size, bytes */
uint32_t secsz; /* flash sector (erase block) size, bytes */
uint pgsz; /* NAND flash page size, bytes */
uint oobsz; /* page OOB area size, bytes */
uint64_t totszoob; /* total flash size including OOB, bytes */
uint pgszoob; /* page size including OOB , bytes*/
uint secszoob; /* sector size including OOB, bytes */
uint pgnum; /* total number of pages */
uint pgsec; /* number of pages per sector */
uint secshift; /* bits number in sector size */
uint pgshift; /* bits number in page size */
uint pgaddrbytes; /* bytes per page address */
uint secaddrbytes; /* bytes per sector address */
uint idbytes; /* the number ID bytes that this chip outputs */
} geom;
/* NAND flash internal registers */
struct {
unsigned command; /* the command register */
u_char status; /* the status register */
uint row; /* the page number */
uint column; /* the offset within page */
uint count; /* internal counter */
uint num; /* number of bytes which must be processed */
uint off; /* fixed page offset */
} regs;
/* NAND flash lines state */
struct {
int ce; /* chip Enable */
int cle; /* command Latch Enable */
int ale; /* address Latch Enable */
int wp; /* write Protect */
} lines;
/* Fields needed when using a cache file */
struct file *cfile; /* Open file */
unsigned long *pages_written; /* Which pages have been written */
void *file_buf;
struct page *held_pages[NS_MAX_HELD_PAGES];
int held_cnt;
};
/*
* Operations array. To perform any operation the simulator must pass
* through the correspondent states chain.
*/
static struct nandsim_operations {
uint32_t reqopts; /* options which are required to perform the operation */
uint32_t states[NS_OPER_STATES]; /* operation's states */
} ops[NS_OPER_NUM] = {
/* Read page + OOB from the beginning */
{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
STATE_DATAOUT, STATE_READY}},
/* Read page + OOB from the second half */
{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
STATE_DATAOUT, STATE_READY}},
/* Read OOB */
{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
STATE_DATAOUT, STATE_READY}},
/* Program page starting from the beginning */
{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
/* Program page starting from the beginning */
{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
/* Program page starting from the second half */
{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
/* Program OOB */
{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
/* Erase sector */
{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
/* Read status */
{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
/* Read ID */
{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
/* Large page devices read page */
{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
STATE_DATAOUT, STATE_READY}},
/* Large page devices random page read */
{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
STATE_DATAOUT, STATE_READY}},
};
struct weak_block {
struct list_head list;
unsigned int erase_block_no;
unsigned int max_erases;
unsigned int erases_done;
};
static LIST_HEAD(weak_blocks);
struct weak_page {
struct list_head list;
unsigned int page_no;
unsigned int max_writes;
unsigned int writes_done;
};
static LIST_HEAD(weak_pages);
struct grave_page {
struct list_head list;
unsigned int page_no;
unsigned int max_reads;
unsigned int reads_done;
};
static LIST_HEAD(grave_pages);
static unsigned long *erase_block_wear = NULL;
static unsigned int wear_eb_count = 0;
static unsigned long total_wear = 0;
/* MTD structure for NAND controller */
static struct mtd_info *nsmtd;
static int nandsim_debugfs_show(struct seq_file *m, void *private)
{
unsigned long wmin = -1, wmax = 0, avg;
unsigned long deciles[10], decile_max[10], tot = 0;
unsigned int i;
/* Calc wear stats */
for (i = 0; i < wear_eb_count; ++i) {
unsigned long wear = erase_block_wear[i];
if (wear < wmin)
wmin = wear;
if (wear > wmax)
wmax = wear;
tot += wear;
}
for (i = 0; i < 9; ++i) {
deciles[i] = 0;
decile_max[i] = (wmax * (i + 1) + 5) / 10;
}
deciles[9] = 0;
decile_max[9] = wmax;
for (i = 0; i < wear_eb_count; ++i) {
int d;
unsigned long wear = erase_block_wear[i];
for (d = 0; d < 10; ++d)
if (wear <= decile_max[d]) {
deciles[d] += 1;
break;
}
}
avg = tot / wear_eb_count;
/* Output wear report */
seq_printf(m, "Total numbers of erases: %lu\n", tot);
seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count);
seq_printf(m, "Average number of erases: %lu\n", avg);
seq_printf(m, "Maximum number of erases: %lu\n", wmax);
seq_printf(m, "Minimum number of erases: %lu\n", wmin);
for (i = 0; i < 10; ++i) {
unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
if (from > decile_max[i])
continue;
seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
from,
decile_max[i],
deciles[i]);
}
return 0;
}
static int nandsim_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, nandsim_debugfs_show, inode->i_private);
}
static const struct file_operations dfs_fops = {
.open = nandsim_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* nandsim_debugfs_create - initialize debugfs
* @dev: nandsim device description object
*
* This function creates all debugfs files for UBI device @ubi. Returns zero in
* case of success and a negative error code in case of failure.
*/
static int nandsim_debugfs_create(struct nandsim *dev)
{
struct dentry *root = nsmtd->dbg.dfs_dir;
struct dentry *dent;
/*
* Just skip debugfs initialization when the debugfs directory is
* missing.
*/
if (IS_ERR_OR_NULL(root)) {
if (IS_ENABLED(CONFIG_DEBUG_FS) &&
!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
return 0;
}
dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
root, dev, &dfs_fops);
if (IS_ERR_OR_NULL(dent)) {
NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
return -1;
}
return 0;
}
/*
* Allocate array of page pointers, create slab allocation for an array
* and initialize the array by NULL pointers.
*
* RETURNS: 0 if success, -ENOMEM if memory alloc fails.
*/
static int __init alloc_device(struct nandsim *ns)
{
struct file *cfile;
int i, err;
if (cache_file) {
cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
if (IS_ERR(cfile))
return PTR_ERR(cfile);
if (!(cfile->f_mode & FMODE_CAN_READ)) {
NS_ERR("alloc_device: cache file not readable\n");
err = -EINVAL;
goto err_close;
}
if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
NS_ERR("alloc_device: cache file not writeable\n");
err = -EINVAL;
goto err_close;
}
ns->pages_written =
vzalloc(array_size(sizeof(unsigned long),
BITS_TO_LONGS(ns->geom.pgnum)));
if (!ns->pages_written) {
NS_ERR("alloc_device: unable to allocate pages written array\n");
err = -ENOMEM;
goto err_close;
}
ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
if (!ns->file_buf) {
NS_ERR("alloc_device: unable to allocate file buf\n");
err = -ENOMEM;
goto err_free;
}
ns->cfile = cfile;
return 0;
}
ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
if (!ns->pages) {
NS_ERR("alloc_device: unable to allocate page array\n");
return -ENOMEM;
}
for (i = 0; i < ns->geom.pgnum; i++) {
ns->pages[i].byte = NULL;
}
ns->nand_pages_slab = kmem_cache_create("nandsim",
ns->geom.pgszoob, 0, 0, NULL);
if (!ns->nand_pages_slab) {
NS_ERR("cache_create: unable to create kmem_cache\n");
return -ENOMEM;
}
return 0;
err_free:
vfree(ns->pages_written);
err_close:
filp_close(cfile, NULL);
return err;
}
/*
* Free any allocated pages, and free the array of page pointers.
*/
static void free_device(struct nandsim *ns)
{
int i;
if (ns->cfile) {
kfree(ns->file_buf);
vfree(ns->pages_written);
filp_close(ns->cfile, NULL);
return;
}
if (ns->pages) {
for (i = 0; i < ns->geom.pgnum; i++) {
if (ns->pages[i].byte)
kmem_cache_free(ns->nand_pages_slab,
ns->pages[i].byte);
}
kmem_cache_destroy(ns->nand_pages_slab);
vfree(ns->pages);
}
}
static char __init *get_partition_name(int i)
{
return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
}
/*
* Initialize the nandsim structure.
*
* RETURNS: 0 if success, -ERRNO if failure.
*/
static int __init init_nandsim(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
int i, ret = 0;
uint64_t remains;
uint64_t next_offset;
if (NS_IS_INITIALIZED(ns)) {
NS_ERR("init_nandsim: nandsim is already initialized\n");
return -EIO;
}
/* Force mtd to not do delays */
chip->chip_delay = 0;
/* Initialize the NAND flash parameters */
ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
ns->geom.totsz = mtd->size;
ns->geom.pgsz = mtd->writesize;
ns->geom.oobsz = mtd->oobsize;
ns->geom.secsz = mtd->erasesize;
ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
ns->geom.secshift = ffs(ns->geom.secsz) - 1;
ns->geom.pgshift = chip->page_shift;
ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
ns->options = 0;
if (ns->geom.pgsz == 512) {
ns->options |= OPT_PAGE512;
if (ns->busw == 8)
ns->options |= OPT_PAGE512_8BIT;
} else if (ns->geom.pgsz == 2048) {
ns->options |= OPT_PAGE2048;
} else if (ns->geom.pgsz == 4096) {
ns->options |= OPT_PAGE4096;
} else {
NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
return -EIO;
}
if (ns->options & OPT_SMALLPAGE) {
if (ns->geom.totsz <= (32 << 20)) {
ns->geom.pgaddrbytes = 3;
ns->geom.secaddrbytes = 2;
} else {
ns->geom.pgaddrbytes = 4;
ns->geom.secaddrbytes = 3;
}
} else {
if (ns->geom.totsz <= (128 << 20)) {
ns->geom.pgaddrbytes = 4;
ns->geom.secaddrbytes = 2;
} else {
ns->geom.pgaddrbytes = 5;
ns->geom.secaddrbytes = 3;
}
}
/* Fill the partition_info structure */
if (parts_num > ARRAY_SIZE(ns->partitions)) {
NS_ERR("too many partitions.\n");
return -EINVAL;
}
remains = ns->geom.totsz;
next_offset = 0;
for (i = 0; i < parts_num; ++i) {
uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
if (!part_sz || part_sz > remains) {
NS_ERR("bad partition size.\n");
return -EINVAL;
}
ns->partitions[i].name = get_partition_name(i);
if (!ns->partitions[i].name) {
NS_ERR("unable to allocate memory.\n");
return -ENOMEM;
}
ns->partitions[i].offset = next_offset;
ns->partitions[i].size = part_sz;
next_offset += ns->partitions[i].size;
remains -= ns->partitions[i].size;
}
ns->nbparts = parts_num;
if (remains) {
if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
NS_ERR("too many partitions.\n");
return -EINVAL;
}
ns->partitions[i].name = get_partition_name(i);
if (!ns->partitions[i].name) {
NS_ERR("unable to allocate memory.\n");
return -ENOMEM;
}
ns->partitions[i].offset = next_offset;
ns->partitions[i].size = remains;
ns->nbparts += 1;
}
if (ns->busw == 16)
NS_WARN("16-bit flashes support wasn't tested\n");
printk("flash size: %llu MiB\n",
(unsigned long long)ns->geom.totsz >> 20);
printk("page size: %u bytes\n", ns->geom.pgsz);
printk("OOB area size: %u bytes\n", ns->geom.oobsz);
printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
printk("pages number: %u\n", ns->geom.pgnum);
printk("pages per sector: %u\n", ns->geom.pgsec);
printk("bus width: %u\n", ns->busw);
printk("bits in sector size: %u\n", ns->geom.secshift);
printk("bits in page size: %u\n", ns->geom.pgshift);
printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1);
printk("flash size with OOB: %llu KiB\n",
(unsigned long long)ns->geom.totszoob >> 10);
printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
printk("options: %#x\n", ns->options);
if ((ret = alloc_device(ns)) != 0)
return ret;
/* Allocate / initialize the internal buffer */
ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
if (!ns->buf.byte) {
NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
ns->geom.pgszoob);
return -ENOMEM;
}
memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
return 0;
}
/*
* Free the nandsim structure.
*/
static void free_nandsim(struct nandsim *ns)
{
kfree(ns->buf.byte);
free_device(ns);
return;
}
static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
{
char *w;
int zero_ok;
unsigned int erase_block_no;
loff_t offset;
if (!badblocks)
return 0;
w = badblocks;
do {
zero_ok = (*w == '0' ? 1 : 0);
erase_block_no = simple_strtoul(w, &w, 0);
if (!zero_ok && !erase_block_no) {
NS_ERR("invalid badblocks.\n");
return -EINVAL;
}
offset = (loff_t)erase_block_no * ns->geom.secsz;
if (mtd_block_markbad(mtd, offset)) {
NS_ERR("invalid badblocks.\n");
return -EINVAL;
}
if (*w == ',')
w += 1;
} while (*w);
return 0;
}
static int parse_weakblocks(void)
{
char *w;
int zero_ok;
unsigned int erase_block_no;
unsigned int max_erases;
struct weak_block *wb;
if (!weakblocks)
return 0;
w = weakblocks;
do {
zero_ok = (*w == '0' ? 1 : 0);
erase_block_no = simple_strtoul(w, &w, 0);
if (!zero_ok && !erase_block_no) {
NS_ERR("invalid weakblocks.\n");
return -EINVAL;
}
max_erases = 3;
if (*w == ':') {
w += 1;
max_erases = simple_strtoul(w, &w, 0);
}
if (*w == ',')
w += 1;
wb = kzalloc(sizeof(*wb), GFP_KERNEL);
if (!wb) {
NS_ERR("unable to allocate memory.\n");
return -ENOMEM;
}
wb->erase_block_no = erase_block_no;
wb->max_erases = max_erases;
list_add(&wb->list, &weak_blocks);
} while (*w);
return 0;
}
static int erase_error(unsigned int erase_block_no)
{
struct weak_block *wb;
list_for_each_entry(wb, &weak_blocks, list)
if (wb->erase_block_no == erase_block_no) {
if (wb->erases_done >= wb->max_erases)
return 1;
wb->erases_done += 1;
return 0;
}
return 0;
}
static int parse_weakpages(void)
{
char *w;
int zero_ok;
unsigned int page_no;
unsigned int max_writes;
struct weak_page *wp;
if (!weakpages)
return 0;
w = weakpages;
do {
zero_ok = (*w == '0' ? 1 : 0);
page_no = simple_strtoul(w, &w, 0);
if (!zero_ok && !page_no) {
NS_ERR("invalid weakpages.\n");
return -EINVAL;
}
max_writes = 3;
if (*w == ':') {
w += 1;
max_writes = simple_strtoul(w, &w, 0);
}
if (*w == ',')
w += 1;
wp = kzalloc(sizeof(*wp), GFP_KERNEL);
if (!wp) {
NS_ERR("unable to allocate memory.\n");
return -ENOMEM;
}
wp->page_no = page_no;
wp->max_writes = max_writes;
list_add(&wp->list, &weak_pages);
} while (*w);
return 0;
}
static int write_error(unsigned int page_no)
{
struct weak_page *wp;
list_for_each_entry(wp, &weak_pages, list)
if (wp->page_no == page_no) {
if (wp->writes_done >= wp->max_writes)
return 1;
wp->writes_done += 1;
return 0;
}
return 0;
}
static int parse_gravepages(void)
{
char *g;
int zero_ok;
unsigned int page_no;
unsigned int max_reads;
struct grave_page *gp;
if (!gravepages)
return 0;
g = gravepages;
do {
zero_ok = (*g == '0' ? 1 : 0);
page_no = simple_strtoul(g, &g, 0);
if (!zero_ok && !page_no) {
NS_ERR("invalid gravepagess.\n");
return -EINVAL;
}
max_reads = 3;
if (*g == ':') {
g += 1;
max_reads = simple_strtoul(g, &g, 0);
}
if (*g == ',')
g += 1;
gp = kzalloc(sizeof(*gp), GFP_KERNEL);
if (!gp) {
NS_ERR("unable to allocate memory.\n");
return -ENOMEM;
}
gp->page_no = page_no;
gp->max_reads = max_reads;
list_add(&gp->list, &grave_pages);
} while (*g);
return 0;
}
static int read_error(unsigned int page_no)
{
struct grave_page *gp;
list_for_each_entry(gp, &grave_pages, list)
if (gp->page_no == page_no) {
if (gp->reads_done >= gp->max_reads)
return 1;
gp->reads_done += 1;
return 0;
}
return 0;
}
static void free_lists(void)
{
struct list_head *pos, *n;
list_for_each_safe(pos, n, &weak_blocks) {
list_del(pos);
kfree(list_entry(pos, struct weak_block, list));
}
list_for_each_safe(pos, n, &weak_pages) {
list_del(pos);
kfree(list_entry(pos, struct weak_page, list));
}
list_for_each_safe(pos, n, &grave_pages) {
list_del(pos);
kfree(list_entry(pos, struct grave_page, list));
}
kfree(erase_block_wear);
}
static int setup_wear_reporting(struct mtd_info *mtd)
{
size_t mem;
wear_eb_count = div_u64(mtd->size, mtd->erasesize);
mem = wear_eb_count * sizeof(unsigned long);
if (mem / sizeof(unsigned long) != wear_eb_count) {
NS_ERR("Too many erase blocks for wear reporting\n");
return -ENOMEM;
}
erase_block_wear = kzalloc(mem, GFP_KERNEL);
if (!erase_block_wear) {
NS_ERR("Too many erase blocks for wear reporting\n");
return -ENOMEM;
}
return 0;
}
static void update_wear(unsigned int erase_block_no)
{
if (!erase_block_wear)
return;
total_wear += 1;
/*
* TODO: Notify this through a debugfs entry,
* instead of showing an error message.
*/
if (total_wear == 0)
NS_ERR("Erase counter total overflow\n");
erase_block_wear[erase_block_no] += 1;
if (erase_block_wear[erase_block_no] == 0)
NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
}
/*
* Returns the string representation of 'state' state.
*/
static char *get_state_name(uint32_t state)
{
switch (NS_STATE(state)) {
case STATE_CMD_READ0:
return "STATE_CMD_READ0";
case STATE_CMD_READ1:
return "STATE_CMD_READ1";
case STATE_CMD_PAGEPROG:
return "STATE_CMD_PAGEPROG";
case STATE_CMD_READOOB:
return "STATE_CMD_READOOB";
case STATE_CMD_READSTART:
return "STATE_CMD_READSTART";
case STATE_CMD_ERASE1:
return "STATE_CMD_ERASE1";
case STATE_CMD_STATUS:
return "STATE_CMD_STATUS";
case STATE_CMD_SEQIN:
return "STATE_CMD_SEQIN";
case STATE_CMD_READID:
return "STATE_CMD_READID";
case STATE_CMD_ERASE2:
return "STATE_CMD_ERASE2";
case STATE_CMD_RESET:
return "STATE_CMD_RESET";
case STATE_CMD_RNDOUT:
return "STATE_CMD_RNDOUT";
case STATE_CMD_RNDOUTSTART:
return "STATE_CMD_RNDOUTSTART";
case STATE_ADDR_PAGE:
return "STATE_ADDR_PAGE";
case STATE_ADDR_SEC:
return "STATE_ADDR_SEC";
case STATE_ADDR_ZERO:
return "STATE_ADDR_ZERO";
case STATE_ADDR_COLUMN:
return "STATE_ADDR_COLUMN";
case STATE_DATAIN:
return "STATE_DATAIN";
case STATE_DATAOUT:
return "STATE_DATAOUT";
case STATE_DATAOUT_ID:
return "STATE_DATAOUT_ID";
case STATE_DATAOUT_STATUS:
return "STATE_DATAOUT_STATUS";
case STATE_READY:
return "STATE_READY";
case STATE_UNKNOWN:
return "STATE_UNKNOWN";
}
NS_ERR("get_state_name: unknown state, BUG\n");
return NULL;
}
/*
* Check if command is valid.
*
* RETURNS: 1 if wrong command, 0 if right.
*/
static int check_command(int cmd)
{
switch (cmd) {
case NAND_CMD_READ0:
case NAND_CMD_READ1:
case NAND_CMD_READSTART:
case NAND_CMD_PAGEPROG:
case NAND_CMD_READOOB:
case NAND_CMD_ERASE1:
case NAND_CMD_STATUS:
case NAND_CMD_SEQIN:
case NAND_CMD_READID:
case NAND_CMD_ERASE2:
case NAND_CMD_RESET:
case NAND_CMD_RNDOUT:
case NAND_CMD_RNDOUTSTART:
return 0;
default:
return 1;
}
}
/*
* Returns state after command is accepted by command number.
*/
static uint32_t get_state_by_command(unsigned command)
{
switch (command) {
case NAND_CMD_READ0:
return STATE_CMD_READ0;
case NAND_CMD_READ1:
return STATE_CMD_READ1;
case NAND_CMD_PAGEPROG:
return STATE_CMD_PAGEPROG;
case NAND_CMD_READSTART:
return STATE_CMD_READSTART;
case NAND_CMD_READOOB:
return STATE_CMD_READOOB;
case NAND_CMD_ERASE1:
return STATE_CMD_ERASE1;
case NAND_CMD_STATUS:
return STATE_CMD_STATUS;
case NAND_CMD_SEQIN:
return STATE_CMD_SEQIN;
case NAND_CMD_READID:
return STATE_CMD_READID;
case NAND_CMD_ERASE2:
return STATE_CMD_ERASE2;
case NAND_CMD_RESET:
return STATE_CMD_RESET;
case NAND_CMD_RNDOUT:
return STATE_CMD_RNDOUT;
case NAND_CMD_RNDOUTSTART:
return STATE_CMD_RNDOUTSTART;
}
NS_ERR("get_state_by_command: unknown command, BUG\n");
return 0;
}
/*
* Move an address byte to the correspondent internal register.
*/
static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
{
uint byte = (uint)bt;
if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
ns->regs.column |= (byte << 8 * ns->regs.count);
else {
ns->regs.row |= (byte << 8 * (ns->regs.count -
ns->geom.pgaddrbytes +
ns->geom.secaddrbytes));
}
return;
}
/*
* Switch to STATE_READY state.
*/
static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
{
NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
ns->state = STATE_READY;
ns->nxstate = STATE_UNKNOWN;
ns->op = NULL;
ns->npstates = 0;
ns->stateidx = 0;
ns->regs.num = 0;
ns->regs.count = 0;
ns->regs.off = 0;
ns->regs.row = 0;
ns->regs.column = 0;
ns->regs.status = status;
}
/*
* If the operation isn't known yet, try to find it in the global array
* of supported operations.
*
* Operation can be unknown because of the following.
* 1. New command was accepted and this is the first call to find the
* correspondent states chain. In this case ns->npstates = 0;
* 2. There are several operations which begin with the same command(s)
* (for example program from the second half and read from the
* second half operations both begin with the READ1 command). In this
* case the ns->pstates[] array contains previous states.
*
* Thus, the function tries to find operation containing the following
* states (if the 'flag' parameter is 0):
* ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
*
* If (one and only one) matching operation is found, it is accepted (
* ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
* zeroed).
*
* If there are several matches, the current state is pushed to the
* ns->pstates.
*
* The operation can be unknown only while commands are input to the chip.
* As soon as address command is accepted, the operation must be known.
* In such situation the function is called with 'flag' != 0, and the
* operation is searched using the following pattern:
* ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
*
* It is supposed that this pattern must either match one operation or
* none. There can't be ambiguity in that case.
*
* If no matches found, the function does the following:
* 1. if there are saved states present, try to ignore them and search
* again only using the last command. If nothing was found, switch
* to the STATE_READY state.
* 2. if there are no saved states, switch to the STATE_READY state.
*
* RETURNS: -2 - no matched operations found.
* -1 - several matches.
* 0 - operation is found.
*/
static int find_operation(struct nandsim *ns, uint32_t flag)
{
int opsfound = 0;
int i, j, idx = 0;
for (i = 0; i < NS_OPER_NUM; i++) {
int found = 1;
if (!(ns->options & ops[i].reqopts))
/* Ignore operations we can't perform */
continue;
if (flag) {
if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
continue;
} else {
if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
continue;
}
for (j = 0; j < ns->npstates; j++)
if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
&& (ns->options & ops[idx].reqopts)) {
found = 0;
break;
}
if (found) {
idx = i;
opsfound += 1;
}
}
if (opsfound == 1) {
/* Exact match */
ns->op = &ops[idx].states[0];
if (flag) {
/*
* In this case the find_operation function was
* called when address has just began input. But it isn't
* yet fully input and the current state must
* not be one of STATE_ADDR_*, but the STATE_ADDR_*
* state must be the next state (ns->nxstate).
*/
ns->stateidx = ns->npstates - 1;
} else {
ns->stateidx = ns->npstates;
}
ns->npstates = 0;
ns->state = ns->op[ns->stateidx];
ns->nxstate = ns->op[ns->stateidx + 1];
NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
idx, get_state_name(ns->state), get_state_name(ns->nxstate));
return 0;
}
if (opsfound == 0) {
/* Nothing was found. Try to ignore previous commands (if any) and search again */
if (ns->npstates != 0) {
NS_DBG("find_operation: no operation found, try again with state %s\n",
get_state_name(ns->state));
ns->npstates = 0;
return find_operation(ns, 0);
}
NS_DBG("find_operation: no operations found\n");
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return -2;
}
if (flag) {
/* This shouldn't happen */
NS_DBG("find_operation: BUG, operation must be known if address is input\n");
return -2;
}
NS_DBG("find_operation: there is still ambiguity\n");
ns->pstates[ns->npstates++] = ns->state;
return -1;
}
static void put_pages(struct nandsim *ns)
{
int i;
for (i = 0; i < ns->held_cnt; i++)
put_page(ns->held_pages[i]);
}
/* Get page cache pages in advance to provide NOFS memory allocation */
static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
{
pgoff_t index, start_index, end_index;
struct page *page;
struct address_space *mapping = file->f_mapping;
start_index = pos >> PAGE_SHIFT;
end_index = (pos + count - 1) >> PAGE_SHIFT;
if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
return -EINVAL;
ns->held_cnt = 0;
for (index = start_index; index <= end_index; index++) {
page = find_get_page(mapping, index);
if (page == NULL) {
page = find_or_create_page(mapping, index, GFP_NOFS);
if (page == NULL) {
write_inode_now(mapping->host, 1);
page = find_or_create_page(mapping, index, GFP_NOFS);
}
if (page == NULL) {
put_pages(ns);
return -ENOMEM;
}
unlock_page(page);
}
ns->held_pages[ns->held_cnt++] = page;
}
return 0;
}
static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
{
ssize_t tx;
int err;
unsigned int noreclaim_flag;
err = get_pages(ns, file, count, pos);
if (err)
return err;
noreclaim_flag = memalloc_noreclaim_save();
tx = kernel_read(file, buf, count, &pos);
memalloc_noreclaim_restore(noreclaim_flag);
put_pages(ns);
return tx;
}
static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
{
ssize_t tx;
int err;
unsigned int noreclaim_flag;
err = get_pages(ns, file, count, pos);
if (err)
return err;
noreclaim_flag = memalloc_noreclaim_save();
tx = kernel_write(file, buf, count, &pos);
memalloc_noreclaim_restore(noreclaim_flag);
put_pages(ns);
return tx;
}
/*
* Returns a pointer to the current page.
*/
static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
{
return &(ns->pages[ns->regs.row]);
}
/*
* Retuns a pointer to the current byte, within the current page.
*/
static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
{
return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
}
static int do_read_error(struct nandsim *ns, int num)
{
unsigned int page_no = ns->regs.row;
if (read_error(page_no)) {
prandom_bytes(ns->buf.byte, num);
NS_WARN("simulating read error in page %u\n", page_no);
return 1;
}
return 0;
}
static void do_bit_flips(struct nandsim *ns, int num)
{
if (bitflips && prandom_u32() < (1 << 22)) {
int flips = 1;
if (bitflips > 1)
flips = (prandom_u32() % (int) bitflips) + 1;
while (flips--) {
int pos = prandom_u32() % (num * 8);
ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
NS_WARN("read_page: flipping bit %d in page %d "
"reading from %d ecc: corrected=%u failed=%u\n",
pos, ns->regs.row, ns->regs.column + ns->regs.off,
nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
}
}
}
/*
* Fill the NAND buffer with data read from the specified page.
*/
static void read_page(struct nandsim *ns, int num)
{
union ns_mem *mypage;
if (ns->cfile) {
if (!test_bit(ns->regs.row, ns->pages_written)) {
NS_DBG("read_page: page %d not written\n", ns->regs.row);
memset(ns->buf.byte, 0xFF, num);
} else {
loff_t pos;
ssize_t tx;
NS_DBG("read_page: page %d written, reading from %d\n",
ns->regs.row, ns->regs.column + ns->regs.off);
if (do_read_error(ns, num))
return;
pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
if (tx != num) {
NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
return;
}
do_bit_flips(ns, num);
}
return;
}
mypage = NS_GET_PAGE(ns);
if (mypage->byte == NULL) {
NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
memset(ns->buf.byte, 0xFF, num);
} else {
NS_DBG("read_page: page %d allocated, reading from %d\n",
ns->regs.row, ns->regs.column + ns->regs.off);
if (do_read_error(ns, num))
return;
memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
do_bit_flips(ns, num);
}
}
/*
* Erase all pages in the specified sector.
*/
static void erase_sector(struct nandsim *ns)
{
union ns_mem *mypage;
int i;
if (ns->cfile) {
for (i = 0; i < ns->geom.pgsec; i++)
if (__test_and_clear_bit(ns->regs.row + i,
ns->pages_written)) {
NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
}
return;
}
mypage = NS_GET_PAGE(ns);
for (i = 0; i < ns->geom.pgsec; i++) {
if (mypage->byte != NULL) {
NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
kmem_cache_free(ns->nand_pages_slab, mypage->byte);
mypage->byte = NULL;
}
mypage++;
}
}
/*
* Program the specified page with the contents from the NAND buffer.
*/
static int prog_page(struct nandsim *ns, int num)
{
int i;
union ns_mem *mypage;
u_char *pg_off;
if (ns->cfile) {
loff_t off;
ssize_t tx;
int all;
NS_DBG("prog_page: writing page %d\n", ns->regs.row);
pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
if (!test_bit(ns->regs.row, ns->pages_written)) {
all = 1;
memset(ns->file_buf, 0xff, ns->geom.pgszoob);
} else {
all = 0;
tx = read_file(ns, ns->cfile, pg_off, num, off);
if (tx != num) {
NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
return -1;
}
}
for (i = 0; i < num; i++)
pg_off[i] &= ns->buf.byte[i];
if (all) {
loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
if (tx != ns->geom.pgszoob) {
NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
return -1;
}
__set_bit(ns->regs.row, ns->pages_written);
} else {
tx = write_file(ns, ns->cfile, pg_off, num, off);
if (tx != num) {
NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
return -1;
}
}
return 0;
}
mypage = NS_GET_PAGE(ns);
if (mypage->byte == NULL) {
NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
/*
* We allocate memory with GFP_NOFS because a flash FS may
* utilize this. If it is holding an FS lock, then gets here,
* then kernel memory alloc runs writeback which goes to the FS
* again and deadlocks. This was seen in practice.
*/
mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
if (mypage->byte == NULL) {
NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
return -1;
}
memset(mypage->byte, 0xFF, ns->geom.pgszoob);
}
pg_off = NS_PAGE_BYTE_OFF(ns);
for (i = 0; i < num; i++)
pg_off[i] &= ns->buf.byte[i];
return 0;
}
/*
* If state has any action bit, perform this action.
*
* RETURNS: 0 if success, -1 if error.
*/
static int do_state_action(struct nandsim *ns, uint32_t action)
{
int num;
int busdiv = ns->busw == 8 ? 1 : 2;
unsigned int erase_block_no, page_no;
action &= ACTION_MASK;
/* Check that page address input is correct */
if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
return -1;
}
switch (action) {
case ACTION_CPY:
/*
* Copy page data to the internal buffer.
*/
/* Column shouldn't be very large */
if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
NS_ERR("do_state_action: column number is too large\n");
break;
}
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
read_page(ns, num);
NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
num, NS_RAW_OFFSET(ns) + ns->regs.off);
if (ns->regs.off == 0)
NS_LOG("read page %d\n", ns->regs.row);
else if (ns->regs.off < ns->geom.pgsz)
NS_LOG("read page %d (second half)\n", ns->regs.row);
else
NS_LOG("read OOB of page %d\n", ns->regs.row);
NS_UDELAY(access_delay);
NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
break;
case ACTION_SECERASE:
/*
* Erase sector.
*/
if (ns->lines.wp) {
NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
return -1;
}
if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
return -1;
}
ns->regs.row = (ns->regs.row <<
8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
ns->regs.column = 0;
erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
ns->regs.row, NS_RAW_OFFSET(ns));
NS_LOG("erase sector %u\n", erase_block_no);
erase_sector(ns);
NS_MDELAY(erase_delay);
if (erase_block_wear)
update_wear(erase_block_no);
if (erase_error(erase_block_no)) {
NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
return -1;
}
break;
case ACTION_PRGPAGE:
/*
* Program page - move internal buffer data to the page.
*/
if (ns->lines.wp) {
NS_WARN("do_state_action: device is write-protected, programm\n");
return -1;
}
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
if (num != ns->regs.count) {
NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
ns->regs.count, num);
return -1;
}
if (prog_page(ns, num) == -1)
return -1;
page_no = ns->regs.row;
NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
NS_LOG("programm page %d\n", ns->regs.row);
NS_UDELAY(programm_delay);
NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
if (write_error(page_no)) {
NS_WARN("simulating write failure in page %u\n", page_no);
return -1;
}
break;
case ACTION_ZEROOFF:
NS_DBG("do_state_action: set internal offset to 0\n");
ns->regs.off = 0;
break;
case ACTION_HALFOFF:
if (!(ns->options & OPT_PAGE512_8BIT)) {
NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
"byte page size 8x chips\n");
return -1;
}
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
ns->regs.off = ns->geom.pgsz/2;
break;
case ACTION_OOBOFF:
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
ns->regs.off = ns->geom.pgsz;
break;
default:
NS_DBG("do_state_action: BUG! unknown action\n");
}
return 0;
}
/*
* Switch simulator's state.
*/
static void switch_state(struct nandsim *ns)
{
if (ns->op) {
/*
* The current operation have already been identified.
* Just follow the states chain.
*/
ns->stateidx += 1;
ns->state = ns->nxstate;
ns->nxstate = ns->op[ns->stateidx + 1];
NS_DBG("switch_state: operation is known, switch to the next state, "
"state: %s, nxstate: %s\n",
get_state_name(ns->state), get_state_name(ns->nxstate));
/* See, whether we need to do some action */
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
} else {
/*
* We don't yet know which operation we perform.
* Try to identify it.
*/
/*
* The only event causing the switch_state function to
* be called with yet unknown operation is new command.
*/
ns->state = get_state_by_command(ns->regs.command);
NS_DBG("switch_state: operation is unknown, try to find it\n");
if (find_operation(ns, 0) != 0)
return;
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
}
/* For 16x devices column means the page offset in words */
if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
NS_DBG("switch_state: double the column number for 16x device\n");
ns->regs.column <<= 1;
}
if (NS_STATE(ns->nxstate) == STATE_READY) {
/*
* The current state is the last. Return to STATE_READY
*/
u_char status = NS_STATUS_OK(ns);
/* In case of data states, see if all bytes were input/output */
if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
&& ns->regs.count != ns->regs.num) {
NS_WARN("switch_state: not all bytes were processed, %d left\n",
ns->regs.num - ns->regs.count);
status = NS_STATUS_FAILED(ns);
}
NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
switch_to_ready_state(ns, status);
return;
} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
/*
* If the next state is data input/output, switch to it now
*/
ns->state = ns->nxstate;
ns->nxstate = ns->op[++ns->stateidx + 1];
ns->regs.num = ns->regs.count = 0;
NS_DBG("switch_state: the next state is data I/O, switch, "
"state: %s, nxstate: %s\n",
get_state_name(ns->state), get_state_name(ns->nxstate));
/*
* Set the internal register to the count of bytes which
* are expected to be input or output
*/
switch (NS_STATE(ns->state)) {
case STATE_DATAIN:
case STATE_DATAOUT:
ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
break;
case STATE_DATAOUT_ID:
ns->regs.num = ns->geom.idbytes;
break;
case STATE_DATAOUT_STATUS:
ns->regs.count = ns->regs.num = 0;
break;
default:
NS_ERR("switch_state: BUG! unknown data state\n");
}
} else if (ns->nxstate & STATE_ADDR_MASK) {
/*
* If the next state is address input, set the internal
* register to the number of expected address bytes
*/
ns->regs.count = 0;
switch (NS_STATE(ns->nxstate)) {
case STATE_ADDR_PAGE:
ns->regs.num = ns->geom.pgaddrbytes;
break;
case STATE_ADDR_SEC:
ns->regs.num = ns->geom.secaddrbytes;
break;
case STATE_ADDR_ZERO:
ns->regs.num = 1;
break;
case STATE_ADDR_COLUMN:
/* Column address is always 2 bytes */
ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
break;
default:
NS_ERR("switch_state: BUG! unknown address state\n");
}
} else {
/*
* Just reset internal counters.
*/
ns->regs.num = 0;
ns->regs.count = 0;
}
}
static u_char ns_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
u_char outb = 0x00;
/* Sanity and correctness checks */
if (!ns->lines.ce) {
NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
return outb;
}
if (ns->lines.ale || ns->lines.cle) {
NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
return outb;
}
if (!(ns->state & STATE_DATAOUT_MASK)) {
NS_WARN("read_byte: unexpected data output cycle, state is %s "
"return %#x\n", get_state_name(ns->state), (uint)outb);
return outb;
}
/* Status register may be read as many times as it is wanted */
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
NS_DBG("read_byte: return %#x status\n", ns->regs.status);
return ns->regs.status;
}
/* Check if there is any data in the internal buffer which may be read */
if (ns->regs.count == ns->regs.num) {
NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
return outb;
}
switch (NS_STATE(ns->state)) {
case STATE_DATAOUT:
if (ns->busw == 8) {
outb = ns->buf.byte[ns->regs.count];
ns->regs.count += 1;
} else {
outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
ns->regs.count += 2;
}
break;
case STATE_DATAOUT_ID:
NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
outb = ns->ids[ns->regs.count];
ns->regs.count += 1;
break;
default:
BUG();
}
if (ns->regs.count == ns->regs.num) {
NS_DBG("read_byte: all bytes were read\n");
if (NS_STATE(ns->nxstate) == STATE_READY)
switch_state(ns);
}
return outb;
}
static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
/* Sanity and correctness checks */
if (!ns->lines.ce) {
NS_ERR("write_byte: chip is disabled, ignore write\n");
return;
}
if (ns->lines.ale && ns->lines.cle) {
NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
return;
}
if (ns->lines.cle == 1) {
/*
* The byte written is a command.
*/
if (byte == NAND_CMD_RESET) {
NS_LOG("reset chip\n");
switch_to_ready_state(ns, NS_STATUS_OK(ns));
return;
}
/* Check that the command byte is correct */
if (check_command(byte)) {
NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
return;
}
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
|| NS_STATE(ns->state) == STATE_DATAOUT) {
int row = ns->regs.row;
switch_state(ns);
if (byte == NAND_CMD_RNDOUT)
ns->regs.row = row;
}
/* Check if chip is expecting command */
if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
/* Do not warn if only 2 id bytes are read */
if (!(ns->regs.command == NAND_CMD_READID &&
NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
/*
* We are in situation when something else (not command)
* was expected but command was input. In this case ignore
* previous command(s)/state(s) and accept the last one.
*/
NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
}
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
}
NS_DBG("command byte corresponding to %s state accepted\n",
get_state_name(get_state_by_command(byte)));
ns->regs.command = byte;
switch_state(ns);
} else if (ns->lines.ale == 1) {
/*
* The byte written is an address.
*/
if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
NS_DBG("write_byte: operation isn't known yet, identify it\n");
if (find_operation(ns, 1) < 0)
return;
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
ns->regs.count = 0;
switch (NS_STATE(ns->nxstate)) {
case STATE_ADDR_PAGE:
ns->regs.num = ns->geom.pgaddrbytes;
break;
case STATE_ADDR_SEC:
ns->regs.num = ns->geom.secaddrbytes;
break;
case STATE_ADDR_ZERO:
ns->regs.num = 1;
break;
default:
BUG();
}
}
/* Check that chip is expecting address */
if (!(ns->nxstate & STATE_ADDR_MASK)) {
NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
/* Check if this is expected byte */
if (ns->regs.count == ns->regs.num) {
NS_ERR("write_byte: no more address bytes expected\n");
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
accept_addr_byte(ns, byte);
ns->regs.count += 1;
NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
(uint)byte, ns->regs.count, ns->regs.num);
if (ns->regs.count == ns->regs.num) {
NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
switch_state(ns);
}
} else {
/*
* The byte written is an input data.
*/
/* Check that chip is expecting data input */
if (!(ns->state & STATE_DATAIN_MASK)) {
NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
"switch to %s\n", (uint)byte,
get_state_name(ns->state), get_state_name(STATE_READY));
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
/* Check if this is expected byte */
if (ns->regs.count == ns->regs.num) {
NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
ns->regs.num);
return;
}
if (ns->busw == 8) {
ns->buf.byte[ns->regs.count] = byte;
ns->regs.count += 1;
} else {
ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
ns->regs.count += 2;
}
}
return;
}
static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
if (cmd != NAND_CMD_NONE)
ns_nand_write_byte(mtd, cmd);
}
static int ns_device_ready(struct mtd_info *mtd)
{
NS_DBG("device_ready\n");
return 1;
}
static uint16_t ns_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
NS_DBG("read_word\n");
return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
}
static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
/* Check that chip is expecting data input */
if (!(ns->state & STATE_DATAIN_MASK)) {
NS_ERR("write_buf: data input isn't expected, state is %s, "
"switch to STATE_READY\n", get_state_name(ns->state));
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
/* Check if these are expected bytes */
if (ns->regs.count + len > ns->regs.num) {
NS_ERR("write_buf: too many input bytes\n");
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
memcpy(ns->buf.byte + ns->regs.count, buf, len);
ns->regs.count += len;
if (ns->regs.count == ns->regs.num) {
NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
}
}
static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nandsim *ns = nand_get_controller_data(chip);
/* Sanity and correctness checks */
if (!ns->lines.ce) {
NS_ERR("read_buf: chip is disabled\n");
return;
}
if (ns->lines.ale || ns->lines.cle) {
NS_ERR("read_buf: ALE or CLE pin is high\n");
return;
}
if (!(ns->state & STATE_DATAOUT_MASK)) {
NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
get_state_name(ns->state));
return;
}
if (NS_STATE(ns->state) != STATE_DATAOUT) {
int i;
for (i = 0; i < len; i++)
buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
return;
}
/* Check if these are expected bytes */
if (ns->regs.count + len > ns->regs.num) {
NS_ERR("read_buf: too many bytes to read\n");
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
return;
}
memcpy(buf, ns->buf.byte + ns->regs.count, len);
ns->regs.count += len;
if (ns->regs.count == ns->regs.num) {
if (NS_STATE(ns->nxstate) == STATE_READY)
switch_state(ns);
}
return;
}
static int ns_attach_chip(struct nand_chip *chip)
{
unsigned int eccsteps, eccbytes;
if (!bch)
return 0;
if (!mtd_nand_has_bch()) {
NS_ERR("BCH ECC support is disabled\n");
return -EINVAL;
}
/* Use 512-byte ecc blocks */
eccsteps = nsmtd->writesize / 512;
eccbytes = ((bch * 13) + 7) / 8;
/* Do not bother supporting small page devices */
if (nsmtd->oobsize < 64 || !eccsteps) {
NS_ERR("BCH not available on small page devices\n");
return -EINVAL;
}
if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
NS_ERR("Invalid BCH value %u\n", bch);
return -EINVAL;
}
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_BCH;
chip->ecc.size = 512;
chip->ecc.strength = bch;
chip->ecc.bytes = eccbytes;
NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
return 0;
}
static const struct nand_controller_ops ns_controller_ops = {
.attach_chip = ns_attach_chip,
};
/*
* Module initialization function
*/
static int __init ns_init_module(void)
{
struct nand_chip *chip;
struct nandsim *nand;
int retval = -ENOMEM, i;
if (bus_width != 8 && bus_width != 16) {
NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
return -EINVAL;
}
/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
GFP_KERNEL);
if (!chip) {
NS_ERR("unable to allocate core structures.\n");
return -ENOMEM;
}
nsmtd = nand_to_mtd(chip);
nand = (struct nandsim *)(chip + 1);
nand_set_controller_data(chip, (void *)nand);
/*
* Register simulator's callbacks.
*/
chip->cmd_ctrl = ns_hwcontrol;
chip->read_byte = ns_nand_read_byte;
chip->dev_ready = ns_device_ready;
chip->write_buf = ns_nand_write_buf;
chip->read_buf = ns_nand_read_buf;
chip->read_word = ns_nand_read_word;
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
/* and 'badblocks' parameters to work */
chip->options |= NAND_SKIP_BBTSCAN;
switch (bbt) {
case 2:
chip->bbt_options |= NAND_BBT_NO_OOB;
case 1:
chip->bbt_options |= NAND_BBT_USE_FLASH;
case 0:
break;
default:
NS_ERR("bbt has to be 0..2\n");
retval = -EINVAL;
goto error;
}
/*
* Perform minimum nandsim structure initialization to handle
* the initial ID read command correctly
*/
if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
nand->geom.idbytes = 8;
else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
nand->geom.idbytes = 6;
else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
nand->geom.idbytes = 4;
else
nand->geom.idbytes = 2;
nand->regs.status = NS_STATUS_OK(nand);
nand->nxstate = STATE_UNKNOWN;
nand->options |= OPT_PAGE512; /* temporary value */
memcpy(nand->ids, id_bytes, sizeof(nand->ids));
if (bus_width == 16) {
nand->busw = 16;
chip->options |= NAND_BUSWIDTH_16;
}
nsmtd->owner = THIS_MODULE;
if ((retval = parse_weakblocks()) != 0)
goto error;
if ((retval = parse_weakpages()) != 0)
goto error;
if ((retval = parse_gravepages()) != 0)
goto error;
chip->dummy_controller.ops = &ns_controller_ops;
retval = nand_scan(chip, 1);
if (retval) {
NS_ERR("Could not scan NAND Simulator device\n");
goto error;
}
if (overridesize) {
uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
if (new_size >> overridesize != nsmtd->erasesize) {
NS_ERR("overridesize is too big\n");
retval = -EINVAL;
goto err_exit;
}
/* N.B. This relies on nand_scan not doing anything with the size before we change it */
nsmtd->size = new_size;
chip->chipsize = new_size;
chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
}
if ((retval = setup_wear_reporting(nsmtd)) != 0)
goto err_exit;
if ((retval = init_nandsim(nsmtd)) != 0)
goto err_exit;
if ((retval = nand_create_bbt(chip)) != 0)
goto err_exit;
if ((retval = parse_badblocks(nand, nsmtd)) != 0)
goto err_exit;
/* Register NAND partitions */
retval = mtd_device_register(nsmtd, &nand->partitions[0],
nand->nbparts);
if (retval != 0)
goto err_exit;
if ((retval = nandsim_debugfs_create(nand)) != 0)
goto err_exit;
return 0;
err_exit:
free_nandsim(nand);
nand_release(chip);
for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
kfree(nand->partitions[i].name);
error:
kfree(chip);
free_lists();
return retval;
}
module_init(ns_init_module);
/*
* Module clean-up function
*/
static void __exit ns_cleanup_module(void)
{
struct nand_chip *chip = mtd_to_nand(nsmtd);
struct nandsim *ns = nand_get_controller_data(chip);
int i;
free_nandsim(ns); /* Free nandsim private resources */
nand_release(chip); /* Unregister driver */
for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
kfree(ns->partitions[i].name);
kfree(mtd_to_nand(nsmtd)); /* Free other structures */
free_lists();
}
module_exit(ns_cleanup_module);
MODULE_LICENSE ("GPL");
MODULE_AUTHOR ("Artem B. Bityuckiy");
MODULE_DESCRIPTION ("The NAND flash simulator");