kernel_samsung_a34x-permissive/drivers/net/ethernet/sfc/falcon/falcon.c
2024-04-28 15:49:01 +02:00

2907 lines
85 KiB
C
Executable file

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/i2c.h>
#include <linux/mii.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "farch_regs.h"
#include "io.h"
#include "phy.h"
#include "workarounds.h"
#include "selftest.h"
#include "mdio_10g.h"
/* Hardware control for SFC4000 (aka Falcon). */
/**************************************************************************
*
* NIC stats
*
**************************************************************************
*/
#define FALCON_MAC_STATS_SIZE 0x100
#define XgRxOctets_offset 0x0
#define XgRxOctets_WIDTH 48
#define XgRxOctetsOK_offset 0x8
#define XgRxOctetsOK_WIDTH 48
#define XgRxPkts_offset 0x10
#define XgRxPkts_WIDTH 32
#define XgRxPktsOK_offset 0x14
#define XgRxPktsOK_WIDTH 32
#define XgRxBroadcastPkts_offset 0x18
#define XgRxBroadcastPkts_WIDTH 32
#define XgRxMulticastPkts_offset 0x1C
#define XgRxMulticastPkts_WIDTH 32
#define XgRxUnicastPkts_offset 0x20
#define XgRxUnicastPkts_WIDTH 32
#define XgRxUndersizePkts_offset 0x24
#define XgRxUndersizePkts_WIDTH 32
#define XgRxOversizePkts_offset 0x28
#define XgRxOversizePkts_WIDTH 32
#define XgRxJabberPkts_offset 0x2C
#define XgRxJabberPkts_WIDTH 32
#define XgRxUndersizeFCSerrorPkts_offset 0x30
#define XgRxUndersizeFCSerrorPkts_WIDTH 32
#define XgRxDropEvents_offset 0x34
#define XgRxDropEvents_WIDTH 32
#define XgRxFCSerrorPkts_offset 0x38
#define XgRxFCSerrorPkts_WIDTH 32
#define XgRxAlignError_offset 0x3C
#define XgRxAlignError_WIDTH 32
#define XgRxSymbolError_offset 0x40
#define XgRxSymbolError_WIDTH 32
#define XgRxInternalMACError_offset 0x44
#define XgRxInternalMACError_WIDTH 32
#define XgRxControlPkts_offset 0x48
#define XgRxControlPkts_WIDTH 32
#define XgRxPausePkts_offset 0x4C
#define XgRxPausePkts_WIDTH 32
#define XgRxPkts64Octets_offset 0x50
#define XgRxPkts64Octets_WIDTH 32
#define XgRxPkts65to127Octets_offset 0x54
#define XgRxPkts65to127Octets_WIDTH 32
#define XgRxPkts128to255Octets_offset 0x58
#define XgRxPkts128to255Octets_WIDTH 32
#define XgRxPkts256to511Octets_offset 0x5C
#define XgRxPkts256to511Octets_WIDTH 32
#define XgRxPkts512to1023Octets_offset 0x60
#define XgRxPkts512to1023Octets_WIDTH 32
#define XgRxPkts1024to15xxOctets_offset 0x64
#define XgRxPkts1024to15xxOctets_WIDTH 32
#define XgRxPkts15xxtoMaxOctets_offset 0x68
#define XgRxPkts15xxtoMaxOctets_WIDTH 32
#define XgRxLengthError_offset 0x6C
#define XgRxLengthError_WIDTH 32
#define XgTxPkts_offset 0x80
#define XgTxPkts_WIDTH 32
#define XgTxOctets_offset 0x88
#define XgTxOctets_WIDTH 48
#define XgTxMulticastPkts_offset 0x90
#define XgTxMulticastPkts_WIDTH 32
#define XgTxBroadcastPkts_offset 0x94
#define XgTxBroadcastPkts_WIDTH 32
#define XgTxUnicastPkts_offset 0x98
#define XgTxUnicastPkts_WIDTH 32
#define XgTxControlPkts_offset 0x9C
#define XgTxControlPkts_WIDTH 32
#define XgTxPausePkts_offset 0xA0
#define XgTxPausePkts_WIDTH 32
#define XgTxPkts64Octets_offset 0xA4
#define XgTxPkts64Octets_WIDTH 32
#define XgTxPkts65to127Octets_offset 0xA8
#define XgTxPkts65to127Octets_WIDTH 32
#define XgTxPkts128to255Octets_offset 0xAC
#define XgTxPkts128to255Octets_WIDTH 32
#define XgTxPkts256to511Octets_offset 0xB0
#define XgTxPkts256to511Octets_WIDTH 32
#define XgTxPkts512to1023Octets_offset 0xB4
#define XgTxPkts512to1023Octets_WIDTH 32
#define XgTxPkts1024to15xxOctets_offset 0xB8
#define XgTxPkts1024to15xxOctets_WIDTH 32
#define XgTxPkts1519toMaxOctets_offset 0xBC
#define XgTxPkts1519toMaxOctets_WIDTH 32
#define XgTxUndersizePkts_offset 0xC0
#define XgTxUndersizePkts_WIDTH 32
#define XgTxOversizePkts_offset 0xC4
#define XgTxOversizePkts_WIDTH 32
#define XgTxNonTcpUdpPkt_offset 0xC8
#define XgTxNonTcpUdpPkt_WIDTH 16
#define XgTxMacSrcErrPkt_offset 0xCC
#define XgTxMacSrcErrPkt_WIDTH 16
#define XgTxIpSrcErrPkt_offset 0xD0
#define XgTxIpSrcErrPkt_WIDTH 16
#define XgDmaDone_offset 0xD4
#define XgDmaDone_WIDTH 32
#define FALCON_XMAC_STATS_DMA_FLAG(efx) \
(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
#define FALCON_DMA_STAT(ext_name, hw_name) \
[FALCON_STAT_ ## ext_name] = \
{ #ext_name, \
/* 48-bit stats are zero-padded to 64 on DMA */ \
hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
hw_name ## _ ## offset }
#define FALCON_OTHER_STAT(ext_name) \
[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
#define GENERIC_SW_STAT(ext_name) \
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
FALCON_DMA_STAT(tx_bytes, XgTxOctets),
FALCON_DMA_STAT(tx_packets, XgTxPkts),
FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
FALCON_DMA_STAT(tx_control, XgTxControlPkts),
FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
FALCON_DMA_STAT(rx_bytes, XgRxOctets),
FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
FALCON_OTHER_STAT(rx_bad_bytes),
FALCON_DMA_STAT(rx_packets, XgRxPkts),
FALCON_DMA_STAT(rx_good, XgRxPktsOK),
FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
FALCON_DMA_STAT(rx_control, XgRxControlPkts),
FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
GENERIC_SW_STAT(rx_nodesc_trunc),
GENERIC_SW_STAT(rx_noskb_drops),
};
static const unsigned long falcon_stat_mask[] = {
[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
};
/**************************************************************************
*
* Basic SPI command set and bit definitions
*
*************************************************************************/
#define SPI_WRSR 0x01 /* Write status register */
#define SPI_WRITE 0x02 /* Write data to memory array */
#define SPI_READ 0x03 /* Read data from memory array */
#define SPI_WRDI 0x04 /* Reset write enable latch */
#define SPI_RDSR 0x05 /* Read status register */
#define SPI_WREN 0x06 /* Set write enable latch */
#define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
#define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
#define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
#define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
#define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
#define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
#define SPI_STATUS_NRDY 0x01 /* Device busy flag */
/**************************************************************************
*
* Non-volatile memory layout
*
**************************************************************************
*/
/* SFC4000 flash is partitioned into:
* 0-0x400 chip and board config (see struct falcon_nvconfig)
* 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
* 0x8000-end boot code (mapped to PCI expansion ROM)
* SFC4000 small EEPROM (size < 0x400) is used for VPD only.
* SFC4000 large EEPROM (size >= 0x400) is partitioned into:
* 0-0x400 chip and board config
* configurable VPD
* 0x800-0x1800 boot config
* Aside from the chip and board config, all of these are optional and may
* be absent or truncated depending on the devices used.
*/
#define FALCON_NVCONFIG_END 0x400U
#define FALCON_FLASH_BOOTCODE_START 0x8000U
#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
struct falcon_nvconfig_board_v2 {
__le16 nports;
u8 port0_phy_addr;
u8 port0_phy_type;
u8 port1_phy_addr;
u8 port1_phy_type;
__le16 asic_sub_revision;
__le16 board_revision;
} __packed;
/* Board configuration v3 extra information */
struct falcon_nvconfig_board_v3 {
__le32 spi_device_type[2];
} __packed;
/* Bit numbers for spi_device_type */
#define SPI_DEV_TYPE_SIZE_LBN 0
#define SPI_DEV_TYPE_SIZE_WIDTH 5
#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
#define SPI_DEV_TYPE_FIELD(type, field) \
(((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
#define FALCON_NVCONFIG_OFFSET 0x300
#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
struct falcon_nvconfig {
ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */
u8 mac_address[2][8]; /* 0x310 */
ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */
ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
ef4_oword_t hw_init_reg; /* 0x350 */
ef4_oword_t nic_stat_reg; /* 0x360 */
ef4_oword_t glb_ctl_reg; /* 0x370 */
ef4_oword_t srm_cfg_reg; /* 0x380 */
ef4_oword_t spare_reg; /* 0x390 */
__le16 board_magic_num; /* 0x3A0 */
__le16 board_struct_ver;
__le16 board_checksum;
struct falcon_nvconfig_board_v2 board_v2;
ef4_oword_t ee_base_page_reg; /* 0x3B0 */
struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
} __packed;
/*************************************************************************/
static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
static const unsigned int
/* "Large" EEPROM device: Atmel AT25640 or similar
* 8 KB, 16-bit address, 32 B write block */
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
| (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
| (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
/* Default flash device: Atmel AT25F1024
* 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
| (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
| (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
| (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
| (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
/**************************************************************************
*
* I2C bus - this is a bit-bashing interface using GPIO pins
* Note that it uses the output enables to tristate the outputs
* SDA is the data pin and SCL is the clock
*
**************************************************************************
*/
static void falcon_setsda(void *data, int state)
{
struct ef4_nic *efx = (struct ef4_nic *)data;
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
}
static void falcon_setscl(void *data, int state)
{
struct ef4_nic *efx = (struct ef4_nic *)data;
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
}
static int falcon_getsda(void *data)
{
struct ef4_nic *efx = (struct ef4_nic *)data;
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
}
static int falcon_getscl(void *data)
{
struct ef4_nic *efx = (struct ef4_nic *)data;
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
}
static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
.setsda = falcon_setsda,
.setscl = falcon_setscl,
.getsda = falcon_getsda,
.getscl = falcon_getscl,
.udelay = 5,
/* Wait up to 50 ms for slave to let us pull SCL high */
.timeout = DIV_ROUND_UP(HZ, 20),
};
static void falcon_push_irq_moderation(struct ef4_channel *channel)
{
ef4_dword_t timer_cmd;
struct ef4_nic *efx = channel->efx;
/* Set timer register */
if (channel->irq_moderation_us) {
unsigned int ticks;
ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
EF4_POPULATE_DWORD_2(timer_cmd,
FRF_AB_TC_TIMER_MODE,
FFE_BB_TIMER_MODE_INT_HLDOFF,
FRF_AB_TC_TIMER_VAL,
ticks - 1);
} else {
EF4_POPULATE_DWORD_2(timer_cmd,
FRF_AB_TC_TIMER_MODE,
FFE_BB_TIMER_MODE_DIS,
FRF_AB_TC_TIMER_VAL, 0);
}
BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
channel->channel);
}
static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
static void falcon_prepare_flush(struct ef4_nic *efx)
{
falcon_deconfigure_mac_wrapper(efx);
/* Wait for the tx and rx fifo's to get to the next packet boundary
* (~1ms without back-pressure), then to drain the remainder of the
* fifo's at data path speeds (negligible), with a healthy margin. */
msleep(10);
}
/* Acknowledge a legacy interrupt from Falcon
*
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
*
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
* BIU. Interrupt acknowledge is read sensitive so must write instead
* (then read to ensure the BIU collector is flushed)
*
* NB most hardware supports MSI interrupts
*/
static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
{
ef4_dword_t reg;
EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
}
static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
{
struct ef4_nic *efx = dev_id;
ef4_oword_t *int_ker = efx->irq_status.addr;
int syserr;
int queues;
/* Check to see if this is our interrupt. If it isn't, we
* exit without having touched the hardware.
*/
if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d not for me\n", irq,
raw_smp_processor_id());
return IRQ_NONE;
}
efx->last_irq_cpu = raw_smp_processor_id();
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
if (!likely(READ_ONCE(efx->irq_soft_enabled)))
return IRQ_HANDLED;
/* Check to see if we have a serious error condition */
syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return ef4_farch_fatal_interrupt(efx);
/* Determine interrupting queues, clear interrupt status
* register and acknowledge the device interrupt.
*/
BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
EF4_ZERO_OWORD(*int_ker);
wmb(); /* Ensure the vector is cleared before interrupt ack */
falcon_irq_ack_a1(efx);
if (queues & 1)
ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
if (queues & 2)
ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
return IRQ_HANDLED;
}
/**************************************************************************
*
* RSS
*
**************************************************************************
*/
static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
const u32 *rx_indir_table)
{
(void) efx;
(void) user;
(void) rx_indir_table;
return -ENOSYS;
}
static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
const u32 *rx_indir_table)
{
ef4_oword_t temp;
(void) user;
/* Set hash key for IPv4 */
memcpy(&temp, efx->rx_hash_key, sizeof(temp));
ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
memcpy(efx->rx_indir_table, rx_indir_table,
sizeof(efx->rx_indir_table));
ef4_farch_rx_push_indir_table(efx);
return 0;
}
/**************************************************************************
*
* EEPROM/flash
*
**************************************************************************
*/
#define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
static int falcon_spi_poll(struct ef4_nic *efx)
{
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
}
/* Wait for SPI command completion */
static int falcon_spi_wait(struct ef4_nic *efx)
{
/* Most commands will finish quickly, so we start polling at
* very short intervals. Sometimes the command may have to
* wait for VPD or expansion ROM access outside of our
* control, so we allow up to 100 ms. */
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
int i;
for (i = 0; i < 10; i++) {
if (!falcon_spi_poll(efx))
return 0;
udelay(10);
}
for (;;) {
if (!falcon_spi_poll(efx))
return 0;
if (time_after_eq(jiffies, timeout)) {
netif_err(efx, hw, efx->net_dev,
"timed out waiting for SPI\n");
return -ETIMEDOUT;
}
schedule_timeout_uninterruptible(1);
}
}
static int
falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
unsigned int command, int address,
const void *in, void *out, size_t len)
{
bool addressed = (address >= 0);
bool reading = (out != NULL);
ef4_oword_t reg;
int rc;
/* Input validation */
if (len > FALCON_SPI_MAX_LEN)
return -EINVAL;
/* Check that previous command is not still running */
rc = falcon_spi_poll(efx);
if (rc)
return rc;
/* Program address register, if we have an address */
if (addressed) {
EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
}
/* Program data register, if we have data */
if (in != NULL) {
memcpy(&reg, in, len);
ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
}
/* Issue read/write command */
EF4_POPULATE_OWORD_7(reg,
FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
FRF_AB_EE_SPI_HCMD_DABCNT, len,
FRF_AB_EE_SPI_HCMD_READ, reading,
FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
FRF_AB_EE_SPI_HCMD_ADBCNT,
(addressed ? spi->addr_len : 0),
FRF_AB_EE_SPI_HCMD_ENC, command);
ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
/* Wait for read/write to complete */
rc = falcon_spi_wait(efx);
if (rc)
return rc;
/* Read data */
if (out != NULL) {
ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
memcpy(out, &reg, len);
}
return 0;
}
static inline u8
falcon_spi_munge_command(const struct falcon_spi_device *spi,
const u8 command, const unsigned int address)
{
return command | (((address >> 8) & spi->munge_address) << 3);
}
static int
falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
loff_t start, size_t len, size_t *retlen, u8 *buffer)
{
size_t block_len, pos = 0;
unsigned int command;
int rc = 0;
while (pos < len) {
block_len = min(len - pos, FALCON_SPI_MAX_LEN);
command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
buffer + pos, block_len);
if (rc)
break;
pos += block_len;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current)) {
rc = -EINTR;
break;
}
}
if (retlen)
*retlen = pos;
return rc;
}
#ifdef CONFIG_SFC_FALCON_MTD
struct falcon_mtd_partition {
struct ef4_mtd_partition common;
const struct falcon_spi_device *spi;
size_t offset;
};
#define to_falcon_mtd_partition(mtd) \
container_of(mtd, struct falcon_mtd_partition, common.mtd)
static size_t
falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
{
return min(FALCON_SPI_MAX_LEN,
(spi->block_size - (start & (spi->block_size - 1))));
}
/* Wait up to 10 ms for buffered write completion */
static int
falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
{
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
u8 status;
int rc;
for (;;) {
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & SPI_STATUS_NRDY))
return 0;
if (time_after_eq(jiffies, timeout)) {
netif_err(efx, hw, efx->net_dev,
"SPI write timeout on device %d"
" last status=0x%02x\n",
spi->device_id, status);
return -ETIMEDOUT;
}
schedule_timeout_uninterruptible(1);
}
}
static int
falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
loff_t start, size_t len, size_t *retlen, const u8 *buffer)
{
u8 verify_buffer[FALCON_SPI_MAX_LEN];
size_t block_len, pos = 0;
unsigned int command;
int rc = 0;
while (pos < len) {
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
break;
block_len = min(len - pos,
falcon_spi_write_limit(spi, start + pos));
command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
rc = falcon_spi_cmd(efx, spi, command, start + pos,
buffer + pos, NULL, block_len);
if (rc)
break;
rc = falcon_spi_wait_write(efx, spi);
if (rc)
break;
command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
rc = falcon_spi_cmd(efx, spi, command, start + pos,
NULL, verify_buffer, block_len);
if (memcmp(verify_buffer, buffer + pos, block_len)) {
rc = -EIO;
break;
}
pos += block_len;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current)) {
rc = -EINTR;
break;
}
}
if (retlen)
*retlen = pos;
return rc;
}
static int
falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
{
const struct falcon_spi_device *spi = part->spi;
struct ef4_nic *efx = part->common.mtd.priv;
u8 status;
int rc, i;
/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
for (i = 0; i < 40; i++) {
__set_current_state(uninterruptible ?
TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
schedule_timeout(HZ / 10);
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & SPI_STATUS_NRDY))
return 0;
if (signal_pending(current))
return -EINTR;
}
pr_err("%s: timed out waiting for %s\n",
part->common.name, part->common.dev_type_name);
return -ETIMEDOUT;
}
static int
falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
{
const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
SPI_STATUS_BP0);
u8 status;
int rc;
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
&status, sizeof(status));
if (rc)
return rc;
if (!(status & unlock_mask))
return 0; /* already unlocked */
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
if (rc)
return rc;
status &= ~unlock_mask;
rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
NULL, sizeof(status));
if (rc)
return rc;
rc = falcon_spi_wait_write(efx, spi);
if (rc)
return rc;
return 0;
}
#define FALCON_SPI_VERIFY_BUF_LEN 16
static int
falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
{
const struct falcon_spi_device *spi = part->spi;
struct ef4_nic *efx = part->common.mtd.priv;
unsigned pos, block_len;
u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
int rc;
if (len != spi->erase_size)
return -EINVAL;
if (spi->erase_command == 0)
return -EOPNOTSUPP;
rc = falcon_spi_unlock(efx, spi);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
if (rc)
return rc;
rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
NULL, 0);
if (rc)
return rc;
rc = falcon_spi_slow_wait(part, false);
/* Verify the entire region has been wiped */
memset(empty, 0xff, sizeof(empty));
for (pos = 0; pos < len; pos += block_len) {
block_len = min(len - pos, sizeof(buffer));
rc = falcon_spi_read(efx, spi, start + pos, block_len,
NULL, buffer);
if (rc)
return rc;
if (memcmp(empty, buffer, block_len))
return -EIO;
/* Avoid locking up the system */
cond_resched();
if (signal_pending(current))
return -EINTR;
}
return rc;
}
static void falcon_mtd_rename(struct ef4_mtd_partition *part)
{
struct ef4_nic *efx = part->mtd.priv;
snprintf(part->name, sizeof(part->name), "%s %s",
efx->name, part->type_name);
}
static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, u8 *buffer)
{
struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
struct ef4_nic *efx = mtd->priv;
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
rc = mutex_lock_interruptible(&nic_data->spi_lock);
if (rc)
return rc;
rc = falcon_spi_read(efx, part->spi, part->offset + start,
len, retlen, buffer);
mutex_unlock(&nic_data->spi_lock);
return rc;
}
static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
{
struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
struct ef4_nic *efx = mtd->priv;
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
rc = mutex_lock_interruptible(&nic_data->spi_lock);
if (rc)
return rc;
rc = falcon_spi_erase(part, part->offset + start, len);
mutex_unlock(&nic_data->spi_lock);
return rc;
}
static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
size_t len, size_t *retlen, const u8 *buffer)
{
struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
struct ef4_nic *efx = mtd->priv;
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
rc = mutex_lock_interruptible(&nic_data->spi_lock);
if (rc)
return rc;
rc = falcon_spi_write(efx, part->spi, part->offset + start,
len, retlen, buffer);
mutex_unlock(&nic_data->spi_lock);
return rc;
}
static int falcon_mtd_sync(struct mtd_info *mtd)
{
struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
struct ef4_nic *efx = mtd->priv;
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
mutex_lock(&nic_data->spi_lock);
rc = falcon_spi_slow_wait(part, true);
mutex_unlock(&nic_data->spi_lock);
return rc;
}
static int falcon_mtd_probe(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
struct falcon_mtd_partition *parts;
struct falcon_spi_device *spi;
size_t n_parts;
int rc = -ENODEV;
ASSERT_RTNL();
/* Allocate space for maximum number of partitions */
parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
n_parts = 0;
spi = &nic_data->spi_flash;
if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
parts[n_parts].spi = spi;
parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
parts[n_parts].common.dev_type_name = "flash";
parts[n_parts].common.type_name = "sfc_flash_bootrom";
parts[n_parts].common.mtd.type = MTD_NORFLASH;
parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
parts[n_parts].common.mtd.erasesize = spi->erase_size;
n_parts++;
}
spi = &nic_data->spi_eeprom;
if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
parts[n_parts].spi = spi;
parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
parts[n_parts].common.dev_type_name = "EEPROM";
parts[n_parts].common.type_name = "sfc_bootconfig";
parts[n_parts].common.mtd.type = MTD_RAM;
parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
parts[n_parts].common.mtd.size =
min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
FALCON_EEPROM_BOOTCONFIG_START;
parts[n_parts].common.mtd.erasesize = spi->erase_size;
n_parts++;
}
rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
if (rc)
kfree(parts);
return rc;
}
#endif /* CONFIG_SFC_FALCON_MTD */
/**************************************************************************
*
* XMAC operations
*
**************************************************************************
*/
/* Configure the XAUI driver that is an output from Falcon */
static void falcon_setup_xaui(struct ef4_nic *efx)
{
ef4_oword_t sdctl, txdrv;
/* Move the XAUI into low power, unless there is no PHY, in
* which case the XAUI will have to drive a cable. */
if (efx->phy_type == PHY_TYPE_NONE)
return;
ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
EF4_POPULATE_OWORD_8(txdrv,
FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
}
int falcon_reset_xaui(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg;
int count;
/* Don't fetch MAC statistics over an XMAC reset */
WARN_ON(nic_data->stats_disable_count == 0);
/* Start reset sequence */
EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
/* Wait up to 10 ms for completion, then reinitialise */
for (count = 0; count < 1000; count++) {
ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
falcon_setup_xaui(efx);
return 0;
}
udelay(10);
}
netif_err(efx, hw, efx->net_dev,
"timed out waiting for XAUI/XGXS reset\n");
return -ETIMEDOUT;
}
static void falcon_ack_status_intr(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg;
if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
return;
/* We expect xgmii faults if the wireside link is down */
if (!efx->link_state.up)
return;
/* We can only use this interrupt to signal the negative edge of
* xaui_align [we have to poll the positive edge]. */
if (nic_data->xmac_poll_required)
return;
ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
}
static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
{
ef4_oword_t reg;
bool align_done, link_ok = false;
int sync_status;
/* Read link status */
ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
link_ok = true;
/* Clear link status ready for next read */
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
return link_ok;
}
static bool falcon_xmac_link_ok(struct ef4_nic *efx)
{
/*
* Check MAC's XGXS link status except when using XGMII loopback
* which bypasses the XGXS block.
* If possible, check PHY's XGXS link status except when using
* MAC loopback.
*/
return (efx->loopback_mode == LOOPBACK_XGMII ||
falcon_xgxs_link_ok(efx)) &&
(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
LOOPBACK_INTERNAL(efx) ||
ef4_mdio_phyxgxs_lane_sync(efx));
}
static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
{
unsigned int max_frame_len;
ef4_oword_t reg;
bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
/* Configure MAC - cut-thru mode is hard wired on */
EF4_POPULATE_OWORD_3(reg,
FRF_AB_XM_RX_JUMBO_MODE, 1,
FRF_AB_XM_TX_STAT_EN, 1,
FRF_AB_XM_RX_STAT_EN, 1);
ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
/* Configure TX */
EF4_POPULATE_OWORD_6(reg,
FRF_AB_XM_TXEN, 1,
FRF_AB_XM_TX_PRMBL, 1,
FRF_AB_XM_AUTO_PAD, 1,
FRF_AB_XM_TXCRC, 1,
FRF_AB_XM_FCNTL, tx_fc,
FRF_AB_XM_IPG, 0x3);
ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
/* Configure RX */
EF4_POPULATE_OWORD_5(reg,
FRF_AB_XM_RXEN, 1,
FRF_AB_XM_AUTO_DEPAD, 0,
FRF_AB_XM_ACPT_ALL_MCAST, 1,
FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
FRF_AB_XM_PASS_CRC_ERR, 1);
ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
/* Set frame length */
max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
EF4_POPULATE_OWORD_2(reg,
FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
FRF_AB_XM_TX_JUMBO_MODE, 1);
ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
EF4_POPULATE_OWORD_2(reg,
FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
FRF_AB_XM_DIS_FCNTL, !rx_fc);
ef4_writeo(efx, &reg, FR_AB_XM_FC);
/* Set MAC address */
memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
}
static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
{
ef4_oword_t reg;
bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
/* XGXS block is flaky and will need to be reset if moving
* into our out of XGMII, XGXS or XAUI loopbacks. */
ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
/* The PHY driver may have turned XAUI off */
if ((xgxs_loopback != old_xgxs_loopback) ||
(xaui_loopback != old_xaui_loopback) ||
(xgmii_loopback != old_xgmii_loopback))
falcon_reset_xaui(efx);
ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
(xgxs_loopback || xaui_loopback) ?
FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
}
/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
{
bool mac_up = falcon_xmac_link_ok(efx);
if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
ef4_phy_mode_disabled(efx->phy_mode))
/* XAUI link is expected to be down */
return mac_up;
falcon_stop_nic_stats(efx);
while (!mac_up && tries) {
netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
falcon_reset_xaui(efx);
udelay(200);
mac_up = falcon_xmac_link_ok(efx);
--tries;
}
falcon_start_nic_stats(efx);
return mac_up;
}
static bool falcon_xmac_check_fault(struct ef4_nic *efx)
{
return !falcon_xmac_link_ok_retry(efx, 5);
}
static int falcon_reconfigure_xmac(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_farch_filter_sync_rx_mode(efx);
falcon_reconfigure_xgxs_core(efx);
falcon_reconfigure_xmac_core(efx);
falcon_reconfigure_mac_wrapper(efx);
nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
falcon_ack_status_intr(efx);
return 0;
}
static void falcon_poll_xmac(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
/* We expect xgmii faults if the wireside link is down */
if (!efx->link_state.up || !nic_data->xmac_poll_required)
return;
nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
falcon_ack_status_intr(efx);
}
/**************************************************************************
*
* MAC wrapper
*
**************************************************************************
*/
static void falcon_push_multicast_hash(struct ef4_nic *efx)
{
union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
}
static void falcon_reset_macs(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg, mac_ctrl;
int count;
if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
/* It's not safe to use GLB_CTL_REG to reset the
* macs, so instead use the internal MAC resets
*/
EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
for (count = 0; count < 10000; count++) {
ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
0)
return;
udelay(10);
}
netif_err(efx, hw, efx->net_dev,
"timed out waiting for XMAC core reset\n");
}
/* Mac stats will fail whist the TX fifo is draining */
WARN_ON(nic_data->stats_disable_count == 0);
ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
ef4_reado(efx, &reg, FR_AB_GLB_CTL);
EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
count = 0;
while (1) {
ef4_reado(efx, &reg, FR_AB_GLB_CTL);
if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
!EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
netif_dbg(efx, hw, efx->net_dev,
"Completed MAC reset after %d loops\n",
count);
break;
}
if (count > 20) {
netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
break;
}
count++;
udelay(10);
}
/* Ensure the correct MAC is selected before statistics
* are re-enabled by the caller */
ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
falcon_setup_xaui(efx);
}
static void falcon_drain_tx_fifo(struct ef4_nic *efx)
{
ef4_oword_t reg;
if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
(efx->loopback_mode != LOOPBACK_NONE))
return;
ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
/* There is no point in draining more than once */
if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
return;
falcon_reset_macs(efx);
}
static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
{
ef4_oword_t reg;
if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
return;
/* Isolate the MAC -> RX */
ef4_reado(efx, &reg, FR_AZ_RX_CFG);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
/* Isolate TX -> MAC */
falcon_drain_tx_fifo(efx);
}
static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
{
struct ef4_link_state *link_state = &efx->link_state;
ef4_oword_t reg;
int link_speed, isolate;
isolate = !!READ_ONCE(efx->reset_pending);
switch (link_state->speed) {
case 10000: link_speed = 3; break;
case 1000: link_speed = 2; break;
case 100: link_speed = 1; break;
default: link_speed = 0; break;
}
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
* as advertised. Disable to ensure packets are not
* indefinitely held and TX queue can be flushed at any point
* while the link is down. */
EF4_POPULATE_OWORD_5(reg,
FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
FRF_AB_MAC_BCAD_ACPT, 1,
FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
FRF_AB_MAC_LINK_STATUS, 1, /* always set */
FRF_AB_MAC_SPEED, link_speed);
/* On B0, MAC backpressure can be disabled and packets get
* discarded. */
if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
!link_state->up || isolate);
}
ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
/* Restore the multicast hash registers. */
falcon_push_multicast_hash(efx);
ef4_reado(efx, &reg, FR_AZ_RX_CFG);
/* Enable XOFF signal from RX FIFO (we enabled it during NIC
* initialisation but it may read back as 0) */
EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
/* Unisolate the MAC -> RX */
if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
}
static void falcon_stats_request(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg;
WARN_ON(nic_data->stats_pending);
WARN_ON(nic_data->stats_disable_count);
FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
nic_data->stats_pending = true;
wmb(); /* ensure done flag is clear */
/* Initiate DMA transfer of stats */
EF4_POPULATE_OWORD_2(reg,
FRF_AB_MAC_STAT_DMA_CMD, 1,
FRF_AB_MAC_STAT_DMA_ADR,
efx->stats_buffer.dma_addr);
ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
}
static void falcon_stats_complete(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
if (!nic_data->stats_pending)
return;
nic_data->stats_pending = false;
if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
rmb(); /* read the done flag before the stats */
ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
falcon_stat_mask, nic_data->stats,
efx->stats_buffer.addr, true);
} else {
netif_err(efx, hw, efx->net_dev,
"timed out waiting for statistics\n");
}
}
static void falcon_stats_timer_func(struct timer_list *t)
{
struct falcon_nic_data *nic_data = from_timer(nic_data, t,
stats_timer);
struct ef4_nic *efx = nic_data->efx;
spin_lock(&efx->stats_lock);
falcon_stats_complete(efx);
if (nic_data->stats_disable_count == 0)
falcon_stats_request(efx);
spin_unlock(&efx->stats_lock);
}
static bool falcon_loopback_link_poll(struct ef4_nic *efx)
{
struct ef4_link_state old_state = efx->link_state;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
WARN_ON(!LOOPBACK_INTERNAL(efx));
efx->link_state.fd = true;
efx->link_state.fc = efx->wanted_fc;
efx->link_state.up = true;
efx->link_state.speed = 10000;
return !ef4_link_state_equal(&efx->link_state, &old_state);
}
static int falcon_reconfigure_port(struct ef4_nic *efx)
{
int rc;
WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
/* Poll the PHY link state *before* reconfiguring it. This means we
* will pick up the correct speed (in loopback) to select the correct
* MAC.
*/
if (LOOPBACK_INTERNAL(efx))
falcon_loopback_link_poll(efx);
else
efx->phy_op->poll(efx);
falcon_stop_nic_stats(efx);
falcon_deconfigure_mac_wrapper(efx);
falcon_reset_macs(efx);
efx->phy_op->reconfigure(efx);
rc = falcon_reconfigure_xmac(efx);
BUG_ON(rc);
falcon_start_nic_stats(efx);
/* Synchronise efx->link_state with the kernel */
ef4_link_status_changed(efx);
return 0;
}
/* TX flow control may automatically turn itself off if the link
* partner (intermittently) stops responding to pause frames. There
* isn't any indication that this has happened, so the best we do is
* leave it up to the user to spot this and fix it by cycling transmit
* flow control on this end.
*/
static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
{
/* Schedule a reset to recover */
ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
}
static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
{
/* Recover by resetting the EM block */
falcon_stop_nic_stats(efx);
falcon_drain_tx_fifo(efx);
falcon_reconfigure_xmac(efx);
falcon_start_nic_stats(efx);
}
/**************************************************************************
*
* PHY access via GMII
*
**************************************************************************
*/
/* Wait for GMII access to complete */
static int falcon_gmii_wait(struct ef4_nic *efx)
{
ef4_oword_t md_stat;
int count;
/* wait up to 50ms - taken max from datasheet */
for (count = 0; count < 5000; count++) {
ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
netif_err(efx, hw, efx->net_dev,
"error from GMII access "
EF4_OWORD_FMT"\n",
EF4_OWORD_VAL(md_stat));
return -EIO;
}
return 0;
}
udelay(10);
}
netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
return -ETIMEDOUT;
}
/* Write an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value)
{
struct ef4_nic *efx = netdev_priv(net_dev);
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg;
int rc;
netif_vdbg(efx, hw, efx->net_dev,
"writing MDIO %d register %d.%d with 0x%04x\n",
prtad, devad, addr, value);
mutex_lock(&nic_data->mdio_lock);
/* Check MDIO not currently being accessed */
rc = falcon_gmii_wait(efx);
if (rc)
goto out;
/* Write the address/ID register */
EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
FRF_AB_MD_DEV_ADR, devad);
ef4_writeo(efx, &reg, FR_AB_MD_ID);
/* Write data */
EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
ef4_writeo(efx, &reg, FR_AB_MD_TXD);
EF4_POPULATE_OWORD_2(reg,
FRF_AB_MD_WRC, 1,
FRF_AB_MD_GC, 0);
ef4_writeo(efx, &reg, FR_AB_MD_CS);
/* Wait for data to be written */
rc = falcon_gmii_wait(efx);
if (rc) {
/* Abort the write operation */
EF4_POPULATE_OWORD_2(reg,
FRF_AB_MD_WRC, 0,
FRF_AB_MD_GC, 1);
ef4_writeo(efx, &reg, FR_AB_MD_CS);
udelay(10);
}
out:
mutex_unlock(&nic_data->mdio_lock);
return rc;
}
/* Read an MDIO register of a PHY connected to Falcon. */
static int falcon_mdio_read(struct net_device *net_dev,
int prtad, int devad, u16 addr)
{
struct ef4_nic *efx = netdev_priv(net_dev);
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t reg;
int rc;
mutex_lock(&nic_data->mdio_lock);
/* Check MDIO not currently being accessed */
rc = falcon_gmii_wait(efx);
if (rc)
goto out;
EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
FRF_AB_MD_DEV_ADR, devad);
ef4_writeo(efx, &reg, FR_AB_MD_ID);
/* Request data to be read */
EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
ef4_writeo(efx, &reg, FR_AB_MD_CS);
/* Wait for data to become available */
rc = falcon_gmii_wait(efx);
if (rc == 0) {
ef4_reado(efx, &reg, FR_AB_MD_RXD);
rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
netif_vdbg(efx, hw, efx->net_dev,
"read from MDIO %d register %d.%d, got %04x\n",
prtad, devad, addr, rc);
} else {
/* Abort the read operation */
EF4_POPULATE_OWORD_2(reg,
FRF_AB_MD_RIC, 0,
FRF_AB_MD_GC, 1);
ef4_writeo(efx, &reg, FR_AB_MD_CS);
netif_dbg(efx, hw, efx->net_dev,
"read from MDIO %d register %d.%d, got error %d\n",
prtad, devad, addr, rc);
}
out:
mutex_unlock(&nic_data->mdio_lock);
return rc;
}
/* This call is responsible for hooking in the MAC and PHY operations */
static int falcon_probe_port(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
switch (efx->phy_type) {
case PHY_TYPE_SFX7101:
efx->phy_op = &falcon_sfx7101_phy_ops;
break;
case PHY_TYPE_QT2022C2:
case PHY_TYPE_QT2025C:
efx->phy_op = &falcon_qt202x_phy_ops;
break;
case PHY_TYPE_TXC43128:
efx->phy_op = &falcon_txc_phy_ops;
break;
default:
netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
efx->phy_type);
return -ENODEV;
}
/* Fill out MDIO structure and loopback modes */
mutex_init(&nic_data->mdio_lock);
efx->mdio.mdio_read = falcon_mdio_read;
efx->mdio.mdio_write = falcon_mdio_write;
rc = efx->phy_op->probe(efx);
if (rc != 0)
return rc;
/* Initial assumption */
efx->link_state.speed = 10000;
efx->link_state.fd = true;
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
else
efx->wanted_fc = EF4_FC_RX;
if (efx->mdio.mmds & MDIO_DEVS_AN)
efx->wanted_fc |= EF4_FC_AUTO;
/* Allocate buffer for stats */
rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
FALCON_MAC_STATS_SIZE, GFP_KERNEL);
if (rc)
return rc;
netif_dbg(efx, probe, efx->net_dev,
"stats buffer at %llx (virt %p phys %llx)\n",
(u64)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
(u64)virt_to_phys(efx->stats_buffer.addr));
return 0;
}
static void falcon_remove_port(struct ef4_nic *efx)
{
efx->phy_op->remove(efx);
ef4_nic_free_buffer(efx, &efx->stats_buffer);
}
/* Global events are basically PHY events */
static bool
falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
{
struct ef4_nic *efx = channel->efx;
struct falcon_nic_data *nic_data = efx->nic_data;
if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
/* Ignored */
return true;
if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
nic_data->xmac_poll_required = true;
return true;
}
if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
netif_err(efx, rx_err, efx->net_dev,
"channel %d seen global RX_RESET event. Resetting.\n",
channel->channel);
atomic_inc(&efx->rx_reset);
ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
return true;
}
return false;
}
/**************************************************************************
*
* Falcon test code
*
**************************************************************************/
static int
falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
{
struct falcon_nic_data *nic_data = efx->nic_data;
struct falcon_nvconfig *nvconfig;
struct falcon_spi_device *spi;
void *region;
int rc, magic_num, struct_ver;
__le16 *word, *limit;
u32 csum;
if (falcon_spi_present(&nic_data->spi_flash))
spi = &nic_data->spi_flash;
else if (falcon_spi_present(&nic_data->spi_eeprom))
spi = &nic_data->spi_eeprom;
else
return -EINVAL;
region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
if (!region)
return -ENOMEM;
nvconfig = region + FALCON_NVCONFIG_OFFSET;
mutex_lock(&nic_data->spi_lock);
rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
mutex_unlock(&nic_data->spi_lock);
if (rc) {
netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
falcon_spi_present(&nic_data->spi_flash) ?
"flash" : "EEPROM");
rc = -EIO;
goto out;
}
magic_num = le16_to_cpu(nvconfig->board_magic_num);
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
rc = -EINVAL;
if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
netif_err(efx, hw, efx->net_dev,
"NVRAM bad magic 0x%x\n", magic_num);
goto out;
}
if (struct_ver < 2) {
netif_err(efx, hw, efx->net_dev,
"NVRAM has ancient version 0x%x\n", struct_ver);
goto out;
} else if (struct_ver < 4) {
word = &nvconfig->board_magic_num;
limit = (__le16 *) (nvconfig + 1);
} else {
word = region;
limit = region + FALCON_NVCONFIG_END;
}
for (csum = 0; word < limit; ++word)
csum += le16_to_cpu(*word);
if (~csum & 0xffff) {
netif_err(efx, hw, efx->net_dev,
"NVRAM has incorrect checksum\n");
goto out;
}
rc = 0;
if (nvconfig_out)
memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
out:
kfree(region);
return rc;
}
static int falcon_test_nvram(struct ef4_nic *efx)
{
return falcon_read_nvram(efx, NULL);
}
static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
{ FR_AZ_ADR_REGION,
EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
{ FR_AZ_RX_CFG,
EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
{ FR_AZ_TX_CFG,
EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_TX_RESERVED,
EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
{ FR_AB_MAC_CTRL,
EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_SRM_TX_DC_CFG,
EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_CFG,
EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_PF_WM,
EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_DP_CTRL,
EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_GM_CFG2,
EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_GMF_CFG0,
EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_GLB_CFG,
EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_TX_CFG,
EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_RX_CFG,
EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_RX_PARAM,
EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_FC,
EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XM_ADR_LO,
EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AB_XX_SD_CTL,
EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
};
static int
falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
{
enum reset_type reset_method = RESET_TYPE_INVISIBLE;
int rc, rc2;
mutex_lock(&efx->mac_lock);
if (efx->loopback_modes) {
/* We need the 312 clock from the PHY to test the XMAC
* registers, so move into XGMII loopback if available */
if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
efx->loopback_mode = LOOPBACK_XGMII;
else
efx->loopback_mode = __ffs(efx->loopback_modes);
}
__ef4_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
ef4_reset_down(efx, reset_method);
tests->registers =
ef4_farch_test_registers(efx, falcon_b0_register_tests,
ARRAY_SIZE(falcon_b0_register_tests))
? -1 : 1;
rc = falcon_reset_hw(efx, reset_method);
rc2 = ef4_reset_up(efx, reset_method, rc == 0);
return rc ? rc : rc2;
}
/**************************************************************************
*
* Device reset
*
**************************************************************************
*/
static enum reset_type falcon_map_reset_reason(enum reset_type reason)
{
switch (reason) {
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_DMA_ERROR:
case RESET_TYPE_TX_SKIP:
/* These can occasionally occur due to hardware bugs.
* We try to reset without disrupting the link.
*/
return RESET_TYPE_INVISIBLE;
default:
return RESET_TYPE_ALL;
}
}
static int falcon_map_reset_flags(u32 *flags)
{
enum {
FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
ETH_RESET_OFFLOAD | ETH_RESET_MAC),
FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
};
if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
*flags &= ~FALCON_RESET_WORLD;
return RESET_TYPE_WORLD;
}
if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
*flags &= ~FALCON_RESET_ALL;
return RESET_TYPE_ALL;
}
if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
*flags &= ~FALCON_RESET_INVISIBLE;
return RESET_TYPE_INVISIBLE;
}
return -EINVAL;
}
/* Resets NIC to known state. This routine must be called in process
* context and is allowed to sleep. */
static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t glb_ctl_reg_ker;
int rc;
netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
RESET_TYPE(method));
/* Initiate device reset */
if (method == RESET_TYPE_WORLD) {
rc = pci_save_state(efx->pci_dev);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to backup PCI state of primary "
"function prior to hardware reset\n");
goto fail1;
}
if (ef4_nic_is_dual_func(efx)) {
rc = pci_save_state(nic_data->pci_dev2);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to backup PCI state of "
"secondary function prior to "
"hardware reset\n");
goto fail2;
}
}
EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
FRF_AB_EXT_PHY_RST_DUR,
FFE_AB_EXT_PHY_RST_DUR_10240US,
FRF_AB_SWRST, 1);
} else {
EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
/* exclude PHY from "invisible" reset */
FRF_AB_EXT_PHY_RST_CTL,
method == RESET_TYPE_INVISIBLE,
/* exclude EEPROM/flash and PCIe */
FRF_AB_PCIE_CORE_RST_CTL, 1,
FRF_AB_PCIE_NSTKY_RST_CTL, 1,
FRF_AB_PCIE_SD_RST_CTL, 1,
FRF_AB_EE_RST_CTL, 1,
FRF_AB_EXT_PHY_RST_DUR,
FFE_AB_EXT_PHY_RST_DUR_10240US,
FRF_AB_SWRST, 1);
}
ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
schedule_timeout_uninterruptible(HZ / 20);
/* Restore PCI configuration if needed */
if (method == RESET_TYPE_WORLD) {
if (ef4_nic_is_dual_func(efx))
pci_restore_state(nic_data->pci_dev2);
pci_restore_state(efx->pci_dev);
netif_dbg(efx, drv, efx->net_dev,
"successfully restored PCI config\n");
}
/* Assert that reset complete */
ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
rc = -ETIMEDOUT;
netif_err(efx, hw, efx->net_dev,
"timed out waiting for hardware reset\n");
goto fail3;
}
netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
return 0;
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
fail2:
pci_restore_state(efx->pci_dev);
fail1:
fail3:
return rc;
}
static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
{
struct falcon_nic_data *nic_data = efx->nic_data;
int rc;
mutex_lock(&nic_data->spi_lock);
rc = __falcon_reset_hw(efx, method);
mutex_unlock(&nic_data->spi_lock);
return rc;
}
static void falcon_monitor(struct ef4_nic *efx)
{
bool link_changed;
int rc;
BUG_ON(!mutex_is_locked(&efx->mac_lock));
rc = falcon_board(efx)->type->monitor(efx);
if (rc) {
netif_err(efx, hw, efx->net_dev,
"Board sensor %s; shutting down PHY\n",
(rc == -ERANGE) ? "reported fault" : "failed");
efx->phy_mode |= PHY_MODE_LOW_POWER;
rc = __ef4_reconfigure_port(efx);
WARN_ON(rc);
}
if (LOOPBACK_INTERNAL(efx))
link_changed = falcon_loopback_link_poll(efx);
else
link_changed = efx->phy_op->poll(efx);
if (link_changed) {
falcon_stop_nic_stats(efx);
falcon_deconfigure_mac_wrapper(efx);
falcon_reset_macs(efx);
rc = falcon_reconfigure_xmac(efx);
BUG_ON(rc);
falcon_start_nic_stats(efx);
ef4_link_status_changed(efx);
}
falcon_poll_xmac(efx);
}
/* Zeroes out the SRAM contents. This routine must be called in
* process context and is allowed to sleep.
*/
static int falcon_reset_sram(struct ef4_nic *efx)
{
ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
int count;
/* Set the SRAM wake/sleep GPIO appropriately. */
ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
/* Initiate SRAM reset */
EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
FRF_AZ_SRM_INIT_EN, 1,
FRF_AZ_SRM_NB_SZ, 0);
ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
/* Wait for SRAM reset to complete */
count = 0;
do {
netif_dbg(efx, hw, efx->net_dev,
"waiting for SRAM reset (attempt %d)...\n", count);
/* SRAM reset is slow; expect around 16ms */
schedule_timeout_uninterruptible(HZ / 50);
/* Check for reset complete */
ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
netif_dbg(efx, hw, efx->net_dev,
"SRAM reset complete\n");
return 0;
}
} while (++count < 20); /* wait up to 0.4 sec */
netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
return -ETIMEDOUT;
}
static void falcon_spi_device_init(struct ef4_nic *efx,
struct falcon_spi_device *spi_device,
unsigned int device_id, u32 device_type)
{
if (device_type != 0) {
spi_device->device_id = device_id;
spi_device->size =
1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
spi_device->addr_len =
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
spi_device->munge_address = (spi_device->size == 1 << 9 &&
spi_device->addr_len == 1);
spi_device->erase_command =
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
spi_device->erase_size =
1 << SPI_DEV_TYPE_FIELD(device_type,
SPI_DEV_TYPE_ERASE_SIZE);
spi_device->block_size =
1 << SPI_DEV_TYPE_FIELD(device_type,
SPI_DEV_TYPE_BLOCK_SIZE);
} else {
spi_device->size = 0;
}
}
/* Extract non-volatile configuration */
static int falcon_probe_nvconfig(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
struct falcon_nvconfig *nvconfig;
int rc;
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
if (!nvconfig)
return -ENOMEM;
rc = falcon_read_nvram(efx, nvconfig);
if (rc)
goto out;
efx->phy_type = nvconfig->board_v2.port0_phy_type;
efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
falcon_spi_device_init(
efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
le32_to_cpu(nvconfig->board_v3
.spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
falcon_spi_device_init(
efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
le32_to_cpu(nvconfig->board_v3
.spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
}
/* Read the MAC addresses */
ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
efx->phy_type, efx->mdio.prtad);
rc = falcon_probe_board(efx,
le16_to_cpu(nvconfig->board_v2.board_revision));
out:
kfree(nvconfig);
return rc;
}
static int falcon_dimension_resources(struct ef4_nic *efx)
{
efx->rx_dc_base = 0x20000;
efx->tx_dc_base = 0x26000;
return 0;
}
/* Probe all SPI devices on the NIC */
static void falcon_probe_spi_devices(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
int boot_dev;
ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
"flash" : "EEPROM");
} else {
/* Disable VPD and set clock dividers to safe
* values for initial programming. */
boot_dev = -1;
netif_dbg(efx, probe, efx->net_dev,
"Booted from internal ASIC settings;"
" setting SPI config\n");
EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
/* 125 MHz / 7 ~= 20 MHz */
FRF_AB_EE_SF_CLOCK_DIV, 7,
/* 125 MHz / 63 ~= 2 MHz */
FRF_AB_EE_EE_CLOCK_DIV, 63);
ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
}
mutex_init(&nic_data->spi_lock);
if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
falcon_spi_device_init(efx, &nic_data->spi_flash,
FFE_AB_SPI_DEVICE_FLASH,
default_flash_type);
if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
falcon_spi_device_init(efx, &nic_data->spi_eeprom,
FFE_AB_SPI_DEVICE_EEPROM,
large_eeprom_type);
}
static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
{
return 0x20000;
}
static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
{
/* Map everything up to and including the RSS indirection table.
* The PCI core takes care of mapping the MSI-X tables.
*/
return FR_BZ_RX_INDIRECTION_TBL +
FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
}
static int falcon_probe_nic(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data;
struct falcon_board *board;
int rc;
efx->primary = efx; /* only one usable function per controller */
/* Allocate storage for hardware specific data */
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
nic_data->efx = efx;
rc = -ENODEV;
if (ef4_farch_fpga_ver(efx) != 0) {
netif_err(efx, probe, efx->net_dev,
"Falcon FPGA not supported\n");
goto fail1;
}
if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
ef4_oword_t nic_stat;
struct pci_dev *dev;
u8 pci_rev = efx->pci_dev->revision;
if ((pci_rev == 0xff) || (pci_rev == 0)) {
netif_err(efx, probe, efx->net_dev,
"Falcon rev A0 not supported\n");
goto fail1;
}
ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
netif_err(efx, probe, efx->net_dev,
"Falcon rev A1 1G not supported\n");
goto fail1;
}
if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
netif_err(efx, probe, efx->net_dev,
"Falcon rev A1 PCI-X not supported\n");
goto fail1;
}
dev = pci_dev_get(efx->pci_dev);
while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
dev))) {
if (dev->bus == efx->pci_dev->bus &&
dev->devfn == efx->pci_dev->devfn + 1) {
nic_data->pci_dev2 = dev;
break;
}
}
if (!nic_data->pci_dev2) {
netif_err(efx, probe, efx->net_dev,
"failed to find secondary function\n");
rc = -ENODEV;
goto fail2;
}
}
/* Now we can reset the NIC */
rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
if (rc) {
netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
goto fail3;
}
/* Allocate memory for INT_KER */
rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
GFP_KERNEL);
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
netif_dbg(efx, probe, efx->net_dev,
"INT_KER at %llx (virt %p phys %llx)\n",
(u64)efx->irq_status.dma_addr,
efx->irq_status.addr,
(u64)virt_to_phys(efx->irq_status.addr));
falcon_probe_spi_devices(efx);
/* Read in the non-volatile configuration */
rc = falcon_probe_nvconfig(efx);
if (rc) {
if (rc == -EINVAL)
netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
goto fail5;
}
efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
EF4_MAX_CHANNELS);
efx->max_tx_channels = efx->max_channels;
efx->timer_quantum_ns = 4968; /* 621 cycles */
efx->timer_max_ns = efx->type->timer_period_max *
efx->timer_quantum_ns;
/* Initialise I2C adapter */
board = falcon_board(efx);
board->i2c_adap.owner = THIS_MODULE;
board->i2c_data = falcon_i2c_bit_operations;
board->i2c_data.data = efx;
board->i2c_adap.algo_data = &board->i2c_data;
board->i2c_adap.dev.parent = &efx->pci_dev->dev;
strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
sizeof(board->i2c_adap.name));
rc = i2c_bit_add_bus(&board->i2c_adap);
if (rc)
goto fail5;
rc = falcon_board(efx)->type->init(efx);
if (rc) {
netif_err(efx, probe, efx->net_dev,
"failed to initialise board\n");
goto fail6;
}
nic_data->stats_disable_count = 1;
timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
return 0;
fail6:
i2c_del_adapter(&board->i2c_adap);
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
fail5:
ef4_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
fail2:
fail1:
kfree(efx->nic_data);
return rc;
}
static void falcon_init_rx_cfg(struct ef4_nic *efx)
{
/* RX control FIFO thresholds (32 entries) */
const unsigned ctrl_xon_thr = 20;
const unsigned ctrl_xoff_thr = 25;
ef4_oword_t reg;
ef4_reado(efx, &reg, FR_AZ_RX_CFG);
if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
/* Data FIFO size is 5.5K. The RX DMA engine only
* supports scattering for user-mode queues, but will
* split DMA writes at intervals of RX_USR_BUF_SIZE
* (32-byte units) even for kernel-mode queues. We
* set it to be so large that that never happens.
*/
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
(3 * 4096) >> 5);
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
} else {
/* Data FIFO size is 80K; register fields moved */
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
EF4_RX_USR_BUF_SIZE >> 5);
/* Send XON and XOFF at ~3 * max MTU away from empty/full */
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
/* Enable hash insertion. This is broken for the
* 'Falcon' hash so also select Toeplitz TCP/IPv4 and
* IPv4 hashes. */
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
}
/* Always enable XOFF signal from RX FIFO. We enable
* or disable transmission of pause frames at the MAC. */
EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
}
/* This call performs hardware-specific global initialisation, such as
* defining the descriptor cache sizes and number of RSS channels.
* It does not set up any buffers, descriptor rings or event queues.
*/
static int falcon_init_nic(struct ef4_nic *efx)
{
ef4_oword_t temp;
int rc;
/* Use on-chip SRAM */
ef4_reado(efx, &temp, FR_AB_NIC_STAT);
EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
rc = falcon_reset_sram(efx);
if (rc)
return rc;
/* Clear the parity enables on the TX data fifos as
* they produce false parity errors because of timing issues
*/
if (EF4_WORKAROUND_5129(efx)) {
ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
}
if (EF4_WORKAROUND_7244(efx)) {
ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
}
/* XXX This is documented only for Falcon A0/A1 */
/* Setup RX. Wait for descriptor is broken and must
* be disabled. RXDP recovery shouldn't be needed, but is.
*/
ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
if (EF4_WORKAROUND_5583(efx))
EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
ef4_reado(efx, &temp, FR_AZ_TX_CFG);
EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
falcon_init_rx_cfg(efx);
if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
/* Set destination of both TX and RX Flush events */
EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
}
ef4_farch_init_common(efx);
return 0;
}
static void falcon_remove_nic(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
struct falcon_board *board = falcon_board(efx);
board->type->fini(efx);
/* Remove I2C adapter and clear it in preparation for a retry */
i2c_del_adapter(&board->i2c_adap);
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
ef4_nic_free_buffer(efx, &efx->irq_status);
__falcon_reset_hw(efx, RESET_TYPE_ALL);
/* Release the second function after the reset */
if (nic_data->pci_dev2) {
pci_dev_put(nic_data->pci_dev2);
nic_data->pci_dev2 = NULL;
}
/* Tear down the private nic state */
kfree(efx->nic_data);
efx->nic_data = NULL;
}
static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
{
return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
falcon_stat_mask, names);
}
static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
struct falcon_nic_data *nic_data = efx->nic_data;
u64 *stats = nic_data->stats;
ef4_oword_t cnt;
if (!nic_data->stats_disable_count) {
ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
if (nic_data->stats_pending &&
FALCON_XMAC_STATS_DMA_FLAG(efx)) {
nic_data->stats_pending = false;
rmb(); /* read the done flag before the stats */
ef4_nic_update_stats(
falcon_stat_desc, FALCON_STAT_COUNT,
falcon_stat_mask,
stats, efx->stats_buffer.addr, true);
}
/* Update derived statistic */
ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
stats[FALCON_STAT_rx_bytes] -
stats[FALCON_STAT_rx_good_bytes] -
stats[FALCON_STAT_rx_control] * 64);
ef4_update_sw_stats(efx, stats);
}
if (full_stats)
memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
if (core_stats) {
core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[FALCON_STAT_rx_multicast];
core_stats->rx_length_errors =
stats[FALCON_STAT_rx_gtjumbo] +
stats[FALCON_STAT_rx_length_error];
core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
core_stats->rx_errors = (core_stats->rx_length_errors +
core_stats->rx_crc_errors +
core_stats->rx_frame_errors +
stats[FALCON_STAT_rx_symbol_error]);
}
return FALCON_STAT_COUNT;
}
void falcon_start_nic_stats(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
spin_lock_bh(&efx->stats_lock);
if (--nic_data->stats_disable_count == 0)
falcon_stats_request(efx);
spin_unlock_bh(&efx->stats_lock);
}
/* We don't acutally pull stats on falcon. Wait 10ms so that
* they arrive when we call this just after start_stats
*/
static void falcon_pull_nic_stats(struct ef4_nic *efx)
{
msleep(10);
}
void falcon_stop_nic_stats(struct ef4_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
int i;
might_sleep();
spin_lock_bh(&efx->stats_lock);
++nic_data->stats_disable_count;
spin_unlock_bh(&efx->stats_lock);
del_timer_sync(&nic_data->stats_timer);
/* Wait enough time for the most recent transfer to
* complete. */
for (i = 0; i < 4 && nic_data->stats_pending; i++) {
if (FALCON_XMAC_STATS_DMA_FLAG(efx))
break;
msleep(1);
}
spin_lock_bh(&efx->stats_lock);
falcon_stats_complete(efx);
spin_unlock_bh(&efx->stats_lock);
}
static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
{
falcon_board(efx)->type->set_id_led(efx, mode);
}
/**************************************************************************
*
* Wake on LAN
*
**************************************************************************
*/
static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int falcon_set_wol(struct ef4_nic *efx, u32 type)
{
if (type != 0)
return -EINVAL;
return 0;
}
/**************************************************************************
*
* Revision-dependent attributes used by efx.c and nic.c
*
**************************************************************************
*/
const struct ef4_nic_type falcon_a1_nic_type = {
.mem_bar = EF4_MEM_BAR,
.mem_map_size = falcon_a1_mem_map_size,
.probe = falcon_probe_nic,
.remove = falcon_remove_nic,
.init = falcon_init_nic,
.dimension_resources = falcon_dimension_resources,
.fini = falcon_irq_ack_a1,
.monitor = falcon_monitor,
.map_reset_reason = falcon_map_reset_reason,
.map_reset_flags = falcon_map_reset_flags,
.reset = falcon_reset_hw,
.probe_port = falcon_probe_port,
.remove_port = falcon_remove_port,
.handle_global_event = falcon_handle_global_event,
.fini_dmaq = ef4_farch_fini_dmaq,
.prepare_flush = falcon_prepare_flush,
.finish_flush = ef4_port_dummy_op_void,
.prepare_flr = ef4_port_dummy_op_void,
.finish_flr = ef4_farch_finish_flr,
.describe_stats = falcon_describe_nic_stats,
.update_stats = falcon_update_nic_stats,
.start_stats = falcon_start_nic_stats,
.pull_stats = falcon_pull_nic_stats,
.stop_stats = falcon_stop_nic_stats,
.set_id_led = falcon_set_id_led,
.push_irq_moderation = falcon_push_irq_moderation,
.reconfigure_port = falcon_reconfigure_port,
.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
.reconfigure_mac = falcon_reconfigure_xmac,
.check_mac_fault = falcon_xmac_check_fault,
.get_wol = falcon_get_wol,
.set_wol = falcon_set_wol,
.resume_wol = ef4_port_dummy_op_void,
.test_nvram = falcon_test_nvram,
.irq_enable_master = ef4_farch_irq_enable_master,
.irq_test_generate = ef4_farch_irq_test_generate,
.irq_disable_non_ev = ef4_farch_irq_disable_master,
.irq_handle_msi = ef4_farch_msi_interrupt,
.irq_handle_legacy = falcon_legacy_interrupt_a1,
.tx_probe = ef4_farch_tx_probe,
.tx_init = ef4_farch_tx_init,
.tx_remove = ef4_farch_tx_remove,
.tx_write = ef4_farch_tx_write,
.tx_limit_len = ef4_farch_tx_limit_len,
.rx_push_rss_config = dummy_rx_push_rss_config,
.rx_probe = ef4_farch_rx_probe,
.rx_init = ef4_farch_rx_init,
.rx_remove = ef4_farch_rx_remove,
.rx_write = ef4_farch_rx_write,
.rx_defer_refill = ef4_farch_rx_defer_refill,
.ev_probe = ef4_farch_ev_probe,
.ev_init = ef4_farch_ev_init,
.ev_fini = ef4_farch_ev_fini,
.ev_remove = ef4_farch_ev_remove,
.ev_process = ef4_farch_ev_process,
.ev_read_ack = ef4_farch_ev_read_ack,
.ev_test_generate = ef4_farch_ev_test_generate,
/* We don't expose the filter table on Falcon A1 as it is not
* mapped into function 0, but these implementations still
* work with a degenerate case of all tables set to size 0.
*/
.filter_table_probe = ef4_farch_filter_table_probe,
.filter_table_restore = ef4_farch_filter_table_restore,
.filter_table_remove = ef4_farch_filter_table_remove,
.filter_insert = ef4_farch_filter_insert,
.filter_remove_safe = ef4_farch_filter_remove_safe,
.filter_get_safe = ef4_farch_filter_get_safe,
.filter_clear_rx = ef4_farch_filter_clear_rx,
.filter_count_rx_used = ef4_farch_filter_count_rx_used,
.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
#ifdef CONFIG_SFC_FALCON_MTD
.mtd_probe = falcon_mtd_probe,
.mtd_rename = falcon_mtd_rename,
.mtd_read = falcon_mtd_read,
.mtd_erase = falcon_mtd_erase,
.mtd_write = falcon_mtd_write,
.mtd_sync = falcon_mtd_sync,
#endif
.revision = EF4_REV_FALCON_A1,
.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_buffer_padding = 0x24,
.can_rx_scatter = false,
.max_interrupt_mode = EF4_INT_MODE_MSI,
.timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
.offload_features = NETIF_F_IP_CSUM,
};
const struct ef4_nic_type falcon_b0_nic_type = {
.mem_bar = EF4_MEM_BAR,
.mem_map_size = falcon_b0_mem_map_size,
.probe = falcon_probe_nic,
.remove = falcon_remove_nic,
.init = falcon_init_nic,
.dimension_resources = falcon_dimension_resources,
.fini = ef4_port_dummy_op_void,
.monitor = falcon_monitor,
.map_reset_reason = falcon_map_reset_reason,
.map_reset_flags = falcon_map_reset_flags,
.reset = falcon_reset_hw,
.probe_port = falcon_probe_port,
.remove_port = falcon_remove_port,
.handle_global_event = falcon_handle_global_event,
.fini_dmaq = ef4_farch_fini_dmaq,
.prepare_flush = falcon_prepare_flush,
.finish_flush = ef4_port_dummy_op_void,
.prepare_flr = ef4_port_dummy_op_void,
.finish_flr = ef4_farch_finish_flr,
.describe_stats = falcon_describe_nic_stats,
.update_stats = falcon_update_nic_stats,
.start_stats = falcon_start_nic_stats,
.pull_stats = falcon_pull_nic_stats,
.stop_stats = falcon_stop_nic_stats,
.set_id_led = falcon_set_id_led,
.push_irq_moderation = falcon_push_irq_moderation,
.reconfigure_port = falcon_reconfigure_port,
.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
.reconfigure_mac = falcon_reconfigure_xmac,
.check_mac_fault = falcon_xmac_check_fault,
.get_wol = falcon_get_wol,
.set_wol = falcon_set_wol,
.resume_wol = ef4_port_dummy_op_void,
.test_chip = falcon_b0_test_chip,
.test_nvram = falcon_test_nvram,
.irq_enable_master = ef4_farch_irq_enable_master,
.irq_test_generate = ef4_farch_irq_test_generate,
.irq_disable_non_ev = ef4_farch_irq_disable_master,
.irq_handle_msi = ef4_farch_msi_interrupt,
.irq_handle_legacy = ef4_farch_legacy_interrupt,
.tx_probe = ef4_farch_tx_probe,
.tx_init = ef4_farch_tx_init,
.tx_remove = ef4_farch_tx_remove,
.tx_write = ef4_farch_tx_write,
.tx_limit_len = ef4_farch_tx_limit_len,
.rx_push_rss_config = falcon_b0_rx_push_rss_config,
.rx_probe = ef4_farch_rx_probe,
.rx_init = ef4_farch_rx_init,
.rx_remove = ef4_farch_rx_remove,
.rx_write = ef4_farch_rx_write,
.rx_defer_refill = ef4_farch_rx_defer_refill,
.ev_probe = ef4_farch_ev_probe,
.ev_init = ef4_farch_ev_init,
.ev_fini = ef4_farch_ev_fini,
.ev_remove = ef4_farch_ev_remove,
.ev_process = ef4_farch_ev_process,
.ev_read_ack = ef4_farch_ev_read_ack,
.ev_test_generate = ef4_farch_ev_test_generate,
.filter_table_probe = ef4_farch_filter_table_probe,
.filter_table_restore = ef4_farch_filter_table_restore,
.filter_table_remove = ef4_farch_filter_table_remove,
.filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
.filter_insert = ef4_farch_filter_insert,
.filter_remove_safe = ef4_farch_filter_remove_safe,
.filter_get_safe = ef4_farch_filter_get_safe,
.filter_clear_rx = ef4_farch_filter_clear_rx,
.filter_count_rx_used = ef4_farch_filter_count_rx_used,
.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_insert = ef4_farch_filter_rfs_insert,
.filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_FALCON_MTD
.mtd_probe = falcon_mtd_probe,
.mtd_rename = falcon_mtd_rename,
.mtd_read = falcon_mtd_read,
.mtd_erase = falcon_mtd_erase,
.mtd_write = falcon_mtd_write,
.mtd_sync = falcon_mtd_sync,
#endif
.revision = EF4_REV_FALCON_B0,
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
.rx_buffer_padding = 0,
.can_rx_scatter = true,
.max_interrupt_mode = EF4_INT_MODE_MSIX,
.timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
};