kernel_samsung_a34x-permissive/drivers/nvme/host/lightnvm.c
2024-04-28 15:49:01 +02:00

1312 lines
33 KiB
C
Executable file

/*
* nvme-lightnvm.c - LightNVM NVMe device
*
* Copyright (C) 2014-2015 IT University of Copenhagen
* Initial release: Matias Bjorling <mb@lightnvm.io>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
* USA.
*
*/
#include "nvme.h"
#include <linux/nvme.h>
#include <linux/bitops.h>
#include <linux/lightnvm.h>
#include <linux/vmalloc.h>
#include <linux/sched/sysctl.h>
#include <uapi/linux/lightnvm.h>
enum nvme_nvm_admin_opcode {
nvme_nvm_admin_identity = 0xe2,
nvme_nvm_admin_get_bb_tbl = 0xf2,
nvme_nvm_admin_set_bb_tbl = 0xf1,
};
enum nvme_nvm_log_page {
NVME_NVM_LOG_REPORT_CHUNK = 0xca,
};
struct nvme_nvm_ph_rw {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd2;
__le64 metadata;
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_erase_blk {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 length;
__le16 control;
__le32 dsmgmt;
__le64 resv;
};
struct nvme_nvm_identity {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__u32 rsvd11[6];
};
struct nvme_nvm_getbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__u64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__u32 rsvd4[4];
};
struct nvme_nvm_setbbtbl {
__u8 opcode;
__u8 flags;
__u16 command_id;
__le32 nsid;
__le64 rsvd[2];
__le64 prp1;
__le64 prp2;
__le64 spba;
__le16 nlb;
__u8 value;
__u8 rsvd3;
__u32 rsvd4[3];
};
struct nvme_nvm_command {
union {
struct nvme_common_command common;
struct nvme_nvm_ph_rw ph_rw;
struct nvme_nvm_erase_blk erase;
struct nvme_nvm_identity identity;
struct nvme_nvm_getbbtbl get_bb;
struct nvme_nvm_setbbtbl set_bb;
};
};
struct nvme_nvm_id12_grp {
__u8 mtype;
__u8 fmtype;
__le16 res16;
__u8 num_ch;
__u8 num_lun;
__u8 num_pln;
__u8 rsvd1;
__le16 num_chk;
__le16 num_pg;
__le16 fpg_sz;
__le16 csecs;
__le16 sos;
__le16 rsvd2;
__le32 trdt;
__le32 trdm;
__le32 tprt;
__le32 tprm;
__le32 tbet;
__le32 tbem;
__le32 mpos;
__le32 mccap;
__le16 cpar;
__u8 reserved[906];
} __packed;
struct nvme_nvm_id12_addrf {
__u8 ch_offset;
__u8 ch_len;
__u8 lun_offset;
__u8 lun_len;
__u8 pln_offset;
__u8 pln_len;
__u8 blk_offset;
__u8 blk_len;
__u8 pg_offset;
__u8 pg_len;
__u8 sec_offset;
__u8 sec_len;
__u8 res[4];
} __packed;
struct nvme_nvm_id12 {
__u8 ver_id;
__u8 vmnt;
__u8 cgrps;
__u8 res;
__le32 cap;
__le32 dom;
struct nvme_nvm_id12_addrf ppaf;
__u8 resv[228];
struct nvme_nvm_id12_grp grp;
__u8 resv2[2880];
} __packed;
struct nvme_nvm_bb_tbl {
__u8 tblid[4];
__le16 verid;
__le16 revid;
__le32 rvsd1;
__le32 tblks;
__le32 tfact;
__le32 tgrown;
__le32 tdresv;
__le32 thresv;
__le32 rsvd2[8];
__u8 blk[0];
};
struct nvme_nvm_id20_addrf {
__u8 grp_len;
__u8 pu_len;
__u8 chk_len;
__u8 lba_len;
__u8 resv[4];
};
struct nvme_nvm_id20 {
__u8 mjr;
__u8 mnr;
__u8 resv[6];
struct nvme_nvm_id20_addrf lbaf;
__le32 mccap;
__u8 resv2[12];
__u8 wit;
__u8 resv3[31];
/* Geometry */
__le16 num_grp;
__le16 num_pu;
__le32 num_chk;
__le32 clba;
__u8 resv4[52];
/* Write data requirements */
__le32 ws_min;
__le32 ws_opt;
__le32 mw_cunits;
__le32 maxoc;
__le32 maxocpu;
__u8 resv5[44];
/* Performance related metrics */
__le32 trdt;
__le32 trdm;
__le32 twrt;
__le32 twrm;
__le32 tcrst;
__le32 tcrsm;
__u8 resv6[40];
/* Reserved area */
__u8 resv7[2816];
/* Vendor specific */
__u8 vs[1024];
};
struct nvme_nvm_chk_meta {
__u8 state;
__u8 type;
__u8 wi;
__u8 rsvd[5];
__le64 slba;
__le64 cnlb;
__le64 wp;
};
/*
* Check we didn't inadvertently grow the command struct
*/
static inline void _nvme_nvm_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id12_grp) != 960);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id12_addrf) != 16);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id12) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 64);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id20_addrf) != 8);
BUILD_BUG_ON(sizeof(struct nvme_nvm_id20) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_nvm_chk_meta) != 32);
BUILD_BUG_ON(sizeof(struct nvme_nvm_chk_meta) !=
sizeof(struct nvm_chk_meta));
}
static void nvme_nvm_set_addr_12(struct nvm_addrf_12 *dst,
struct nvme_nvm_id12_addrf *src)
{
dst->ch_len = src->ch_len;
dst->lun_len = src->lun_len;
dst->blk_len = src->blk_len;
dst->pg_len = src->pg_len;
dst->pln_len = src->pln_len;
dst->sec_len = src->sec_len;
dst->ch_offset = src->ch_offset;
dst->lun_offset = src->lun_offset;
dst->blk_offset = src->blk_offset;
dst->pg_offset = src->pg_offset;
dst->pln_offset = src->pln_offset;
dst->sec_offset = src->sec_offset;
dst->ch_mask = ((1ULL << dst->ch_len) - 1) << dst->ch_offset;
dst->lun_mask = ((1ULL << dst->lun_len) - 1) << dst->lun_offset;
dst->blk_mask = ((1ULL << dst->blk_len) - 1) << dst->blk_offset;
dst->pg_mask = ((1ULL << dst->pg_len) - 1) << dst->pg_offset;
dst->pln_mask = ((1ULL << dst->pln_len) - 1) << dst->pln_offset;
dst->sec_mask = ((1ULL << dst->sec_len) - 1) << dst->sec_offset;
}
static int nvme_nvm_setup_12(struct nvme_nvm_id12 *id,
struct nvm_geo *geo)
{
struct nvme_nvm_id12_grp *src;
int sec_per_pg, sec_per_pl, pg_per_blk;
if (id->cgrps != 1)
return -EINVAL;
src = &id->grp;
if (src->mtype != 0) {
pr_err("nvm: memory type not supported\n");
return -EINVAL;
}
/* 1.2 spec. only reports a single version id - unfold */
geo->major_ver_id = id->ver_id;
geo->minor_ver_id = 2;
/* Set compacted version for upper layers */
geo->version = NVM_OCSSD_SPEC_12;
geo->num_ch = src->num_ch;
geo->num_lun = src->num_lun;
geo->all_luns = geo->num_ch * geo->num_lun;
geo->num_chk = le16_to_cpu(src->num_chk);
geo->csecs = le16_to_cpu(src->csecs);
geo->sos = le16_to_cpu(src->sos);
pg_per_blk = le16_to_cpu(src->num_pg);
sec_per_pg = le16_to_cpu(src->fpg_sz) / geo->csecs;
sec_per_pl = sec_per_pg * src->num_pln;
geo->clba = sec_per_pl * pg_per_blk;
geo->all_chunks = geo->all_luns * geo->num_chk;
geo->total_secs = geo->clba * geo->all_chunks;
geo->ws_min = sec_per_pg;
geo->ws_opt = sec_per_pg;
geo->mw_cunits = geo->ws_opt << 3; /* default to MLC safe values */
/* Do not impose values for maximum number of open blocks as it is
* unspecified in 1.2. Users of 1.2 must be aware of this and eventually
* specify these values through a quirk if restrictions apply.
*/
geo->maxoc = geo->all_luns * geo->num_chk;
geo->maxocpu = geo->num_chk;
geo->mccap = le32_to_cpu(src->mccap);
geo->trdt = le32_to_cpu(src->trdt);
geo->trdm = le32_to_cpu(src->trdm);
geo->tprt = le32_to_cpu(src->tprt);
geo->tprm = le32_to_cpu(src->tprm);
geo->tbet = le32_to_cpu(src->tbet);
geo->tbem = le32_to_cpu(src->tbem);
/* 1.2 compatibility */
geo->vmnt = id->vmnt;
geo->cap = le32_to_cpu(id->cap);
geo->dom = le32_to_cpu(id->dom);
geo->mtype = src->mtype;
geo->fmtype = src->fmtype;
geo->cpar = le16_to_cpu(src->cpar);
geo->mpos = le32_to_cpu(src->mpos);
geo->pln_mode = NVM_PLANE_SINGLE;
if (geo->mpos & 0x020202) {
geo->pln_mode = NVM_PLANE_DOUBLE;
geo->ws_opt <<= 1;
} else if (geo->mpos & 0x040404) {
geo->pln_mode = NVM_PLANE_QUAD;
geo->ws_opt <<= 2;
}
geo->num_pln = src->num_pln;
geo->num_pg = le16_to_cpu(src->num_pg);
geo->fpg_sz = le16_to_cpu(src->fpg_sz);
nvme_nvm_set_addr_12((struct nvm_addrf_12 *)&geo->addrf, &id->ppaf);
return 0;
}
static void nvme_nvm_set_addr_20(struct nvm_addrf *dst,
struct nvme_nvm_id20_addrf *src)
{
dst->ch_len = src->grp_len;
dst->lun_len = src->pu_len;
dst->chk_len = src->chk_len;
dst->sec_len = src->lba_len;
dst->sec_offset = 0;
dst->chk_offset = dst->sec_len;
dst->lun_offset = dst->chk_offset + dst->chk_len;
dst->ch_offset = dst->lun_offset + dst->lun_len;
dst->ch_mask = ((1ULL << dst->ch_len) - 1) << dst->ch_offset;
dst->lun_mask = ((1ULL << dst->lun_len) - 1) << dst->lun_offset;
dst->chk_mask = ((1ULL << dst->chk_len) - 1) << dst->chk_offset;
dst->sec_mask = ((1ULL << dst->sec_len) - 1) << dst->sec_offset;
}
static int nvme_nvm_setup_20(struct nvme_nvm_id20 *id,
struct nvm_geo *geo)
{
geo->major_ver_id = id->mjr;
geo->minor_ver_id = id->mnr;
/* Set compacted version for upper layers */
geo->version = NVM_OCSSD_SPEC_20;
geo->num_ch = le16_to_cpu(id->num_grp);
geo->num_lun = le16_to_cpu(id->num_pu);
geo->all_luns = geo->num_ch * geo->num_lun;
geo->num_chk = le32_to_cpu(id->num_chk);
geo->clba = le32_to_cpu(id->clba);
geo->all_chunks = geo->all_luns * geo->num_chk;
geo->total_secs = geo->clba * geo->all_chunks;
geo->ws_min = le32_to_cpu(id->ws_min);
geo->ws_opt = le32_to_cpu(id->ws_opt);
geo->mw_cunits = le32_to_cpu(id->mw_cunits);
geo->maxoc = le32_to_cpu(id->maxoc);
geo->maxocpu = le32_to_cpu(id->maxocpu);
geo->trdt = le32_to_cpu(id->trdt);
geo->trdm = le32_to_cpu(id->trdm);
geo->tprt = le32_to_cpu(id->twrt);
geo->tprm = le32_to_cpu(id->twrm);
geo->tbet = le32_to_cpu(id->tcrst);
geo->tbem = le32_to_cpu(id->tcrsm);
nvme_nvm_set_addr_20(&geo->addrf, &id->lbaf);
return 0;
}
static int nvme_nvm_identity(struct nvm_dev *nvmdev)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_id12 *id;
struct nvme_nvm_command c = {};
int ret;
c.identity.opcode = nvme_nvm_admin_identity;
c.identity.nsid = cpu_to_le32(ns->head->ns_id);
id = kmalloc(sizeof(struct nvme_nvm_id12), GFP_KERNEL);
if (!id)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
id, sizeof(struct nvme_nvm_id12));
if (ret) {
ret = -EIO;
goto out;
}
/*
* The 1.2 and 2.0 specifications share the first byte in their geometry
* command to make it possible to know what version a device implements.
*/
switch (id->ver_id) {
case 1:
ret = nvme_nvm_setup_12(id, &nvmdev->geo);
break;
case 2:
ret = nvme_nvm_setup_20((struct nvme_nvm_id20 *)id,
&nvmdev->geo);
break;
default:
dev_err(ns->ctrl->device, "OCSSD revision not supported (%d)\n",
id->ver_id);
ret = -EINVAL;
}
out:
kfree(id);
return ret;
}
static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
u8 *blks)
{
struct request_queue *q = nvmdev->q;
struct nvm_geo *geo = &nvmdev->geo;
struct nvme_ns *ns = q->queuedata;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_nvm_command c = {};
struct nvme_nvm_bb_tbl *bb_tbl;
int nr_blks = geo->num_chk * geo->num_pln;
int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks;
int ret = 0;
c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
c.get_bb.nsid = cpu_to_le32(ns->head->ns_id);
c.get_bb.spba = cpu_to_le64(ppa.ppa);
bb_tbl = kzalloc(tblsz, GFP_KERNEL);
if (!bb_tbl)
return -ENOMEM;
ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
bb_tbl, tblsz);
if (ret) {
dev_err(ctrl->device, "get bad block table failed (%d)\n", ret);
ret = -EIO;
goto out;
}
if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
dev_err(ctrl->device, "bbt format mismatch\n");
ret = -EINVAL;
goto out;
}
if (le16_to_cpu(bb_tbl->verid) != 1) {
ret = -EINVAL;
dev_err(ctrl->device, "bbt version not supported\n");
goto out;
}
if (le32_to_cpu(bb_tbl->tblks) != nr_blks) {
ret = -EINVAL;
dev_err(ctrl->device,
"bbt unsuspected blocks returned (%u!=%u)",
le32_to_cpu(bb_tbl->tblks), nr_blks);
goto out;
}
memcpy(blks, bb_tbl->blk, geo->num_chk * geo->num_pln);
out:
kfree(bb_tbl);
return ret;
}
static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas,
int nr_ppas, int type)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
struct nvme_nvm_command c = {};
int ret = 0;
c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl;
c.set_bb.nsid = cpu_to_le32(ns->head->ns_id);
c.set_bb.spba = cpu_to_le64(ppas->ppa);
c.set_bb.nlb = cpu_to_le16(nr_ppas - 1);
c.set_bb.value = type;
ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
NULL, 0);
if (ret)
dev_err(ns->ctrl->device, "set bad block table failed (%d)\n",
ret);
return ret;
}
/*
* Expect the lba in device format
*/
static int nvme_nvm_get_chk_meta(struct nvm_dev *ndev,
struct nvm_chk_meta *meta,
sector_t slba, int nchks)
{
struct nvm_geo *geo = &ndev->geo;
struct nvme_ns *ns = ndev->q->queuedata;
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_nvm_chk_meta *dev_meta = (struct nvme_nvm_chk_meta *)meta;
struct ppa_addr ppa;
size_t left = nchks * sizeof(struct nvme_nvm_chk_meta);
size_t log_pos, offset, len;
int ret, i, max_len;
/*
* limit requests to maximum 256K to avoid issuing arbitrary large
* requests when the device does not specific a maximum transfer size.
*/
max_len = min_t(unsigned int, ctrl->max_hw_sectors << 9, 256 * 1024);
/* Normalize lba address space to obtain log offset */
ppa.ppa = slba;
ppa = dev_to_generic_addr(ndev, ppa);
log_pos = ppa.m.chk;
log_pos += ppa.m.pu * geo->num_chk;
log_pos += ppa.m.grp * geo->num_lun * geo->num_chk;
offset = log_pos * sizeof(struct nvme_nvm_chk_meta);
while (left) {
len = min_t(unsigned int, left, max_len);
ret = nvme_get_log(ctrl, ns->head->ns_id,
NVME_NVM_LOG_REPORT_CHUNK, 0, dev_meta, len,
offset);
if (ret) {
dev_err(ctrl->device, "Get REPORT CHUNK log error\n");
break;
}
for (i = 0; i < len; i += sizeof(struct nvme_nvm_chk_meta)) {
meta->state = dev_meta->state;
meta->type = dev_meta->type;
meta->wi = dev_meta->wi;
meta->slba = le64_to_cpu(dev_meta->slba);
meta->cnlb = le64_to_cpu(dev_meta->cnlb);
meta->wp = le64_to_cpu(dev_meta->wp);
meta++;
dev_meta++;
}
offset += len;
left -= len;
}
return ret;
}
static inline void nvme_nvm_rqtocmd(struct nvm_rq *rqd, struct nvme_ns *ns,
struct nvme_nvm_command *c)
{
c->ph_rw.opcode = rqd->opcode;
c->ph_rw.nsid = cpu_to_le32(ns->head->ns_id);
c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list);
c->ph_rw.control = cpu_to_le16(rqd->flags);
c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1);
}
static void nvme_nvm_end_io(struct request *rq, blk_status_t status)
{
struct nvm_rq *rqd = rq->end_io_data;
rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64);
rqd->error = nvme_req(rq)->status;
nvm_end_io(rqd);
kfree(nvme_req(rq)->cmd);
blk_mq_free_request(rq);
}
static struct request *nvme_nvm_alloc_request(struct request_queue *q,
struct nvm_rq *rqd,
struct nvme_nvm_command *cmd)
{
struct nvme_ns *ns = q->queuedata;
struct request *rq;
nvme_nvm_rqtocmd(rqd, ns, cmd);
rq = nvme_alloc_request(q, (struct nvme_command *)cmd, 0, NVME_QID_ANY);
if (IS_ERR(rq))
return rq;
rq->cmd_flags &= ~REQ_FAILFAST_DRIVER;
if (rqd->bio)
blk_init_request_from_bio(rq, rqd->bio);
else
rq->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, IOPRIO_NORM);
return rq;
}
static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
{
struct request_queue *q = dev->q;
struct nvme_nvm_command *cmd;
struct request *rq;
cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
rq = nvme_nvm_alloc_request(q, rqd, cmd);
if (IS_ERR(rq)) {
kfree(cmd);
return PTR_ERR(rq);
}
rq->end_io_data = rqd;
blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
return 0;
}
static int nvme_nvm_submit_io_sync(struct nvm_dev *dev, struct nvm_rq *rqd)
{
struct request_queue *q = dev->q;
struct request *rq;
struct nvme_nvm_command cmd;
int ret = 0;
memset(&cmd, 0, sizeof(struct nvme_nvm_command));
rq = nvme_nvm_alloc_request(q, rqd, &cmd);
if (IS_ERR(rq))
return PTR_ERR(rq);
/* I/Os can fail and the error is signaled through rqd. Callers must
* handle the error accordingly.
*/
blk_execute_rq(q, NULL, rq, 0);
if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
ret = -EINTR;
rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64);
rqd->error = nvme_req(rq)->status;
blk_mq_free_request(rq);
return ret;
}
static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
{
struct nvme_ns *ns = nvmdev->q->queuedata;
return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
}
static void nvme_nvm_destroy_dma_pool(void *pool)
{
struct dma_pool *dma_pool = pool;
dma_pool_destroy(dma_pool);
}
static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
gfp_t mem_flags, dma_addr_t *dma_handler)
{
return dma_pool_alloc(pool, mem_flags, dma_handler);
}
static void nvme_nvm_dev_dma_free(void *pool, void *addr,
dma_addr_t dma_handler)
{
dma_pool_free(pool, addr, dma_handler);
}
static struct nvm_dev_ops nvme_nvm_dev_ops = {
.identity = nvme_nvm_identity,
.get_bb_tbl = nvme_nvm_get_bb_tbl,
.set_bb_tbl = nvme_nvm_set_bb_tbl,
.get_chk_meta = nvme_nvm_get_chk_meta,
.submit_io = nvme_nvm_submit_io,
.submit_io_sync = nvme_nvm_submit_io_sync,
.create_dma_pool = nvme_nvm_create_dma_pool,
.destroy_dma_pool = nvme_nvm_destroy_dma_pool,
.dev_dma_alloc = nvme_nvm_dev_dma_alloc,
.dev_dma_free = nvme_nvm_dev_dma_free,
};
static int nvme_nvm_submit_user_cmd(struct request_queue *q,
struct nvme_ns *ns,
struct nvme_nvm_command *vcmd,
void __user *ubuf, unsigned int bufflen,
void __user *meta_buf, unsigned int meta_len,
void __user *ppa_buf, unsigned int ppa_len,
u32 *result, u64 *status, unsigned int timeout)
{
bool write = nvme_is_write((struct nvme_command *)vcmd);
struct nvm_dev *dev = ns->ndev;
struct gendisk *disk = ns->disk;
struct request *rq;
struct bio *bio = NULL;
__le64 *ppa_list = NULL;
dma_addr_t ppa_dma;
__le64 *metadata = NULL;
dma_addr_t metadata_dma;
DECLARE_COMPLETION_ONSTACK(wait);
int ret = 0;
rq = nvme_alloc_request(q, (struct nvme_command *)vcmd, 0,
NVME_QID_ANY);
if (IS_ERR(rq)) {
ret = -ENOMEM;
goto err_cmd;
}
rq->timeout = timeout ? timeout : ADMIN_TIMEOUT;
if (ppa_buf && ppa_len) {
ppa_list = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &ppa_dma);
if (!ppa_list) {
ret = -ENOMEM;
goto err_rq;
}
if (copy_from_user(ppa_list, (void __user *)ppa_buf,
sizeof(u64) * (ppa_len + 1))) {
ret = -EFAULT;
goto err_ppa;
}
vcmd->ph_rw.spba = cpu_to_le64(ppa_dma);
} else {
vcmd->ph_rw.spba = cpu_to_le64((uintptr_t)ppa_buf);
}
if (ubuf && bufflen) {
ret = blk_rq_map_user(q, rq, NULL, ubuf, bufflen, GFP_KERNEL);
if (ret)
goto err_ppa;
bio = rq->bio;
if (meta_buf && meta_len) {
metadata = dma_pool_alloc(dev->dma_pool, GFP_KERNEL,
&metadata_dma);
if (!metadata) {
ret = -ENOMEM;
goto err_map;
}
if (write) {
if (copy_from_user(metadata,
(void __user *)meta_buf,
meta_len)) {
ret = -EFAULT;
goto err_meta;
}
}
vcmd->ph_rw.metadata = cpu_to_le64(metadata_dma);
}
bio->bi_disk = disk;
}
blk_execute_rq(q, NULL, rq, 0);
if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
ret = -EINTR;
else if (nvme_req(rq)->status & 0x7ff)
ret = -EIO;
if (result)
*result = nvme_req(rq)->status & 0x7ff;
if (status)
*status = le64_to_cpu(nvme_req(rq)->result.u64);
if (metadata && !ret && !write) {
if (copy_to_user(meta_buf, (void *)metadata, meta_len))
ret = -EFAULT;
}
err_meta:
if (meta_buf && meta_len)
dma_pool_free(dev->dma_pool, metadata, metadata_dma);
err_map:
if (bio)
blk_rq_unmap_user(bio);
err_ppa:
if (ppa_buf && ppa_len)
dma_pool_free(dev->dma_pool, ppa_list, ppa_dma);
err_rq:
blk_mq_free_request(rq);
err_cmd:
return ret;
}
static int nvme_nvm_submit_vio(struct nvme_ns *ns,
struct nvm_user_vio __user *uvio)
{
struct nvm_user_vio vio;
struct nvme_nvm_command c;
unsigned int length;
int ret;
if (copy_from_user(&vio, uvio, sizeof(vio)))
return -EFAULT;
if (vio.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.ph_rw.opcode = vio.opcode;
c.ph_rw.nsid = cpu_to_le32(ns->head->ns_id);
c.ph_rw.control = cpu_to_le16(vio.control);
c.ph_rw.length = cpu_to_le16(vio.nppas);
length = (vio.nppas + 1) << ns->lba_shift;
ret = nvme_nvm_submit_user_cmd(ns->queue, ns, &c,
(void __user *)(uintptr_t)vio.addr, length,
(void __user *)(uintptr_t)vio.metadata,
vio.metadata_len,
(void __user *)(uintptr_t)vio.ppa_list, vio.nppas,
&vio.result, &vio.status, 0);
if (ret && copy_to_user(uvio, &vio, sizeof(vio)))
return -EFAULT;
return ret;
}
static int nvme_nvm_user_vcmd(struct nvme_ns *ns, int admin,
struct nvm_passthru_vio __user *uvcmd)
{
struct nvm_passthru_vio vcmd;
struct nvme_nvm_command c;
struct request_queue *q;
unsigned int timeout = 0;
int ret;
if (copy_from_user(&vcmd, uvcmd, sizeof(vcmd)))
return -EFAULT;
if ((vcmd.opcode != 0xF2) && (!capable(CAP_SYS_ADMIN)))
return -EACCES;
if (vcmd.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.common.opcode = vcmd.opcode;
c.common.nsid = cpu_to_le32(ns->head->ns_id);
c.common.cdw2[0] = cpu_to_le32(vcmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(vcmd.cdw3);
/* cdw11-12 */
c.ph_rw.length = cpu_to_le16(vcmd.nppas);
c.ph_rw.control = cpu_to_le16(vcmd.control);
c.common.cdw10[3] = cpu_to_le32(vcmd.cdw13);
c.common.cdw10[4] = cpu_to_le32(vcmd.cdw14);
c.common.cdw10[5] = cpu_to_le32(vcmd.cdw15);
if (vcmd.timeout_ms)
timeout = msecs_to_jiffies(vcmd.timeout_ms);
q = admin ? ns->ctrl->admin_q : ns->queue;
ret = nvme_nvm_submit_user_cmd(q, ns,
(struct nvme_nvm_command *)&c,
(void __user *)(uintptr_t)vcmd.addr, vcmd.data_len,
(void __user *)(uintptr_t)vcmd.metadata,
vcmd.metadata_len,
(void __user *)(uintptr_t)vcmd.ppa_list, vcmd.nppas,
&vcmd.result, &vcmd.status, timeout);
if (ret && copy_to_user(uvcmd, &vcmd, sizeof(vcmd)))
return -EFAULT;
return ret;
}
int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case NVME_NVM_IOCTL_ADMIN_VIO:
return nvme_nvm_user_vcmd(ns, 1, (void __user *)arg);
case NVME_NVM_IOCTL_IO_VIO:
return nvme_nvm_user_vcmd(ns, 0, (void __user *)arg);
case NVME_NVM_IOCTL_SUBMIT_VIO:
return nvme_nvm_submit_vio(ns, (void __user *)arg);
default:
return -ENOTTY;
}
}
void nvme_nvm_update_nvm_info(struct nvme_ns *ns)
{
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
if (geo->version == NVM_OCSSD_SPEC_12)
return;
geo->csecs = 1 << ns->lba_shift;
geo->sos = ns->ms;
}
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node)
{
struct request_queue *q = ns->queue;
struct nvm_dev *dev;
_nvme_nvm_check_size();
dev = nvm_alloc_dev(node);
if (!dev)
return -ENOMEM;
dev->q = q;
memcpy(dev->name, disk_name, DISK_NAME_LEN);
dev->ops = &nvme_nvm_dev_ops;
dev->private_data = ns;
ns->ndev = dev;
return nvm_register(dev);
}
void nvme_nvm_unregister(struct nvme_ns *ns)
{
nvm_unregister(ns->ndev);
}
static ssize_t nvm_dev_attr_show(struct device *dev,
struct device_attribute *dattr, char *page)
{
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
struct attribute *attr;
if (!ndev)
return 0;
attr = &dattr->attr;
if (strcmp(attr->name, "version") == 0) {
if (geo->major_ver_id == 1)
return scnprintf(page, PAGE_SIZE, "%u\n",
geo->major_ver_id);
else
return scnprintf(page, PAGE_SIZE, "%u.%u\n",
geo->major_ver_id,
geo->minor_ver_id);
} else if (strcmp(attr->name, "capabilities") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->cap);
} else if (strcmp(attr->name, "read_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->trdt);
} else if (strcmp(attr->name, "read_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->trdm);
} else {
return scnprintf(page,
PAGE_SIZE,
"Unhandled attr(%s) in `%s`\n",
attr->name, __func__);
}
}
static ssize_t nvm_dev_attr_show_ppaf(struct nvm_addrf_12 *ppaf, char *page)
{
return scnprintf(page, PAGE_SIZE,
"0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
ppaf->ch_offset, ppaf->ch_len,
ppaf->lun_offset, ppaf->lun_len,
ppaf->pln_offset, ppaf->pln_len,
ppaf->blk_offset, ppaf->blk_len,
ppaf->pg_offset, ppaf->pg_len,
ppaf->sec_offset, ppaf->sec_len);
}
static ssize_t nvm_dev_attr_show_12(struct device *dev,
struct device_attribute *dattr, char *page)
{
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
struct attribute *attr;
if (!ndev)
return 0;
attr = &dattr->attr;
if (strcmp(attr->name, "vendor_opcode") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->vmnt);
} else if (strcmp(attr->name, "device_mode") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->dom);
/* kept for compatibility */
} else if (strcmp(attr->name, "media_manager") == 0) {
return scnprintf(page, PAGE_SIZE, "%s\n", "gennvm");
} else if (strcmp(attr->name, "ppa_format") == 0) {
return nvm_dev_attr_show_ppaf((void *)&geo->addrf, page);
} else if (strcmp(attr->name, "media_type") == 0) { /* u8 */
return scnprintf(page, PAGE_SIZE, "%u\n", geo->mtype);
} else if (strcmp(attr->name, "flash_media_type") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->fmtype);
} else if (strcmp(attr->name, "num_channels") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_ch);
} else if (strcmp(attr->name, "num_luns") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_lun);
} else if (strcmp(attr->name, "num_planes") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_pln);
} else if (strcmp(attr->name, "num_blocks") == 0) { /* u16 */
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_chk);
} else if (strcmp(attr->name, "num_pages") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_pg);
} else if (strcmp(attr->name, "page_size") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->fpg_sz);
} else if (strcmp(attr->name, "hw_sector_size") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->csecs);
} else if (strcmp(attr->name, "oob_sector_size") == 0) {/* u32 */
return scnprintf(page, PAGE_SIZE, "%u\n", geo->sos);
} else if (strcmp(attr->name, "prog_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprt);
} else if (strcmp(attr->name, "prog_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprm);
} else if (strcmp(attr->name, "erase_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbet);
} else if (strcmp(attr->name, "erase_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbem);
} else if (strcmp(attr->name, "multiplane_modes") == 0) {
return scnprintf(page, PAGE_SIZE, "0x%08x\n", geo->mpos);
} else if (strcmp(attr->name, "media_capabilities") == 0) {
return scnprintf(page, PAGE_SIZE, "0x%08x\n", geo->mccap);
} else if (strcmp(attr->name, "max_phys_secs") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", NVM_MAX_VLBA);
} else {
return scnprintf(page, PAGE_SIZE,
"Unhandled attr(%s) in `%s`\n",
attr->name, __func__);
}
}
static ssize_t nvm_dev_attr_show_20(struct device *dev,
struct device_attribute *dattr, char *page)
{
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
struct attribute *attr;
if (!ndev)
return 0;
attr = &dattr->attr;
if (strcmp(attr->name, "groups") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_ch);
} else if (strcmp(attr->name, "punits") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_lun);
} else if (strcmp(attr->name, "chunks") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_chk);
} else if (strcmp(attr->name, "clba") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->clba);
} else if (strcmp(attr->name, "ws_min") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->ws_min);
} else if (strcmp(attr->name, "ws_opt") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->ws_opt);
} else if (strcmp(attr->name, "maxoc") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->maxoc);
} else if (strcmp(attr->name, "maxocpu") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->maxocpu);
} else if (strcmp(attr->name, "mw_cunits") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->mw_cunits);
} else if (strcmp(attr->name, "write_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprt);
} else if (strcmp(attr->name, "write_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprm);
} else if (strcmp(attr->name, "reset_typ") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbet);
} else if (strcmp(attr->name, "reset_max") == 0) {
return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbem);
} else {
return scnprintf(page, PAGE_SIZE,
"Unhandled attr(%s) in `%s`\n",
attr->name, __func__);
}
}
#define NVM_DEV_ATTR_RO(_name) \
DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show, NULL)
#define NVM_DEV_ATTR_12_RO(_name) \
DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show_12, NULL)
#define NVM_DEV_ATTR_20_RO(_name) \
DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show_20, NULL)
/* general attributes */
static NVM_DEV_ATTR_RO(version);
static NVM_DEV_ATTR_RO(capabilities);
static NVM_DEV_ATTR_RO(read_typ);
static NVM_DEV_ATTR_RO(read_max);
/* 1.2 values */
static NVM_DEV_ATTR_12_RO(vendor_opcode);
static NVM_DEV_ATTR_12_RO(device_mode);
static NVM_DEV_ATTR_12_RO(ppa_format);
static NVM_DEV_ATTR_12_RO(media_manager);
static NVM_DEV_ATTR_12_RO(media_type);
static NVM_DEV_ATTR_12_RO(flash_media_type);
static NVM_DEV_ATTR_12_RO(num_channels);
static NVM_DEV_ATTR_12_RO(num_luns);
static NVM_DEV_ATTR_12_RO(num_planes);
static NVM_DEV_ATTR_12_RO(num_blocks);
static NVM_DEV_ATTR_12_RO(num_pages);
static NVM_DEV_ATTR_12_RO(page_size);
static NVM_DEV_ATTR_12_RO(hw_sector_size);
static NVM_DEV_ATTR_12_RO(oob_sector_size);
static NVM_DEV_ATTR_12_RO(prog_typ);
static NVM_DEV_ATTR_12_RO(prog_max);
static NVM_DEV_ATTR_12_RO(erase_typ);
static NVM_DEV_ATTR_12_RO(erase_max);
static NVM_DEV_ATTR_12_RO(multiplane_modes);
static NVM_DEV_ATTR_12_RO(media_capabilities);
static NVM_DEV_ATTR_12_RO(max_phys_secs);
static struct attribute *nvm_dev_attrs_12[] = {
&dev_attr_version.attr,
&dev_attr_capabilities.attr,
&dev_attr_vendor_opcode.attr,
&dev_attr_device_mode.attr,
&dev_attr_media_manager.attr,
&dev_attr_ppa_format.attr,
&dev_attr_media_type.attr,
&dev_attr_flash_media_type.attr,
&dev_attr_num_channels.attr,
&dev_attr_num_luns.attr,
&dev_attr_num_planes.attr,
&dev_attr_num_blocks.attr,
&dev_attr_num_pages.attr,
&dev_attr_page_size.attr,
&dev_attr_hw_sector_size.attr,
&dev_attr_oob_sector_size.attr,
&dev_attr_read_typ.attr,
&dev_attr_read_max.attr,
&dev_attr_prog_typ.attr,
&dev_attr_prog_max.attr,
&dev_attr_erase_typ.attr,
&dev_attr_erase_max.attr,
&dev_attr_multiplane_modes.attr,
&dev_attr_media_capabilities.attr,
&dev_attr_max_phys_secs.attr,
NULL,
};
static const struct attribute_group nvm_dev_attr_group_12 = {
.name = "lightnvm",
.attrs = nvm_dev_attrs_12,
};
/* 2.0 values */
static NVM_DEV_ATTR_20_RO(groups);
static NVM_DEV_ATTR_20_RO(punits);
static NVM_DEV_ATTR_20_RO(chunks);
static NVM_DEV_ATTR_20_RO(clba);
static NVM_DEV_ATTR_20_RO(ws_min);
static NVM_DEV_ATTR_20_RO(ws_opt);
static NVM_DEV_ATTR_20_RO(maxoc);
static NVM_DEV_ATTR_20_RO(maxocpu);
static NVM_DEV_ATTR_20_RO(mw_cunits);
static NVM_DEV_ATTR_20_RO(write_typ);
static NVM_DEV_ATTR_20_RO(write_max);
static NVM_DEV_ATTR_20_RO(reset_typ);
static NVM_DEV_ATTR_20_RO(reset_max);
static struct attribute *nvm_dev_attrs_20[] = {
&dev_attr_version.attr,
&dev_attr_capabilities.attr,
&dev_attr_groups.attr,
&dev_attr_punits.attr,
&dev_attr_chunks.attr,
&dev_attr_clba.attr,
&dev_attr_ws_min.attr,
&dev_attr_ws_opt.attr,
&dev_attr_maxoc.attr,
&dev_attr_maxocpu.attr,
&dev_attr_mw_cunits.attr,
&dev_attr_read_typ.attr,
&dev_attr_read_max.attr,
&dev_attr_write_typ.attr,
&dev_attr_write_max.attr,
&dev_attr_reset_typ.attr,
&dev_attr_reset_max.attr,
NULL,
};
static const struct attribute_group nvm_dev_attr_group_20 = {
.name = "lightnvm",
.attrs = nvm_dev_attrs_20,
};
int nvme_nvm_register_sysfs(struct nvme_ns *ns)
{
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
if (!ndev)
return -EINVAL;
switch (geo->major_ver_id) {
case 1:
return sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group_12);
case 2:
return sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group_20);
}
return -EINVAL;
}
void nvme_nvm_unregister_sysfs(struct nvme_ns *ns)
{
struct nvm_dev *ndev = ns->ndev;
struct nvm_geo *geo = &ndev->geo;
switch (geo->major_ver_id) {
case 1:
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group_12);
break;
case 2:
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
&nvm_dev_attr_group_20);
break;
}
}