kernel_samsung_a34x-permissive/drivers/soc/dove/pmu.c
2024-04-28 15:49:01 +02:00

456 lines
11 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Marvell Dove PMU support
*/
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/reset.h>
#include <linux/reset-controller.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/soc/dove/pmu.h>
#include <linux/spinlock.h>
#define NR_PMU_IRQS 7
#define PMC_SW_RST 0x30
#define PMC_IRQ_CAUSE 0x50
#define PMC_IRQ_MASK 0x54
#define PMU_PWR 0x10
#define PMU_ISO 0x58
struct pmu_data {
spinlock_t lock;
struct device_node *of_node;
void __iomem *pmc_base;
void __iomem *pmu_base;
struct irq_chip_generic *irq_gc;
struct irq_domain *irq_domain;
#ifdef CONFIG_RESET_CONTROLLER
struct reset_controller_dev reset;
#endif
};
/*
* The PMU contains a register to reset various subsystems within the
* SoC. Export this as a reset controller.
*/
#ifdef CONFIG_RESET_CONTROLLER
#define rcdev_to_pmu(rcdev) container_of(rcdev, struct pmu_data, reset)
static int pmu_reset_reset(struct reset_controller_dev *rc, unsigned long id)
{
struct pmu_data *pmu = rcdev_to_pmu(rc);
unsigned long flags;
u32 val;
spin_lock_irqsave(&pmu->lock, flags);
val = readl_relaxed(pmu->pmc_base + PMC_SW_RST);
writel_relaxed(val & ~BIT(id), pmu->pmc_base + PMC_SW_RST);
writel_relaxed(val | BIT(id), pmu->pmc_base + PMC_SW_RST);
spin_unlock_irqrestore(&pmu->lock, flags);
return 0;
}
static int pmu_reset_assert(struct reset_controller_dev *rc, unsigned long id)
{
struct pmu_data *pmu = rcdev_to_pmu(rc);
unsigned long flags;
u32 val = ~BIT(id);
spin_lock_irqsave(&pmu->lock, flags);
val &= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
spin_unlock_irqrestore(&pmu->lock, flags);
return 0;
}
static int pmu_reset_deassert(struct reset_controller_dev *rc, unsigned long id)
{
struct pmu_data *pmu = rcdev_to_pmu(rc);
unsigned long flags;
u32 val = BIT(id);
spin_lock_irqsave(&pmu->lock, flags);
val |= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
spin_unlock_irqrestore(&pmu->lock, flags);
return 0;
}
static const struct reset_control_ops pmu_reset_ops = {
.reset = pmu_reset_reset,
.assert = pmu_reset_assert,
.deassert = pmu_reset_deassert,
};
static struct reset_controller_dev pmu_reset __initdata = {
.ops = &pmu_reset_ops,
.owner = THIS_MODULE,
.nr_resets = 32,
};
static void __init pmu_reset_init(struct pmu_data *pmu)
{
int ret;
pmu->reset = pmu_reset;
pmu->reset.of_node = pmu->of_node;
ret = reset_controller_register(&pmu->reset);
if (ret)
pr_err("pmu: %s failed: %d\n", "reset_controller_register", ret);
}
#else
static void __init pmu_reset_init(struct pmu_data *pmu)
{
}
#endif
struct pmu_domain {
struct pmu_data *pmu;
u32 pwr_mask;
u32 rst_mask;
u32 iso_mask;
struct generic_pm_domain base;
};
#define to_pmu_domain(dom) container_of(dom, struct pmu_domain, base)
/*
* This deals with the "old" Marvell sequence of bringing a power domain
* down/up, which is: apply power, release reset, disable isolators.
*
* Later devices apparantly use a different sequence: power up, disable
* isolators, assert repair signal, enable SRMA clock, enable AXI clock,
* enable module clock, deassert reset.
*
* Note: reading the assembly, it seems that the IO accessors have an
* unfortunate side-effect - they cause memory already read into registers
* for the if () to be re-read for the bit-set or bit-clear operation.
* The code is written to avoid this.
*/
static int pmu_domain_power_off(struct generic_pm_domain *domain)
{
struct pmu_domain *pmu_dom = to_pmu_domain(domain);
struct pmu_data *pmu = pmu_dom->pmu;
unsigned long flags;
unsigned int val;
void __iomem *pmu_base = pmu->pmu_base;
void __iomem *pmc_base = pmu->pmc_base;
spin_lock_irqsave(&pmu->lock, flags);
/* Enable isolators */
if (pmu_dom->iso_mask) {
val = ~pmu_dom->iso_mask;
val &= readl_relaxed(pmu_base + PMU_ISO);
writel_relaxed(val, pmu_base + PMU_ISO);
}
/* Reset unit */
if (pmu_dom->rst_mask) {
val = ~pmu_dom->rst_mask;
val &= readl_relaxed(pmc_base + PMC_SW_RST);
writel_relaxed(val, pmc_base + PMC_SW_RST);
}
/* Power down */
val = readl_relaxed(pmu_base + PMU_PWR) | pmu_dom->pwr_mask;
writel_relaxed(val, pmu_base + PMU_PWR);
spin_unlock_irqrestore(&pmu->lock, flags);
return 0;
}
static int pmu_domain_power_on(struct generic_pm_domain *domain)
{
struct pmu_domain *pmu_dom = to_pmu_domain(domain);
struct pmu_data *pmu = pmu_dom->pmu;
unsigned long flags;
unsigned int val;
void __iomem *pmu_base = pmu->pmu_base;
void __iomem *pmc_base = pmu->pmc_base;
spin_lock_irqsave(&pmu->lock, flags);
/* Power on */
val = ~pmu_dom->pwr_mask & readl_relaxed(pmu_base + PMU_PWR);
writel_relaxed(val, pmu_base + PMU_PWR);
/* Release reset */
if (pmu_dom->rst_mask) {
val = pmu_dom->rst_mask;
val |= readl_relaxed(pmc_base + PMC_SW_RST);
writel_relaxed(val, pmc_base + PMC_SW_RST);
}
/* Disable isolators */
if (pmu_dom->iso_mask) {
val = pmu_dom->iso_mask;
val |= readl_relaxed(pmu_base + PMU_ISO);
writel_relaxed(val, pmu_base + PMU_ISO);
}
spin_unlock_irqrestore(&pmu->lock, flags);
return 0;
}
static void __pmu_domain_register(struct pmu_domain *domain,
struct device_node *np)
{
unsigned int val = readl_relaxed(domain->pmu->pmu_base + PMU_PWR);
domain->base.power_off = pmu_domain_power_off;
domain->base.power_on = pmu_domain_power_on;
pm_genpd_init(&domain->base, NULL, !(val & domain->pwr_mask));
if (np)
of_genpd_add_provider_simple(np, &domain->base);
}
/* PMU IRQ controller */
static void pmu_irq_handler(struct irq_desc *desc)
{
struct pmu_data *pmu = irq_desc_get_handler_data(desc);
struct irq_chip_generic *gc = pmu->irq_gc;
struct irq_domain *domain = pmu->irq_domain;
void __iomem *base = gc->reg_base;
u32 stat = readl_relaxed(base + PMC_IRQ_CAUSE) & gc->mask_cache;
u32 done = ~0;
if (stat == 0) {
handle_bad_irq(desc);
return;
}
while (stat) {
u32 hwirq = fls(stat) - 1;
stat &= ~(1 << hwirq);
done &= ~(1 << hwirq);
generic_handle_irq(irq_find_mapping(domain, hwirq));
}
/*
* The PMU mask register is not RW0C: it is RW. This means that
* the bits take whatever value is written to them; if you write
* a '1', you will set the interrupt.
*
* Unfortunately this means there is NO race free way to clear
* these interrupts.
*
* So, let's structure the code so that the window is as small as
* possible.
*/
irq_gc_lock(gc);
done &= readl_relaxed(base + PMC_IRQ_CAUSE);
writel_relaxed(done, base + PMC_IRQ_CAUSE);
irq_gc_unlock(gc);
}
static int __init dove_init_pmu_irq(struct pmu_data *pmu, int irq)
{
const char *name = "pmu_irq";
struct irq_chip_generic *gc;
struct irq_domain *domain;
int ret;
/* mask and clear all interrupts */
writel(0, pmu->pmc_base + PMC_IRQ_MASK);
writel(0, pmu->pmc_base + PMC_IRQ_CAUSE);
domain = irq_domain_add_linear(pmu->of_node, NR_PMU_IRQS,
&irq_generic_chip_ops, NULL);
if (!domain) {
pr_err("%s: unable to add irq domain\n", name);
return -ENOMEM;
}
ret = irq_alloc_domain_generic_chips(domain, NR_PMU_IRQS, 1, name,
handle_level_irq,
IRQ_NOREQUEST | IRQ_NOPROBE, 0,
IRQ_GC_INIT_MASK_CACHE);
if (ret) {
pr_err("%s: unable to alloc irq domain gc: %d\n", name, ret);
irq_domain_remove(domain);
return ret;
}
gc = irq_get_domain_generic_chip(domain, 0);
gc->reg_base = pmu->pmc_base;
gc->chip_types[0].regs.mask = PMC_IRQ_MASK;
gc->chip_types[0].chip.irq_mask = irq_gc_mask_clr_bit;
gc->chip_types[0].chip.irq_unmask = irq_gc_mask_set_bit;
pmu->irq_domain = domain;
pmu->irq_gc = gc;
irq_set_handler_data(irq, pmu);
irq_set_chained_handler(irq, pmu_irq_handler);
return 0;
}
int __init dove_init_pmu_legacy(const struct dove_pmu_initdata *initdata)
{
const struct dove_pmu_domain_initdata *domain_initdata;
struct pmu_data *pmu;
int ret;
pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
if (!pmu)
return -ENOMEM;
spin_lock_init(&pmu->lock);
pmu->pmc_base = initdata->pmc_base;
pmu->pmu_base = initdata->pmu_base;
pmu_reset_init(pmu);
for (domain_initdata = initdata->domains; domain_initdata->name;
domain_initdata++) {
struct pmu_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (domain) {
domain->pmu = pmu;
domain->pwr_mask = domain_initdata->pwr_mask;
domain->rst_mask = domain_initdata->rst_mask;
domain->iso_mask = domain_initdata->iso_mask;
domain->base.name = domain_initdata->name;
__pmu_domain_register(domain, NULL);
}
}
ret = dove_init_pmu_irq(pmu, initdata->irq);
if (ret)
pr_err("dove_init_pmu_irq() failed: %d\n", ret);
if (pmu->irq_domain)
irq_domain_associate_many(pmu->irq_domain,
initdata->irq_domain_start,
0, NR_PMU_IRQS);
return 0;
}
/*
* pmu: power-manager@d0000 {
* compatible = "marvell,dove-pmu";
* reg = <0xd0000 0x8000> <0xd8000 0x8000>;
* interrupts = <33>;
* interrupt-controller;
* #reset-cells = 1;
* vpu_domain: vpu-domain {
* #power-domain-cells = <0>;
* marvell,pmu_pwr_mask = <0x00000008>;
* marvell,pmu_iso_mask = <0x00000001>;
* resets = <&pmu 16>;
* };
* gpu_domain: gpu-domain {
* #power-domain-cells = <0>;
* marvell,pmu_pwr_mask = <0x00000004>;
* marvell,pmu_iso_mask = <0x00000002>;
* resets = <&pmu 18>;
* };
* };
*/
int __init dove_init_pmu(void)
{
struct device_node *np_pmu, *domains_node, *np;
struct pmu_data *pmu;
int ret, parent_irq;
/* Lookup the PMU node */
np_pmu = of_find_compatible_node(NULL, NULL, "marvell,dove-pmu");
if (!np_pmu)
return 0;
domains_node = of_get_child_by_name(np_pmu, "domains");
if (!domains_node) {
pr_err("%s: failed to find domains sub-node\n", np_pmu->name);
return 0;
}
pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
if (!pmu)
return -ENOMEM;
spin_lock_init(&pmu->lock);
pmu->of_node = np_pmu;
pmu->pmc_base = of_iomap(pmu->of_node, 0);
pmu->pmu_base = of_iomap(pmu->of_node, 1);
if (!pmu->pmc_base || !pmu->pmu_base) {
pr_err("%s: failed to map PMU\n", np_pmu->name);
iounmap(pmu->pmu_base);
iounmap(pmu->pmc_base);
kfree(pmu);
return -ENOMEM;
}
pmu_reset_init(pmu);
for_each_available_child_of_node(domains_node, np) {
struct of_phandle_args args;
struct pmu_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
break;
domain->pmu = pmu;
domain->base.name = kstrdup(np->name, GFP_KERNEL);
if (!domain->base.name) {
kfree(domain);
break;
}
of_property_read_u32(np, "marvell,pmu_pwr_mask",
&domain->pwr_mask);
of_property_read_u32(np, "marvell,pmu_iso_mask",
&domain->iso_mask);
/*
* We parse the reset controller property directly here
* to ensure that we can operate when the reset controller
* support is not configured into the kernel.
*/
ret = of_parse_phandle_with_args(np, "resets", "#reset-cells",
0, &args);
if (ret == 0) {
if (args.np == pmu->of_node)
domain->rst_mask = BIT(args.args[0]);
of_node_put(args.np);
}
__pmu_domain_register(domain, np);
}
/* Loss of the interrupt controller is not a fatal error. */
parent_irq = irq_of_parse_and_map(pmu->of_node, 0);
if (!parent_irq) {
pr_err("%s: no interrupt specified\n", np_pmu->name);
} else {
ret = dove_init_pmu_irq(pmu, parent_irq);
if (ret)
pr_err("dove_init_pmu_irq() failed: %d\n", ret);
}
return 0;
}