kernel_samsung_a34x-permissive/drivers/usb/gadget/function/f_mtp.c
2024-04-28 15:49:01 +02:00

2437 lines
58 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 MediaTek Inc.
*/
/* #define DEBUG */
/* #define VERBOSE_DEBUG */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/printk.h>
#include <linux/types.h>
#include <linux/file.h>
#include <linux/device.h>
#include <linux/miscdevice.h>
#include <linux/usb.h>
#include <linux/usb_usual.h>
#include <linux/usb/ch9.h>
#include "f_mtp.h"
#include <linux/configfs.h>
#include <linux/usb/composite.h>
#include "configfs.h"
#include "usb_boost.h"
#define MTP_BULK_BUFFER_SIZE 16384
#define INTR_BUFFER_SIZE 28
#define MAX_INST_NAME_LEN 40
#define MTP_MAX_FILE_SIZE 0xFFFFFFFFL
/* String IDs */
#define INTERFACE_STRING_INDEX 0
/* values for mtp_dev.state */
#define STATE_OFFLINE 0 /* initial state, disconnected */
#define STATE_READY 1 /* ready for userspace calls */
#define STATE_BUSY 2 /* processing userspace calls */
#define STATE_CANCELED 3 /* transaction canceled by host */
#define STATE_ERROR 4 /* error from completion routine */
/* number of tx and rx requests to allocate */
#define TX_REQ_MAX 4
#define RX_REQ_MAX 4
#define INTR_REQ_MAX 5
/* ID for Microsoft MTP OS String */
#define MTP_OS_STRING_ID 0xEE
/* MTP class reqeusts */
#define MTP_REQ_CANCEL 0x64
#define MTP_REQ_GET_EXT_EVENT_DATA 0x65
#define MTP_REQ_RESET 0x66
#define MTP_REQ_GET_DEVICE_STATUS 0x67
/* constants for device status */
#define MTP_RESPONSE_OK 0x2001
#define MTP_RESPONSE_DEVICE_BUSY 0x2019
#define DRIVER_NAME "mtp"
#define MTP_CONTAINER_LENGTH_OFFSET 0
#define MTP_CONTAINER_TYPE_OFFSET 4
#define MTP_CONTAINER_CODE_OFFSET 6
#define MTP_CONTAINER_TRANSACTION_ID_OFFSET 8
#define MTP_CONTAINER_PARAMETER_OFFSET 12
#define MTP_CONTAINER_HEADER_SIZE 12
#define MTP_DBG(fmt, args...) \
pr_notice("MTP, <%s(), %d> " fmt, __func__, __LINE__, ## args)
#define MTP_DBG_LIMIT(FREQ, fmt, args...) do {\
static DEFINE_RATELIMIT_STATE(ratelimit, HZ, FREQ);\
static int skip_cnt;\
\
{ \
if (__ratelimit(&ratelimit)) {\
pr_notice("MTP, <%s(), %d> " fmt ", skip<%d>\n",\
__func__, __LINE__, ## args, skip_cnt);\
skip_cnt = 0;\
} else\
skip_cnt++;\
} \
} while (0)
static bool cust_dump;
static int cust_dump_read = MTP_CONTAINER_HEADER_SIZE;
static int cust_dump_write = MTP_CONTAINER_HEADER_SIZE;
static int cust_dump_ioctl = MTP_CONTAINER_HEADER_SIZE;
static int monitor_work_interval_ms = 1000;
static bool monitor_time;
module_param(cust_dump, bool, 0644);
module_param(cust_dump_read, int, 0644);
module_param(cust_dump_write, int, 0644);
module_param(cust_dump_ioctl, int, 0644);
module_param(monitor_work_interval_ms, int, 0644);
module_param(monitor_time, bool, 0644);
static struct delayed_work monitor_work;
static void do_monitor_work(struct work_struct *work);
static void protocol_dump(char *data, int buf_len, int limit)
{
u32 *len;
u32 *type_code;
u32 *id;
if (buf_len < MTP_CONTAINER_HEADER_SIZE) {
MTP_DBG("buf_len too small<%d>\n", buf_len);
return;
}
len = (u32 *)(data + MTP_CONTAINER_LENGTH_OFFSET);
type_code = (u32 *)(data + MTP_CONTAINER_TYPE_OFFSET);
id = (u32 *)(data + MTP_CONTAINER_TRANSACTION_ID_OFFSET);
MTP_DBG("H<%x %x %x>\n", *len, *type_code, *id);
/* dump the rest data */
if (limit) {
int i = MTP_CONTAINER_PARAMETER_OFFSET;
int bound = min(limit, buf_len);
while (i++ < bound)
MTP_DBG("D[%d]:%x\n", i, data[i]);
}
}
enum {
MTP_READ = 0,
MTP_WRITE,
MTP_IOCTL,
MTP_IOCTL_WORK,
MTP_WAIT_EVENT_R1,
MTP_WAIT_EVENT_R2,
MTP_WAIT_EVENT,
MTP_VFS_R,
MTP_VFS_W,
MTP_MAX_MONITOR_TYPE
};
static unsigned int monitor_in_cnt[MTP_MAX_MONITOR_TYPE];
static unsigned int monitor_out_cnt[MTP_MAX_MONITOR_TYPE];
static s64 ktime_ns[MTP_MAX_MONITOR_TYPE];
static ktime_t ktime_in[MTP_MAX_MONITOR_TYPE];
static ktime_t ktime_out[MTP_MAX_MONITOR_TYPE];
static void monitor_in(int id)
{
monitor_in_cnt[id]++;
if (likely(!monitor_time))
return;
/* TIME PROFILING */
ktime_in[id] = ktime_get();
}
static void monitor_out(int id)
{
monitor_out_cnt[id]++;
if (likely(!monitor_time))
return;
/* TIME PROFILING */
ktime_out[id] = ktime_get();
ktime_ns[id] += ktime_to_ns(ktime_sub(ktime_out[id], ktime_in[id]));
}
static char *ioctl_string(unsigned int code)
{
switch (code) {
case MTP_SEND_FILE:
return "MTP_SEND_FILE";
case MTP_RECEIVE_FILE:
return "MTP_RECEIVE_FILE";
case MTP_SEND_FILE_WITH_HEADER:
return "MTP_SEND_FILE_WITH_HEADER";
case MTP_SEND_EVENT:
return "MTP_SEND_EVENT";
default:
return "UNDEFINED";
}
};
#define MTP_SEND_EVENT_TIMEOUT_CNT 5
static int mtp_send_event_timeout_cnt;
static bool mtp_skip_vfs_read;
static bool mtp_skip_vfs_write;
module_param(mtp_skip_vfs_read, bool, 0644);
module_param(mtp_skip_vfs_write, bool, 0644);
static const char mtp_shortname[] = DRIVER_NAME "_usb";
unsigned int mtp_rx_req_len = MTP_BULK_BUFFER_SIZE;
unsigned int mtp_tx_req_len = MTP_BULK_BUFFER_SIZE;
struct mtp_dev {
struct usb_function function;
struct usb_composite_dev *cdev;
spinlock_t lock;
struct usb_ep *ep_in;
struct usb_ep *ep_out;
struct usb_ep *ep_intr;
int state;
/* synchronize access to our device file */
atomic_t open_excl;
/* to enforce only one ioctl at a time */
atomic_t ioctl_excl;
struct list_head tx_idle;
struct list_head intr_idle;
wait_queue_head_t read_wq;
wait_queue_head_t write_wq;
wait_queue_head_t intr_wq;
struct usb_request *rx_req[RX_REQ_MAX];
int rx_done;
/* for processing MTP_SEND_FILE, MTP_RECEIVE_FILE and
* MTP_SEND_FILE_WITH_HEADER ioctls on a work queue
*/
struct workqueue_struct *wq;
struct work_struct send_file_work;
struct work_struct receive_file_work;
struct file *xfer_file;
loff_t xfer_file_offset;
int64_t xfer_file_length;
unsigned int xfer_send_header;
uint16_t xfer_command;
uint32_t xfer_transaction_id;
int xfer_result;
int is_boost;
struct cpumask cpu_mask;
};
static struct usb_interface_descriptor mtp_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_STILL_IMAGE,
.bInterfaceSubClass = 1,
.bInterfaceProtocol = 1,
};
static struct usb_interface_descriptor ptp_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_STILL_IMAGE,
.bInterfaceSubClass = 1,
.bInterfaceProtocol = 1,
};
static struct usb_endpoint_descriptor mtp_ss_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor mtp_ss_in_comp_desc = {
.bLength = sizeof(mtp_ss_in_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* .bMaxBurst = DYNAMIC, */
};
static struct usb_endpoint_descriptor mtp_ss_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(1024),
};
static struct usb_ss_ep_comp_descriptor mtp_ss_out_comp_desc = {
.bLength = sizeof(mtp_ss_out_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
/* .bMaxBurst = DYNAMIC, */
};
static struct usb_endpoint_descriptor mtp_highspeed_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor mtp_highspeed_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor mtp_fullspeed_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor mtp_fullspeed_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
};
static struct usb_endpoint_descriptor mtp_intr_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = cpu_to_le16(INTR_BUFFER_SIZE),
.bInterval = 6,
};
static struct usb_ss_ep_comp_descriptor mtp_intr_ss_comp_desc = {
.bLength = sizeof(mtp_intr_ss_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
.wBytesPerInterval = cpu_to_le16(INTR_BUFFER_SIZE),
};
static struct usb_descriptor_header *fs_mtp_descs[] = {
(struct usb_descriptor_header *) &mtp_interface_desc,
(struct usb_descriptor_header *) &mtp_fullspeed_in_desc,
(struct usb_descriptor_header *) &mtp_fullspeed_out_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
NULL,
};
static struct usb_descriptor_header *hs_mtp_descs[] = {
(struct usb_descriptor_header *) &mtp_interface_desc,
(struct usb_descriptor_header *) &mtp_highspeed_in_desc,
(struct usb_descriptor_header *) &mtp_highspeed_out_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
NULL,
};
static struct usb_descriptor_header *ss_mtp_descs[] = {
(struct usb_descriptor_header *) &mtp_interface_desc,
(struct usb_descriptor_header *) &mtp_ss_in_desc,
(struct usb_descriptor_header *) &mtp_ss_in_comp_desc,
(struct usb_descriptor_header *) &mtp_ss_out_desc,
(struct usb_descriptor_header *) &mtp_ss_out_comp_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
(struct usb_descriptor_header *) &mtp_intr_ss_comp_desc,
NULL,
};
static struct usb_descriptor_header *fs_ptp_descs[] = {
(struct usb_descriptor_header *) &ptp_interface_desc,
(struct usb_descriptor_header *) &mtp_fullspeed_in_desc,
(struct usb_descriptor_header *) &mtp_fullspeed_out_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
NULL,
};
static struct usb_descriptor_header *hs_ptp_descs[] = {
(struct usb_descriptor_header *) &ptp_interface_desc,
(struct usb_descriptor_header *) &mtp_highspeed_in_desc,
(struct usb_descriptor_header *) &mtp_highspeed_out_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
NULL,
};
static struct usb_descriptor_header *ss_ptp_descs[] = {
(struct usb_descriptor_header *) &ptp_interface_desc,
(struct usb_descriptor_header *) &mtp_ss_in_desc,
(struct usb_descriptor_header *) &mtp_ss_in_comp_desc,
(struct usb_descriptor_header *) &mtp_ss_out_desc,
(struct usb_descriptor_header *) &mtp_ss_out_comp_desc,
(struct usb_descriptor_header *) &mtp_intr_desc,
(struct usb_descriptor_header *) &mtp_intr_ss_comp_desc,
NULL,
};
static struct usb_string mtp_string_defs[] = {
/* Naming interface "MTP" so libmtp will recognize us */
[INTERFACE_STRING_INDEX].s = "MTP",
{ }, /* end of list */
};
static struct usb_gadget_strings mtp_string_table = {
.language = 0x0409, /* en-US */
.strings = mtp_string_defs,
};
static struct usb_gadget_strings *mtp_strings[] = {
&mtp_string_table,
NULL,
};
/* Microsoft MTP OS String */
static u8 mtp_os_string[] = {
18, /* sizeof(mtp_os_string) */
USB_DT_STRING,
/* Signature field: "MSFT100" */
'M', 0, 'S', 0, 'F', 0, 'T', 0, '1', 0, '0', 0, '0', 0,
/* vendor code */
1,
/* padding */
0
};
/* Microsoft Extended Configuration Descriptor Header Section */
struct mtp_ext_config_desc_header {
__le32 dwLength;
__u16 bcdVersion;
__le16 wIndex;
__u8 bCount;
__u8 reserved[7];
};
/* Microsoft Extended Configuration Descriptor Function Section */
struct mtp_ext_config_desc_function {
__u8 bFirstInterfaceNumber;
__u8 bInterfaceCount;
__u8 compatibleID[8];
__u8 subCompatibleID[8];
__u8 reserved[6];
};
/* MTP Extended Configuration Descriptor */
struct {
struct mtp_ext_config_desc_header header;
struct mtp_ext_config_desc_function function;
} mtp_ext_config_desc = {
.header = {
.dwLength = cpu_to_le32(sizeof(mtp_ext_config_desc)),
.bcdVersion = cpu_to_le16(0x0100),
.wIndex = cpu_to_le16(4),
.bCount = 1,
},
.function = {
.bFirstInterfaceNumber = 0,
.bInterfaceCount = 1,
.compatibleID = { 'M', 'T', 'P' },
},
};
struct mtp_device_status {
__le16 wLength;
__le16 wCode;
};
struct mtp_data_header {
/* length of packet, including this header */
__le32 length;
/* container type (2 for data packet) */
__le16 type;
/* MTP command code */
__le16 command;
/* MTP transaction ID */
__le32 transaction_id;
};
struct mtp_instance {
struct usb_function_instance func_inst;
const char *name;
struct mtp_dev *dev;
char mtp_ext_compat_id[16];
struct usb_os_desc mtp_os_desc;
#ifdef CONFIG_USB_CONFIGFS_UEVENT
struct device *mtp_device;
#endif
};
/* temporary variable used between mtp_open() and mtp_gadget_bind() */
static struct mtp_dev *_mtp_dev;
static inline struct mtp_dev *func_to_mtp(struct usb_function *f)
{
return container_of(f, struct mtp_dev, function);
}
static struct usb_request *mtp_request_new(struct usb_ep *ep, int buffer_size)
{
struct usb_request *req = usb_ep_alloc_request(ep, GFP_KERNEL);
if (!req)
return NULL;
/* now allocate buffers for the requests */
#if defined(CONFIG_64BIT) && defined(CONFIG_MTK_LM_MODE)
req->buf = kmalloc(buffer_size, GFP_KERNEL | GFP_DMA);
#else
req->buf = kmalloc(buffer_size, GFP_KERNEL);
#endif
if (!req->buf) {
usb_ep_free_request(ep, req);
return NULL;
}
return req;
}
static void mtp_request_free(struct usb_request *req, struct usb_ep *ep)
{
if (req) {
kfree(req->buf);
usb_ep_free_request(ep, req);
}
}
static inline int mtp_lock(atomic_t *excl)
{
if (atomic_inc_return(excl) == 1)
return 0;
atomic_dec(excl);
return -1;
}
static inline void mtp_unlock(atomic_t *excl)
{
atomic_dec(excl);
}
/* add a request to the tail of a list */
static void mtp_req_put(struct mtp_dev *dev, struct list_head *head,
struct usb_request *req)
{
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&req->list, head);
if (unlikely(head == &dev->intr_idle))
mtp_send_event_timeout_cnt = 0;
spin_unlock_irqrestore(&dev->lock, flags);
}
/* remove a request from the head of a list */
static struct usb_request
*mtp_req_get(struct mtp_dev *dev, struct list_head *head)
{
unsigned long flags;
struct usb_request *req;
spin_lock_irqsave(&dev->lock, flags);
if (list_empty(head)) {
req = 0;
} else {
req = list_first_entry(head, struct usb_request, list);
list_del(&req->list);
}
spin_unlock_irqrestore(&dev->lock, flags);
return req;
}
static void mtp_complete_in(struct usb_ep *ep, struct usb_request *req)
{
struct mtp_dev *dev = _mtp_dev;
if (req->status != 0)
dev->state = STATE_ERROR;
mtp_req_put(dev, &dev->tx_idle, req);
wake_up(&dev->write_wq);
}
static struct completion usb_read_completion;
static atomic_t usb_rdone;
static int64_t usb_rcnt;
static int64_t vfs_wcnt;
static bool rx_cont_abort;
static bool mtp_rx_cont = true;
module_param(mtp_rx_cont, bool, 0644);
static bool mtp_rx_boost = true;
module_param(mtp_rx_boost, bool, 0644);
static void mtp_complete_out(struct usb_ep *ep, struct usb_request *req)
{
struct mtp_dev *dev = _mtp_dev;
dev->rx_done = 1;
if (req->status != 0) {
dev->state = STATE_ERROR;
rx_cont_abort = true;
}
if (mtp_rx_boost)
usb_boost();
wake_up(&dev->read_wq);
atomic_inc(&usb_rdone);
complete(&usb_read_completion);
}
static void mtp_complete_intr(struct usb_ep *ep, struct usb_request *req)
{
struct mtp_dev *dev = _mtp_dev;
if (req->status != 0)
dev->state = STATE_ERROR;
mtp_req_put(dev, &dev->intr_idle, req);
wake_up(&dev->intr_wq);
}
static int mtp_create_bulk_endpoints(struct mtp_dev *dev,
struct usb_endpoint_descriptor *in_desc,
struct usb_endpoint_descriptor *out_desc,
struct usb_endpoint_descriptor *intr_desc)
{
struct usb_composite_dev *cdev = dev->cdev;
struct usb_request *req;
struct usb_ep *ep;
const unsigned int mtp_req_len[2] = { (MTP_BULK_BUFFER_SIZE*3),
MTP_BULK_BUFFER_SIZE};
int len_idx;
int i;
DBG(cdev, "create_bulk_endpoints dev: %p\n", dev);
ep = usb_ep_autoconfig(cdev->gadget, in_desc);
if (!ep) {
DBG(cdev, "usb_ep_autoconfig for ep_in failed\n");
return -ENODEV;
}
DBG(cdev, "usb_ep_autoconfig for ep_in got %s\n", ep->name);
ep->driver_data = dev; /* claim the endpoint */
dev->ep_in = ep;
ep = usb_ep_autoconfig(cdev->gadget, out_desc);
if (!ep) {
DBG(cdev, "usb_ep_autoconfig for ep_out failed\n");
return -ENODEV;
}
DBG(cdev, "usb_ep_autoconfig for mtp ep_out got %s\n", ep->name);
ep->driver_data = dev; /* claim the endpoint */
dev->ep_out = ep;
ep = usb_ep_autoconfig(cdev->gadget, intr_desc);
if (!ep) {
DBG(cdev, "usb_ep_autoconfig for ep_intr failed\n");
return -ENODEV;
}
DBG(cdev, "usb_ep_autoconfig for mtp ep_intr got %s\n", ep->name);
ep->driver_data = dev; /* claim the endpoint */
dev->ep_intr = ep;
len_idx = 0;
retry_tx_alloc:
/* now allocate requests for our endpoints */
for (i = 0; i < TX_REQ_MAX; i++) {
req = mtp_request_new(dev->ep_in, mtp_req_len[len_idx]);
if (!req) {
if (len_idx >= (ARRAY_SIZE(mtp_req_len)-1))
goto fail;
while ((req = mtp_req_get(dev, &dev->tx_idle)))
mtp_request_free(req, dev->ep_in);
len_idx++;
pr_info("allocate TX fail. try %d\n",
mtp_req_len[len_idx]);
goto retry_tx_alloc;
}
req->complete = mtp_complete_in;
mtp_req_put(dev, &dev->tx_idle, req);
}
mtp_tx_req_len = mtp_req_len[len_idx];
len_idx = 0;
retry_rx_alloc:
for (i = 0; i < RX_REQ_MAX; i++) {
req = mtp_request_new(dev->ep_out, mtp_req_len[len_idx]);
if (!req) {
if (len_idx >= (ARRAY_SIZE(mtp_req_len)-1))
goto fail;
for (--i; i >= 0; i--)
mtp_request_free(dev->rx_req[i], dev->ep_out);
len_idx++;
pr_info("allocate RX fail. try %d\n",
mtp_req_len[len_idx]);
goto retry_rx_alloc;
}
req->complete = mtp_complete_out;
dev->rx_req[i] = req;
}
mtp_rx_req_len = mtp_req_len[len_idx];
for (i = 0; i < INTR_REQ_MAX; i++) {
req = mtp_request_new(dev->ep_intr, INTR_BUFFER_SIZE);
if (!req)
goto fail;
req->complete = mtp_complete_intr;
mtp_req_put(dev, &dev->intr_idle, req);
}
pr_info("allocate RX=%d Tx=%d\n", mtp_rx_req_len, mtp_tx_req_len);
return 0;
fail:
pr_info("mtp_bind() could not allocate requests\n");
return -1;
}
struct cpumask *mtp_get_cpu_mask(void)
{
struct mtp_dev *dev = _mtp_dev;
if (dev)
return &(dev->cpu_mask);
else
return NULL;
}
void mtp_set_cpu_mask(unsigned int mask)
{
struct mtp_dev *dev = _mtp_dev;
int i = 1, idx = 0;
cpumask_clear(&(dev->cpu_mask));
while (i <= mask) {
if (i & mask) {
cpumask_set_cpu(idx, &(dev->cpu_mask));
pr_info("Set CPU[%d] On\n", idx);
}
idx++;
i = i << 1;
}
dev->is_boost = 0;
}
int mtp_get_mtp_server(void)
{
struct mtp_dev *dev = _mtp_dev;
if (dev)
return dev->is_boost;
else
return -ENODEV;
}
#define MTP_QUEUE_DBG(fmt, args...) \
pr_info("MTP_QUEUE_DBG, <%s(), %d> " fmt, __func__, __LINE__, ## args)
#define MTP_QUEUE_DBG_STR_SZ 128
void mtp_dbg_dump(void)
{
static char string[MTP_QUEUE_DBG_STR_SZ];
int ret;
ret = sprintf(string, "NOT MtpServer, task info<%d,%s>\n", current->pid,
current->comm);
if (ret < 0)
MTP_QUEUE_DBG("%s-%d, sprintf fail\n", __func__, __LINE__);
MTP_QUEUE_DBG("%s\n", string);
#ifdef CONFIG_MEDIATEK_SOLUTION
/* aee_kernel_warning_api(__FILE__, __LINE__,
* DB_OPT_DEFAULT|DB_OPT_NATIVE_BACKTRACE, string, string);
*/
#else
{
char *ptr = NULL;
*ptr = 0;
}
#endif
}
static ssize_t mtp_read(struct file *fp, char __user *buf,
size_t count, loff_t *pos)
{
struct mtp_dev *dev = fp->private_data;
struct usb_composite_dev *cdev;
struct usb_request *req;
ssize_t r = count;
unsigned int xfer;
int ret = 0;
size_t len = 0;
pr_debug("%s(%zu)\n", __func__, count);
MTP_DBG_LIMIT(5, "in\n");
if (true) {
set_cpus_allowed_ptr(current, &dev->cpu_mask);
dev->is_boost = current->pid;
}
if (count > MTP_BULK_BUFFER_SIZE)
return -EINVAL;
/* we will block until we're online */
pr_debug("%s: waiting for online state\n", __func__);
monitor_in(MTP_WAIT_EVENT_R1);
ret = wait_event_interruptible(dev->read_wq,
dev->state != STATE_OFFLINE);
monitor_out(MTP_WAIT_EVENT_R1);
if (ret < 0) {
r = ret;
goto done;
}
spin_lock_irq(&dev->lock);
/* update cdev after online */
cdev = dev->cdev;
if (dev->state == STATE_OFFLINE) {
spin_unlock_irq(&dev->lock);
return -ENODEV;
}
if (dev->ep_out->desc) {
if (!cdev) {
spin_unlock_irq(&dev->lock);
return -ENODEV;
}
len = usb_ep_align_maybe(cdev->gadget, dev->ep_out, count);
if (len > MTP_BULK_BUFFER_SIZE) {
spin_unlock_irq(&dev->lock);
return -EINVAL;
}
}
if (dev->state == STATE_CANCELED) {
/* report cancellation to userspace */
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
return -ECANCELED;
}
dev->state = STATE_BUSY;
spin_unlock_irq(&dev->lock);
requeue_req:
/* queue a request */
req = dev->rx_req[0];
req->length = len;
dev->rx_done = 0;
ret = usb_ep_queue(dev->ep_out, req, GFP_KERNEL);
if (ret < 0) {
r = -EIO;
goto done;
} else {
DBG(cdev, "rx %p queue\n", req);
}
/* wait for a request to complete */
monitor_in(MTP_WAIT_EVENT_R2);
ret = wait_event_interruptible(dev->read_wq,
dev->rx_done || dev->state != STATE_BUSY);
monitor_out(MTP_WAIT_EVENT_R2);
if (dev->state == STATE_CANCELED) {
r = -ECANCELED;
if (!dev->rx_done)
usb_ep_dequeue(dev->ep_out, req);
spin_lock_irq(&dev->lock);
dev->state = STATE_CANCELED;
spin_unlock_irq(&dev->lock);
goto done;
}
if (ret < 0) {
r = ret;
usb_ep_dequeue(dev->ep_out, req);
goto done;
}
if (dev->state == STATE_BUSY) {
/* If we got a 0-len packet, throw it back and try again. */
if (req->actual == 0)
goto requeue_req;
if (likely(!cust_dump)) {
static DEFINE_RATELIMIT_STATE(rlimit, 1 * HZ, 5);
if (__ratelimit(&rlimit))
protocol_dump((char *)req->buf,
(int)req->actual, 0);
} else
protocol_dump((char *)req->buf,
(int)req->actual, cust_dump_read);
DBG(cdev, "rx %p %d\n", req, req->actual);
xfer = (req->actual < count) ? req->actual : count;
r = xfer;
if (copy_to_user(buf, req->buf, xfer))
r = -EFAULT;
} else
r = -EIO;
done:
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED)
r = -ECANCELED;
else if (dev->state != STATE_OFFLINE)
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
pr_debug("%s %zd\n", __func__, r);
return r;
}
static ssize_t mtp_write(struct file *fp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mtp_dev *dev = fp->private_data;
struct usb_composite_dev *cdev = dev->cdev;
struct usb_request *req = 0;
ssize_t r = count;
unsigned int xfer;
int sendZLP = 0;
int ret;
DBG(cdev, "%s(%zu)\n", __func__, count);
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED) {
/* report cancellation to userspace */
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
return -ECANCELED;
}
if (dev->state == STATE_OFFLINE) {
spin_unlock_irq(&dev->lock);
return -ENODEV;
}
dev->state = STATE_BUSY;
spin_unlock_irq(&dev->lock);
/* we need to send a zero length packet to signal the end of transfer
* if the transfer size is aligned to a packet boundary.
*/
if ((count & (dev->ep_in->maxpacket - 1)) == 0)
sendZLP = 1;
while (count > 0 || sendZLP) {
/* so we exit after sending ZLP */
if (count == 0)
sendZLP = 0;
if (dev->state != STATE_BUSY) {
DBG(cdev, "%s dev->error\n", __func__);
r = -EIO;
break;
}
/* get an idle tx request to use */
req = 0;
monitor_in(MTP_WAIT_EVENT);
ret = wait_event_interruptible(dev->write_wq,
((req = mtp_req_get(dev, &dev->tx_idle))
|| dev->state != STATE_BUSY));
monitor_out(MTP_WAIT_EVENT);
if (!req) {
r = ret;
break;
}
if (count > MTP_BULK_BUFFER_SIZE)
xfer = MTP_BULK_BUFFER_SIZE;
else
xfer = count;
if (xfer && copy_from_user(req->buf, buf, xfer)) {
r = -EFAULT;
break;
}
if (count == r) {
static DEFINE_RATELIMIT_STATE(rlimit, 1 * HZ, 5);
if (likely(!cust_dump)) {
if (__ratelimit(&rlimit))
protocol_dump((char *)req->buf,
(int)xfer, 0);
} else
protocol_dump((char *)req->buf,
(int)xfer, cust_dump_write);
}
req->length = xfer;
ret = usb_ep_queue(dev->ep_in, req, GFP_KERNEL);
if (ret < 0) {
DBG(cdev, "%s: xfer error %d\n", __func__, ret);
r = -EIO;
break;
}
buf += xfer;
count -= xfer;
/* zero this so we don't try to free it on error exit */
req = 0;
}
if (req)
mtp_req_put(dev, &dev->tx_idle, req);
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED)
r = -ECANCELED;
else if (dev->state != STATE_OFFLINE)
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
DBG(cdev, "%s returning %zd\n", __func__, r);
return r;
}
/* read from a local file and write to USB */
static void send_file_work(struct work_struct *data)
{
struct mtp_dev *dev = container_of(data, struct mtp_dev,
send_file_work);
struct usb_composite_dev *cdev = dev->cdev;
struct usb_request *req = 0;
struct mtp_data_header *header;
struct file *filp;
loff_t offset;
int64_t count;
int xfer, ret, hdr_size;
int r = 0;
int sendZLP = 0;
/* read our parameters */
smp_rmb();
filp = dev->xfer_file;
offset = dev->xfer_file_offset;
count = dev->xfer_file_length;
if (count < 0) {
dev->xfer_result = -EINVAL;
return;
}
DBG(cdev, "%s(%lld %lld)\n", __func__, offset, count);
if (dev->xfer_send_header) {
hdr_size = sizeof(struct mtp_data_header);
count += hdr_size;
} else {
hdr_size = 0;
}
/* we need to send a zero length packet to signal the end of transfer
* if the transfer size is aligned to a packet boundary.
*/
if ((count & (dev->ep_in->maxpacket - 1)) == 0)
sendZLP = 1;
while (count > 0 || sendZLP) {
/* so we exit after sending ZLP */
if (count == 0)
sendZLP = 0;
/* get an idle tx request to use */
req = 0;
monitor_in(MTP_WAIT_EVENT);
ret = wait_event_interruptible(dev->write_wq,
(req = mtp_req_get(dev, &dev->tx_idle))
|| dev->state != STATE_BUSY);
monitor_out(MTP_WAIT_EVENT);
if (dev->state == STATE_CANCELED) {
r = -ECANCELED;
break;
}
if (!req) {
r = ret;
break;
}
if (count > mtp_tx_req_len)
xfer = mtp_tx_req_len;
else
xfer = count;
if (hdr_size) {
/* prepend MTP data header */
header = (struct mtp_data_header *)req->buf;
/*
* set file size with header according to
* MTP Specification v1.0
*/
header->length = (count > MTP_MAX_FILE_SIZE) ?
MTP_MAX_FILE_SIZE : __cpu_to_le32(count);
header->type = __cpu_to_le16(2); /* data packet */
header->command = __cpu_to_le16(dev->xfer_command);
header->transaction_id =
__cpu_to_le32(dev->xfer_transaction_id);
}
usb_boost();
monitor_in(MTP_VFS_R);
if (mtp_skip_vfs_read) {
ret = (xfer - hdr_size);
offset += ret;
} else
ret = vfs_read(filp,
req->buf + hdr_size, xfer - hdr_size,
&offset);
monitor_out(MTP_VFS_R);
if (ret < 0) {
r = ret;
break;
}
xfer = ret + hdr_size;
hdr_size = 0;
req->length = xfer;
ret = usb_ep_queue(dev->ep_in, req, GFP_KERNEL);
if (ret < 0) {
DBG(cdev, "%s: xfer error %d\n", __func__, ret);
dev->state = STATE_ERROR;
r = -EIO;
break;
}
count -= xfer;
/* zero this so we don't try to free it on error exit */
req = 0;
}
if (req)
mtp_req_put(dev, &dev->tx_idle, req);
DBG(cdev, "%s %d\n", __func__, r);
/* write the result */
dev->xfer_result = r;
smp_wmb(); /* avoid context switch and race condiction */
}
/* read from USB and write to a local file */
static void receive_file_work(struct work_struct *data)
{
struct mtp_dev *dev = container_of(data, struct mtp_dev,
receive_file_work);
struct usb_composite_dev *cdev = dev->cdev;
struct usb_request *read_req = NULL, *write_req = NULL;
struct file *filp;
loff_t offset;
int64_t count;
int ret, cur_buf = 0;
int r = 0;
/* use this to avoid 4G copy issue */
int64_t total_size = 0;
/* read our parameters */
smp_rmb();
filp = dev->xfer_file;
offset = dev->xfer_file_offset;
count = dev->xfer_file_length;
if (count < 0) {
dev->xfer_result = -EINVAL;
return;
}
DBG(cdev, "%s(%lld)\n", __func__, count);
while (count > 0 || write_req) {
if (count > 0) {
/* queue a request */
read_req = dev->rx_req[cur_buf];
cur_buf = (cur_buf + 1) % RX_REQ_MAX;
read_req->length = (count > mtp_rx_req_len
? mtp_rx_req_len : count);
if (total_size >= 0xFFFFFFFF)
read_req->short_not_ok = 0;
else {
if (0 == (read_req->length %
dev->ep_out->maxpacket))
read_req->short_not_ok = 1;
else
read_req->short_not_ok = 0;
}
dev->rx_done = 0;
ret = usb_ep_queue(dev->ep_out, read_req, GFP_KERNEL);
if (ret < 0) {
r = -EIO;
dev->state = STATE_ERROR;
break;
}
}
if (write_req) {
usb_boost();
DBG(cdev, "rx %p %d\n", write_req, write_req->actual);
monitor_in(MTP_VFS_W);
if (mtp_skip_vfs_write) {
ret = write_req->actual;
offset += ret;
} else
ret = vfs_write(filp,
write_req->buf,
write_req->actual,
&offset);
monitor_out(MTP_VFS_W);
DBG(cdev, "vfs_write %d\n", ret);
if (ret != write_req->actual) {
r = -EIO;
dev->state = STATE_ERROR;
break;
}
write_req = NULL;
}
if (read_req) {
/* wait for our last read to complete */
monitor_in(MTP_WAIT_EVENT);
ret = wait_event_interruptible(dev->read_wq,
dev->rx_done || dev->state != STATE_BUSY);
monitor_out(MTP_WAIT_EVENT);
if (dev->state == STATE_CANCELED) {
r = -ECANCELED;
if (!dev->rx_done)
usb_ep_dequeue(dev->ep_out, read_req);
break;
}
if (read_req->status) {
r = read_req->status;
break;
}
/* if xfer_file_length is 0xFFFFFFFF, then we read until
* we get a zero length packet
*/
if (count != 0xFFFFFFFF)
count -= read_req->actual;
total_size += read_req->actual;
if (read_req->actual < read_req->length) {
/*
* short packet is used to signal EOF for
* sizes > 4 gig
*/
DBG(cdev, "got short packet\n");
count = 0;
}
/* Add for RX mode 1 */
read_req->short_not_ok = 0;
write_req = read_req;
read_req = NULL;
}
}
if (dev->state == STATE_ERROR || dev->state == STATE_OFFLINE) {
DBG(dev->cdev, "%s, line %d: read_req = %p\n", __func__,
__LINE__, read_req);
if (read_req)
read_req->short_not_ok = 0;
}
DBG(cdev, "%s returning %d\n", __func__, r);
/* write the result */
dev->xfer_result = r;
smp_wmb(); /* avoid context switch and race condiction */
}
/* #define MTP_RX_DBG_ON */
#ifdef MTP_RX_DBG_ON
#define MTP_RX_DBG(fmt, args...) \
pr_notice("MTP_RX_DBG, <%s(), %d> " fmt, __func__, __LINE__, ## args)
#else
#define MTP_RX_DBG(fmt, args...) do {} while (0)
#endif
static void vfs_write_work(struct work_struct *data)
{
struct mtp_dev *dev = _mtp_dev;
struct usb_request *write_req;
struct file *filp = dev->xfer_file;
loff_t offset = dev->xfer_file_offset;
int64_t req_cnt = dev->xfer_file_length;
int index = 0;
MTP_RX_DBG("write_cnt<%lld>, read_cnt<%lld>, req_cnt<%lld>\n",
vfs_wcnt, usb_rcnt, req_cnt);
for (;;) {
wait_for_completion_interruptible(&usb_read_completion);
/* unbind case */
if (rx_cont_abort)
goto exit;
/* cancel case */
if (dev->state != STATE_BUSY) {
rx_cont_abort = true;
MTP_RX_DBG("state<%d>\n", dev->state);
goto exit;
}
/* deal with what we have */
while (atomic_read(&usb_rdone) > 0) {
int rc;
write_req = dev->rx_req[index];
index = (index + 1) % RX_REQ_MAX;
atomic_dec(&usb_rdone);
MTP_RX_DBG("write_req<%p>, len<%d>, usb_rdone<%d>\n",
write_req, write_req->actual,
atomic_read(&usb_rdone));
usb_boost();
monitor_in(MTP_VFS_W);
if (mtp_skip_vfs_write) {
rc = write_req->actual;
offset += rc;
} else
rc = vfs_write(filp, write_req->buf,
write_req->actual, &offset);
monitor_out(MTP_VFS_W);
if (rc != write_req->actual)
MTP_RX_DBG("rc<%d> != actual<%d>\n",
rc, write_req->actual);
vfs_wcnt += write_req->actual;
MTP_RX_DBG("vfs_wcnt%lld,usb_rcnt%lld,req_cnt%lld\n",
vfs_wcnt, usb_rcnt,
req_cnt);
/* check next round existence */
if (usb_rcnt != req_cnt) {
int64_t count = (req_cnt - usb_rcnt);
struct usb_request *read_req = write_req;
read_req->length = (count > mtp_rx_req_len
? mtp_rx_req_len : count);
MTP_RX_DBG("read_req<%p>, len<%d>\n",
read_req, read_req->length);
rc = usb_ep_queue(dev->ep_out, read_req,
GFP_KERNEL);
if (unlikely(rc)) {
rx_cont_abort = true;
MTP_RX_DBG("rc<%d>\n", rc);
goto exit;
}
usb_rcnt += read_req->length;
MTP_RX_DBG("v_wcnt%lld,u_rcnt%lld,req%lld\n",
vfs_wcnt, usb_rcnt,
req_cnt);
}
}
/* check done or not */
if (vfs_wcnt == req_cnt)
goto exit;
} /* for (;;) */
exit:
MTP_RX_DBG("write_cnt<%lld>, read_cnt<%lld>, req_cnt<%lld>\n",
vfs_wcnt, usb_rcnt, req_cnt);
}
void trigger_rx_cont(void)
{
int i;
struct usb_request *read_req;
struct mtp_dev *dev = _mtp_dev;
int64_t count = dev->xfer_file_length;
static struct work_struct work;
static int work_inited;
if (count <= 0) {
MTP_RX_DBG("count<%d> invalid\n", (int)count);
return;
}
/* reset condition */
atomic_set(&usb_rdone, 0);
usb_rcnt = vfs_wcnt = 0;
rx_cont_abort = false;
init_completion(&usb_read_completion);
mb(); /* make all related status reset and sync */
MTP_RX_DBG("count<%d>\n", (int)count);
/* USB related */
for (i = 0; i < RX_REQ_MAX; i++) {
int rc;
read_req = dev->rx_req[i];
read_req->length = (count > mtp_rx_req_len
? mtp_rx_req_len : count);
MTP_RX_DBG("i<%d>, read_req<%p>, len<%d>\n",
i, read_req, read_req->length);
rc = usb_ep_queue(dev->ep_out, read_req, GFP_KERNEL);
if (unlikely(rc)) {
rx_cont_abort = true;
MTP_RX_DBG("rc<%d>\n", rc);
break;
}
usb_rcnt += read_req->length;
count -= read_req->length;
MTP_RX_DBG("count<%lld>, usb_rcnt<%lld>\n",
count, usb_rcnt);
if (!count)
break;
}
/* VFS related */
if (!work_inited) {
INIT_WORK(&work, vfs_write_work);
work_inited = 1;
}
queue_work(dev->wq, &work);
flush_workqueue(dev->wq);
/* check status */
if (unlikely(rx_cont_abort)) {
if (dev->state == STATE_CANCELED) {
dev->xfer_result = -ECANCELED;
/* recycle request */
for (i = 0; i < RX_REQ_MAX; i++)
usb_ep_dequeue(dev->ep_out, dev->rx_req[i]);
} else
dev->xfer_result = -EIO;
} else
dev->xfer_result = 0;
MTP_RX_DBG("xfer_result<%d>\n", dev->xfer_result);
}
static int mtp_send_event(struct mtp_dev *dev, struct mtp_event *event)
{
struct usb_request *req = NULL;
int ret;
int length = event->length;
DBG(dev->cdev, "%s(%zu)\n", __func__, event->length);
if (length < 0 || length > INTR_BUFFER_SIZE)
return -EINVAL;
if (dev->state == STATE_OFFLINE)
return -ENODEV;
if (mtp_send_event_timeout_cnt > MTP_SEND_EVENT_TIMEOUT_CNT) {
pr_info("%s, timeout count<%d> exceed %d, directly return\n",
__func__, mtp_send_event_timeout_cnt,
MTP_SEND_EVENT_TIMEOUT_CNT);
return -ETIME;
}
ret = wait_event_interruptible_timeout(dev->intr_wq,
(req = mtp_req_get(dev, &dev->intr_idle)),
msecs_to_jiffies(1000));
if (!req) {
mtp_send_event_timeout_cnt++;
pr_info("%s, timeout count<%d>\n", __func__,
mtp_send_event_timeout_cnt);
return -ETIME;
}
if (copy_from_user(req->buf, (void __user *)event->data, length)) {
mtp_req_put(dev, &dev->intr_idle, req);
return -EFAULT;
}
if (likely(!cust_dump) && !strstr(current->comm, "process.media")) {
static DEFINE_RATELIMIT_STATE(rlimit, 1 * HZ, 5);
if (__ratelimit(&rlimit))
protocol_dump((char *)req->buf,
length, 0);
} else
protocol_dump((char *)req->buf,
length, cust_dump_ioctl);
req->length = length;
ret = usb_ep_queue(dev->ep_intr, req, GFP_KERNEL);
if (ret)
mtp_req_put(dev, &dev->intr_idle, req);
return ret;
}
static long mtp_ioctl(struct file *fp, unsigned int code, unsigned long value)
{
struct mtp_dev *dev = fp->private_data;
struct file *filp = NULL;
int ret = -EINVAL;
if (mtp_lock(&dev->ioctl_excl)) {
MTP_DBG("BUSY, action<%s>\n", ioctl_string(code));
return -EBUSY;
}
switch (code) {
case MTP_SEND_FILE:
case MTP_RECEIVE_FILE:
case MTP_SEND_FILE_WITH_HEADER:
{
struct mtp_file_range mfr;
struct work_struct *work;
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED) {
/* report cancellation to userspace */
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
ret = -ECANCELED;
goto out;
}
if (dev->state == STATE_OFFLINE) {
spin_unlock_irq(&dev->lock);
ret = -ENODEV;
goto out;
}
dev->state = STATE_BUSY;
spin_unlock_irq(&dev->lock);
if (copy_from_user(&mfr, (void __user *)value, sizeof(mfr))) {
ret = -EFAULT;
goto fail;
}
/* hold a reference to the file while we are working with it */
filp = fget(mfr.fd);
if (!filp) {
ret = -EBADF;
goto fail;
}
/* write the parameters */
dev->xfer_file = filp;
dev->xfer_file_offset = mfr.offset;
dev->xfer_file_length = mfr.length;
smp_wmb(); /* avoid context switch and race condiction */
if (unlikely(cust_dump))
MTP_DBG("action<%s>, len<%lld>\n",
ioctl_string(code),
dev->xfer_file_length);
if (code == MTP_SEND_FILE_WITH_HEADER) {
work = &dev->send_file_work;
dev->xfer_send_header = 1;
dev->xfer_command = mfr.command;
dev->xfer_transaction_id = mfr.transaction_id;
} else if (code == MTP_SEND_FILE) {
work = &dev->send_file_work;
dev->xfer_send_header = 0;
} else {
work = &dev->receive_file_work;
}
/* We do the file transfer on a work queue so it will run
* in kernel context, which is necessary for vfs_read and
* vfs_write to use our buffers in the kernel address space.
*/
monitor_in(MTP_IOCTL_WORK);
if (code != MTP_RECEIVE_FILE) {
queue_work(dev->wq, work);
/* wait for operation to complete */
flush_workqueue(dev->wq);
} else {
bool rx_cont = mtp_rx_cont;
/* deal with (512K + 1) ~ (0xFFFFFFFE) */
if (rx_cont && (dev->xfer_file_length <= 524288
|| dev->xfer_file_length == 0xFFFFFFFF))
rx_cont = false;
if (rx_cont)
trigger_rx_cont();
else {
queue_work(dev->wq, work);
/* wait for operation to complete */
flush_workqueue(dev->wq);
}
}
monitor_out(MTP_IOCTL_WORK);
fput(filp);
/* read the result */
smp_rmb();
ret = dev->xfer_result;
break;
}
case MTP_SEND_EVENT:
{
struct mtp_event event;
/* return here so we don't change dev->state below,
* which would interfere with bulk transfer state.
*/
if (copy_from_user(&event, (void __user *)value, sizeof(event)))
ret = -EFAULT;
else
ret = mtp_send_event(dev, &event);
goto out;
}
}
fail:
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED)
ret = -ECANCELED;
else if (dev->state != STATE_OFFLINE)
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
out:
mtp_unlock(&dev->ioctl_excl);
DBG(dev->cdev, "ioctl returning %d\n", ret);
return ret;
}
#ifdef CONFIG_COMPAT
static long compat_mtp_ioctl(struct file *fp, unsigned int code,
unsigned long value)
{
struct mtp_dev *dev = fp->private_data;
struct file *filp = NULL;
int ret = -EINVAL;
if (mtp_lock(&dev->ioctl_excl))
return -EBUSY;
switch (code) {
case MTP_SEND_FILE:
case MTP_RECEIVE_FILE:
case MTP_SEND_FILE_WITH_HEADER:
{
struct mtp_file_range mfr;
struct work_struct *work;
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED) {
/* report cancellation to userspace */
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
ret = -ECANCELED;
goto out;
}
if (dev->state == STATE_OFFLINE) {
spin_unlock_irq(&dev->lock);
ret = -ENODEV;
goto out;
}
dev->state = STATE_BUSY;
spin_unlock_irq(&dev->lock);
if (copy_from_user(&mfr, (void __user *)value, sizeof(mfr))) {
ret = -EFAULT;
goto fail;
}
/* hold a reference to the file while we are working with it */
filp = fget(mfr.fd);
if (!filp) {
ret = -EBADF;
goto fail;
}
/* write the parameters */
dev->xfer_file = filp;
dev->xfer_file_offset = mfr.offset;
dev->xfer_file_length = mfr.length;
smp_wmb(); /* avoid context switch and race condiction */
if (code == MTP_SEND_FILE_WITH_HEADER) {
work = &dev->send_file_work;
dev->xfer_send_header = 1;
dev->xfer_command = mfr.command;
dev->xfer_transaction_id = mfr.transaction_id;
} else if (code == MTP_SEND_FILE) {
work = &dev->send_file_work;
dev->xfer_send_header = 0;
} else {
work = &dev->receive_file_work;
}
/* We do the file transfer on a work queue so it will run
* in kernel context, which is necessary for vfs_read and
* vfs_write to use our buffers in the kernel address space.
*/
queue_work(dev->wq, work);
/* wait for operation to complete */
flush_workqueue(dev->wq);
fput(filp);
/* read the result */
smp_rmb();
ret = dev->xfer_result;
break;
}
case COMPAT_MTP_SEND_EVENT:
{
struct mtp_event event;
struct __compat_mtp_event cevent;
/* return here so we don't change dev->state below,
* which would interfere with bulk transfer state.
*/
if (copy_from_user(&cevent, (void __user *)value,
sizeof(cevent)))
ret = -EFAULT;
else {
event.length = cevent.length;
event.data = compat_ptr(cevent.data);
ret = mtp_send_event(dev, &event);
}
goto out;
}
}
fail:
spin_lock_irq(&dev->lock);
if (dev->state == STATE_CANCELED)
ret = -ECANCELED;
else if (dev->state != STATE_OFFLINE)
dev->state = STATE_READY;
spin_unlock_irq(&dev->lock);
out:
mtp_unlock(&dev->ioctl_excl);
DBG(dev->cdev, "ioctl returning %d\n", ret);
return ret;
}
#endif
static int mtp_open(struct inode *ip, struct file *fp)
{
static bool inited;
pr_info("%s\n", __func__);
if (mtp_lock(&_mtp_dev->open_excl)) {
MTP_DBG("BUSY\n");
return -EBUSY;
}
if (!inited) {
inited = true;
INIT_DELAYED_WORK(&monitor_work, do_monitor_work);
schedule_delayed_work(&monitor_work, 0);
} else
schedule_delayed_work(&monitor_work, 0);
/* clear any error condition */
if (_mtp_dev->state != STATE_OFFLINE)
_mtp_dev->state = STATE_READY;
fp->private_data = _mtp_dev;
return 0;
}
static int mtp_release(struct inode *ip, struct file *fp)
{
pr_info("%s\n", __func__);
cancel_delayed_work(&monitor_work);
_mtp_dev->is_boost = 0;
mtp_unlock(&_mtp_dev->open_excl);
return 0;
}
static ssize_t monitor_mtp_read(struct file *fp, char __user *buf,
size_t count, loff_t *pos)
{
ssize_t r;
monitor_in(MTP_READ);
r = mtp_read(fp, buf, count, pos);
monitor_out(MTP_READ);
return r;
}
static ssize_t monitor_mtp_write(struct file *fp, const char __user *buf,
size_t count, loff_t *pos)
{
ssize_t r;
monitor_in(MTP_WRITE);
r = mtp_write(fp, buf, count, pos);
monitor_out(MTP_WRITE);
return r;
}
static long monitor_mtp_ioctl(struct file *fp,
unsigned int code, unsigned long value)
{
long r;
if (code != MTP_SEND_EVENT)
monitor_in(MTP_IOCTL);
r = mtp_ioctl(fp, code, value);
if (code != MTP_SEND_EVENT)
monitor_out(MTP_IOCTL);
return r;
}
static void do_monitor_work(struct work_struct *work)
{
int i, r;
char string_container[128];
r = sprintf(string_container, "IN <");
if (r >= 0 && r < ARRAY_SIZE(string_container))
for (i = 0; i < MTP_MAX_MONITOR_TYPE; i++)
r += sprintf(string_container + r, "%d ",
monitor_in_cnt[i]);
MTP_DBG("%s>\n", string_container);
r = sprintf(string_container, "OUT <");
if (r >= 0 && r < ARRAY_SIZE(string_container))
for (i = 0; i < MTP_MAX_MONITOR_TYPE; i++)
r += sprintf(string_container + r, "%d ",
monitor_out_cnt[i]);
MTP_DBG("%s>\n", string_container);
if (likely(!monitor_time))
goto monitor_work_exit;
/* TIME PROFILING */
r = sprintf(string_container, "TIME <");
if (r >= 0 && r < ARRAY_SIZE(string_container))
for (i = 0; i < MTP_MAX_MONITOR_TYPE; i++)
r += sprintf(string_container + r, "%lld ",
ktime_ns[i]);
MTP_DBG("%s>\n", string_container);
monitor_work_exit:
schedule_delayed_work(&monitor_work,
msecs_to_jiffies(monitor_work_interval_ms));
}
/* file operations for /dev/mtp_usb */
static const struct file_operations mtp_fops = {
.owner = THIS_MODULE,
.read = monitor_mtp_read,
.write = monitor_mtp_write,
.unlocked_ioctl = monitor_mtp_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_mtp_ioctl,
#endif
.open = mtp_open,
.release = mtp_release,
};
static struct miscdevice mtp_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = mtp_shortname,
.fops = &mtp_fops,
};
static int mtp_ctrlrequest(struct usb_composite_dev *cdev,
const struct usb_ctrlrequest *ctrl)
{
struct mtp_dev *dev = _mtp_dev;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
unsigned long flags;
VDBG(cdev, "%s %x.%x v%x i%x l%u\n",
__func__, ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
/* Handle MTP OS string */
if (ctrl->bRequestType ==
(USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE)
&& ctrl->bRequest == USB_REQ_GET_DESCRIPTOR
&& (w_value >> 8) == USB_DT_STRING
&& (w_value & 0xFF) == MTP_OS_STRING_ID) {
value = (w_length < sizeof(mtp_os_string)
? w_length : sizeof(mtp_os_string));
memcpy(cdev->req->buf, mtp_os_string, value);
} else if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_VENDOR) {
/* Handle MTP OS descriptor */
DBG(cdev, "vendor request: %d index: %d value: %d length: %d\n",
ctrl->bRequest, w_index, w_value, w_length);
if (ctrl->bRequest == 1
&& (ctrl->bRequestType & USB_DIR_IN)
&& (w_index == 4 || w_index == 5)) {
value = (w_length < sizeof(mtp_ext_config_desc) ?
w_length : sizeof(mtp_ext_config_desc));
memcpy(cdev->req->buf, &mtp_ext_config_desc, value);
}
} else if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_CLASS) {
DBG(cdev, "class request: %d index: %d value: %d length: %d\n",
ctrl->bRequest, w_index, w_value, w_length);
if (ctrl->bRequest == MTP_REQ_CANCEL && w_index == 0
&& w_value == 0) {
ERROR(cdev, "MTP_REQ_CANCEL\n");
spin_lock_irqsave(&dev->lock, flags);
if (dev->state == STATE_BUSY) {
dev->state = STATE_CANCELED;
wake_up(&dev->read_wq);
wake_up(&dev->write_wq);
complete(&usb_read_completion);
}
spin_unlock_irqrestore(&dev->lock, flags);
/* We need to queue a request to read the remaining
* bytes, but we don't actually need to look at
* the contents.
*/
value = w_length;
} else if (ctrl->bRequest == MTP_REQ_GET_DEVICE_STATUS
&& w_index == 0 && w_value == 0) {
struct mtp_device_status *status = cdev->req->buf;
status->wLength =
cpu_to_le16(sizeof(*status));
DBG(cdev, "MTP_REQ_GET_DEVICE_STATUS\n");
spin_lock_irqsave(&dev->lock, flags);
/* device status is "busy" until we report
* the cancellation to userspace
*/
if (dev->state == STATE_CANCELED)
status->wCode =
__cpu_to_le16(MTP_RESPONSE_DEVICE_BUSY);
else
status->wCode =
__cpu_to_le16(MTP_RESPONSE_OK);
spin_unlock_irqrestore(&dev->lock, flags);
value = sizeof(*status);
}
}
/* respond with data transfer or status phase? */
if (value >= 0) {
int rc;
cdev->req->zero = value < w_length;
cdev->req->length = value;
rc = usb_ep_queue(cdev->gadget->ep0, cdev->req, GFP_ATOMIC);
if (rc < 0)
ERROR(cdev, "%s: response queue error\n", __func__);
}
return value;
}
static int
mtp_function_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct mtp_dev *dev = func_to_mtp(f);
int id;
int ret;
struct mtp_instance *fi_mtp;
dev->cdev = cdev;
DBG(cdev, "%s dev: %p\n", __func__, dev);
/* allocate interface ID(s) */
id = usb_interface_id(c, f);
if (id < 0)
return id;
mtp_interface_desc.bInterfaceNumber = id;
ptp_interface_desc.bInterfaceNumber = id;
if (mtp_string_defs[INTERFACE_STRING_INDEX].id == 0) {
ret = usb_string_id(c->cdev);
if (ret < 0)
return ret;
mtp_string_defs[INTERFACE_STRING_INDEX].id = ret;
mtp_interface_desc.iInterface = ret;
}
fi_mtp = container_of(f->fi, struct mtp_instance, func_inst);
if (cdev->use_os_string) {
f->os_desc_table = kzalloc(sizeof(*f->os_desc_table),
GFP_KERNEL);
if (!f->os_desc_table)
return -ENOMEM;
f->os_desc_n = 1;
f->os_desc_table[0].os_desc = &fi_mtp->mtp_os_desc;
}
/* allocate endpoints */
ret = mtp_create_bulk_endpoints(dev, &mtp_fullspeed_in_desc,
&mtp_fullspeed_out_desc, &mtp_intr_desc);
if (ret)
return ret;
/* support high speed hardware */
if (gadget_is_dualspeed(c->cdev->gadget)) {
mtp_highspeed_in_desc.bEndpointAddress =
mtp_fullspeed_in_desc.bEndpointAddress;
mtp_highspeed_out_desc.bEndpointAddress =
mtp_fullspeed_out_desc.bEndpointAddress;
}
/* support super speed hardware */
if (gadget_is_superspeed(c->cdev->gadget)) {
unsigned int max_burst;
/* Calculate bMaxBurst, we know packet size is 1024 */
max_burst = min_t(unsigned int,
MTP_BULK_BUFFER_SIZE / 1024, 15);
mtp_ss_in_desc.bEndpointAddress =
mtp_fullspeed_in_desc.bEndpointAddress;
mtp_ss_in_comp_desc.bMaxBurst = max_burst;
mtp_ss_out_desc.bEndpointAddress =
mtp_fullspeed_out_desc.bEndpointAddress;
mtp_ss_out_comp_desc.bMaxBurst = max_burst;
}
DBG(cdev, "%s speed %s: IN/%s, OUT/%s\n",
gadget_is_superspeed(c->cdev->gadget) ? "super" :
(gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full"),
f->name, dev->ep_in->name, dev->ep_out->name);
return 0;
}
static void
mtp_function_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct mtp_dev *dev = func_to_mtp(f);
struct usb_request *req;
int i;
pr_info("%s before flush\n", __func__);
flush_workqueue(dev->wq);
pr_info("%s after flush\n", __func__);
mtp_string_defs[INTERFACE_STRING_INDEX].id = 0;
while ((req = mtp_req_get(dev, &dev->tx_idle)))
mtp_request_free(req, dev->ep_in);
for (i = 0; i < RX_REQ_MAX; i++)
mtp_request_free(dev->rx_req[i], dev->ep_out);
while ((req = mtp_req_get(dev, &dev->intr_idle)))
mtp_request_free(req, dev->ep_intr);
spin_lock_irq(&dev->lock);
dev->state = STATE_OFFLINE;
dev->cdev = NULL;
spin_unlock_irq(&dev->lock);
kfree(f->os_desc_table);
f->os_desc_n = 0;
}
static int mtp_function_set_alt(struct usb_function *f,
unsigned int intf, unsigned int alt)
{
struct mtp_dev *dev = func_to_mtp(f);
struct usb_composite_dev *cdev = f->config->cdev;
int ret;
DBG(cdev, "%s: %d alt: %d\n", __func__, intf, alt);
ret = config_ep_by_speed(cdev->gadget, f, dev->ep_in);
if (ret)
return ret;
ret = usb_ep_enable(dev->ep_in);
if (ret)
return ret;
ret = config_ep_by_speed(cdev->gadget, f, dev->ep_out);
if (ret)
return ret;
ret = usb_ep_enable(dev->ep_out);
if (ret) {
usb_ep_disable(dev->ep_in);
return ret;
}
ret = config_ep_by_speed(cdev->gadget, f, dev->ep_intr);
if (ret)
return ret;
ret = usb_ep_enable(dev->ep_intr);
if (ret) {
usb_ep_disable(dev->ep_out);
usb_ep_disable(dev->ep_in);
return ret;
}
dev->state = STATE_READY;
/* readers may be blocked waiting for us to go online */
wake_up(&dev->read_wq);
return 0;
}
static void mtp_function_disable(struct usb_function *f)
{
struct mtp_dev *dev = func_to_mtp(f);
struct usb_composite_dev *cdev = dev->cdev;
DBG(cdev, "%s\n", __func__);
dev->state = STATE_OFFLINE;
usb_ep_disable(dev->ep_in);
usb_ep_disable(dev->ep_out);
usb_ep_disable(dev->ep_intr);
/* readers may be blocked waiting for us to go online */
wake_up(&dev->read_wq);
VDBG(cdev, "%s disabled\n", dev->function.name);
}
static int __mtp_setup(struct mtp_instance *fi_mtp)
{
struct mtp_dev *dev;
int ret;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (fi_mtp != NULL)
fi_mtp->dev = dev;
if (!dev)
return -ENOMEM;
spin_lock_init(&dev->lock);
init_waitqueue_head(&dev->read_wq);
init_waitqueue_head(&dev->write_wq);
init_waitqueue_head(&dev->intr_wq);
atomic_set(&dev->open_excl, 0);
atomic_set(&dev->ioctl_excl, 0);
INIT_LIST_HEAD(&dev->tx_idle);
INIT_LIST_HEAD(&dev->intr_idle);
init_completion(&usb_read_completion);
dev->wq = create_singlethread_workqueue("f_mtp");
if (!dev->wq) {
ret = -ENOMEM;
goto err1;
}
INIT_WORK(&dev->send_file_work, send_file_work);
INIT_WORK(&dev->receive_file_work, receive_file_work);
dev->is_boost = 0;
cpumask_setall(&(dev->cpu_mask));
_mtp_dev = dev;
ret = misc_register(&mtp_device);
if (ret)
goto err2;
return 0;
err2:
destroy_workqueue(dev->wq);
err1:
_mtp_dev = NULL;
kfree(dev);
pr_info("mtp gadget driver failed to initialize\n");
return ret;
}
static int mtp_setup_configfs(struct mtp_instance *fi_mtp)
{
return __mtp_setup(fi_mtp);
}
static void mtp_cleanup(void)
{
struct mtp_dev *dev = _mtp_dev;
if (!dev)
return;
misc_deregister(&mtp_device);
destroy_workqueue(dev->wq);
_mtp_dev = NULL;
kfree(dev);
}
static struct mtp_instance *to_mtp_instance(struct config_item *item)
{
return container_of(to_config_group(item), struct mtp_instance,
func_inst.group);
}
static void mtp_attr_release(struct config_item *item)
{
struct mtp_instance *fi_mtp = to_mtp_instance(item);
usb_put_function_instance(&fi_mtp->func_inst);
}
static struct configfs_item_operations mtp_item_ops = {
.release = mtp_attr_release,
};
static struct config_item_type mtp_func_type = {
.ct_item_ops = &mtp_item_ops,
.ct_owner = THIS_MODULE,
};
#ifdef CONFIG_USB_CONFIGFS_UEVENT
static int cpumask_to_int(const struct cpumask *cpu_mask)
{
int mask = 0;
int cpu;
for_each_cpu(cpu, cpu_mask) {
pr_debug("[USB]%d\n", cpu);
mask |= (1 << cpu);
}
return mask;
}
static ssize_t cpu_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cpumask *cpu_mask = mtp_get_cpu_mask();
return sprintf(buf, "0x%X\n",
(cpu_mask?cpumask_to_int(cpu_mask):0xFFFFFFFF));
}
static ssize_t cpu_mask_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
unsigned int mask;
if (kstrtouint(buf, 16, &mask) != 0)
return -EINVAL;
pr_info("Store => 0x%x\n", mask);
mtp_set_cpu_mask(mask);
return size;
}
static DEVICE_ATTR_RW(cpu_mask);
static ssize_t mtp_server_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", mtp_get_mtp_server());
}
static DEVICE_ATTR_RO(mtp_server);
static struct device_attribute *mtp_function_attributes[] = {
&dev_attr_cpu_mask,
&dev_attr_mtp_server,
NULL
};
#endif
static struct mtp_instance *to_fi_mtp(struct usb_function_instance *fi)
{
return container_of(fi, struct mtp_instance, func_inst);
}
static int mtp_set_inst_name(struct usb_function_instance *fi, const char *name)
{
struct mtp_instance *fi_mtp;
char *ptr;
int name_len;
name_len = strlen(name) + 1;
if (name_len > MAX_INST_NAME_LEN)
return -ENAMETOOLONG;
ptr = kstrndup(name, name_len, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
fi_mtp = to_fi_mtp(fi);
fi_mtp->name = ptr;
return 0;
}
static void mtp_free_inst(struct usb_function_instance *fi)
{
struct mtp_instance *fi_mtp;
fi_mtp = to_fi_mtp(fi);
kfree(fi_mtp->name);
#ifdef CONFIG_USB_CONFIGFS_UEVENT
device_destroy(fi_mtp->mtp_device->class,
fi_mtp->mtp_device->devt);
#endif
mtp_cleanup();
//kfree(fi_mtp->mtp_os_desc.group.default_groups);
kfree(fi_mtp);
}
#ifdef CONFIG_USB_CONFIGFS_UEVENT
extern struct device *create_function_device(char *name);
#endif
struct usb_function_instance *alloc_inst_mtp_ptp(bool mtp_config)
{
struct mtp_instance *fi_mtp;
int ret = 0;
struct usb_os_desc *descs[1];
char *names[1];
#ifdef CONFIG_USB_CONFIGFS_UEVENT
struct device_attribute **attrs;
struct device_attribute *attr;
struct device *dev;
int err = 0;
#endif
fi_mtp = kzalloc(sizeof(*fi_mtp), GFP_KERNEL);
if (!fi_mtp)
return ERR_PTR(-ENOMEM);
fi_mtp->func_inst.set_inst_name = mtp_set_inst_name;
fi_mtp->func_inst.free_func_inst = mtp_free_inst;
fi_mtp->mtp_os_desc.ext_compat_id = fi_mtp->mtp_ext_compat_id;
INIT_LIST_HEAD(&fi_mtp->mtp_os_desc.ext_prop);
descs[0] = &fi_mtp->mtp_os_desc;
names[0] = "MTP";
if (mtp_config) {
ret = mtp_setup_configfs(fi_mtp);
if (ret) {
kfree(fi_mtp);
pr_info("Error setting MTP\n");
return ERR_PTR(ret);
}
} else
fi_mtp->dev = _mtp_dev;
config_group_init_type_name(&fi_mtp->func_inst.group,
"", &mtp_func_type);
usb_os_desc_prepare_interf_dir(&fi_mtp->func_inst.group, 1,
descs, names, THIS_MODULE);
#ifdef CONFIG_USB_CONFIGFS_UEVENT
if (mtp_config) {
dev = create_function_device("f_mtp");
if (IS_ERR(dev)) {
kfree(fi_mtp);
pr_info("Error create_function_device\n");
return (void *)dev;
}
fi_mtp->mtp_device = dev;
attrs = mtp_function_attributes;
if (attrs) {
while ((attr = *attrs++) && !err)
err = device_create_file(dev, attr);
if (err) {
device_destroy(dev->class, dev->devt);
kfree(fi_mtp);
pr_info("Error device_create_file\n");
return ERR_PTR(-EINVAL);
}
}
}
#endif
return &fi_mtp->func_inst;
}
EXPORT_SYMBOL_GPL(alloc_inst_mtp_ptp);
static struct usb_function_instance *mtp_alloc_inst(void)
{
return alloc_inst_mtp_ptp(true);
}
static int mtp_ctrlreq_configfs(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
return mtp_ctrlrequest(f->config->cdev, ctrl);
}
static void mtp_free(struct usb_function *f)
{
/*NO-OP: no function specific resource allocation in mtp_alloc*/
}
struct usb_function *function_alloc_mtp_ptp(struct usb_function_instance *fi,
bool mtp_config)
{
struct mtp_instance *fi_mtp = to_fi_mtp(fi);
struct mtp_dev *dev;
/*
* PTP piggybacks on MTP function so make sure we have
* created MTP function before we associate this PTP
* function with a gadget configuration.
*/
if (fi_mtp->dev == NULL) {
pr_info("fi_mtp->dev == NULL\n");
return ERR_PTR(-EINVAL); /* Invalid Configuration */
}
dev = fi_mtp->dev;
dev->function.name = DRIVER_NAME;
dev->function.strings = mtp_strings;
if (mtp_config) {
dev->function.fs_descriptors = fs_mtp_descs;
dev->function.hs_descriptors = hs_mtp_descs;
dev->function.ss_descriptors = ss_mtp_descs;
} else {
dev->function.fs_descriptors = fs_ptp_descs;
dev->function.hs_descriptors = hs_ptp_descs;
dev->function.ss_descriptors = ss_ptp_descs;
}
dev->function.bind = mtp_function_bind;
dev->function.unbind = mtp_function_unbind;
dev->function.set_alt = mtp_function_set_alt;
dev->function.disable = mtp_function_disable;
dev->function.setup = mtp_ctrlreq_configfs;
dev->function.free_func = mtp_free;
return &dev->function;
}
EXPORT_SYMBOL_GPL(function_alloc_mtp_ptp);
static struct usb_function *mtp_alloc(struct usb_function_instance *fi)
{
return function_alloc_mtp_ptp(fi, true);
}
DECLARE_USB_FUNCTION_INIT(mtp, mtp_alloc_inst, mtp_alloc);
MODULE_LICENSE("GPL");