6db4831e98
Android 14
2656 lines
78 KiB
C
2656 lines
78 KiB
C
/*
|
|
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
|
|
*
|
|
* Floating-point emulation code
|
|
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
/*
|
|
* BEGIN_DESC
|
|
*
|
|
* File:
|
|
* @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $
|
|
*
|
|
* Purpose:
|
|
* Double Floating-point Multiply Fused Add
|
|
* Double Floating-point Multiply Negate Fused Add
|
|
* Single Floating-point Multiply Fused Add
|
|
* Single Floating-point Multiply Negate Fused Add
|
|
*
|
|
* External Interfaces:
|
|
* dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
* dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
* sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
* sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
*
|
|
* Internal Interfaces:
|
|
*
|
|
* Theory:
|
|
* <<please update with a overview of the operation of this file>>
|
|
*
|
|
* END_DESC
|
|
*/
|
|
|
|
|
|
#include "float.h"
|
|
#include "sgl_float.h"
|
|
#include "dbl_float.h"
|
|
|
|
|
|
/*
|
|
* Double Floating-point Multiply Fused Add
|
|
*/
|
|
|
|
int
|
|
dbl_fmpyfadd(
|
|
dbl_floating_point *src1ptr,
|
|
dbl_floating_point *src2ptr,
|
|
dbl_floating_point *src3ptr,
|
|
unsigned int *status,
|
|
dbl_floating_point *dstptr)
|
|
{
|
|
unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
|
|
register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
|
|
unsigned int rightp1, rightp2, rightp3, rightp4;
|
|
unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
|
|
register int mpy_exponent, add_exponent, count;
|
|
boolean inexact = FALSE, is_tiny = FALSE;
|
|
|
|
unsigned int signlessleft1, signlessright1, save;
|
|
register int result_exponent, diff_exponent;
|
|
int sign_save, jumpsize;
|
|
|
|
Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
|
|
Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
|
|
Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
|
|
|
|
/*
|
|
* set sign bit of result of multiply
|
|
*/
|
|
if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))
|
|
Dbl_setnegativezerop1(resultp1);
|
|
else Dbl_setzerop1(resultp1);
|
|
|
|
/*
|
|
* Generate multiply exponent
|
|
*/
|
|
mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
|
|
|
|
/*
|
|
* check first operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd1p1)) {
|
|
if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
|
|
if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
|
|
Dbl_isnotnan(opnd3p1,opnd3p2)) {
|
|
if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
|
|
/*
|
|
* invalid since operands are infinity
|
|
* and zero
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
|
|
(Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd1p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd1p1);
|
|
}
|
|
/*
|
|
* is second operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd2p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd2p1);
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check second operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd2p1)) {
|
|
if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
|
|
if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
|
|
if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
|
|
/*
|
|
* invalid since multiply operands are
|
|
* zero & infinity
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(opnd2p1,opnd2p2);
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
|
|
(Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd2p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd2p1);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check third operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd3p1)) {
|
|
if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
|
|
/* return infinity */
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
} else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate multiply mantissa
|
|
*/
|
|
if (Dbl_isnotzero_exponent(opnd1p1)) {
|
|
/* set hidden bit */
|
|
Dbl_clear_signexponent_set_hidden(opnd1p1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Dbl_or_signs(opnd3p1,resultp1);
|
|
} else {
|
|
Dbl_and_signs(opnd3p1,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Dbl_iszero_exponent(opnd3p1) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Dbl_signextendedsign(opnd3p1);
|
|
result_exponent = 0;
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
|
|
Dbl_set_sign(opnd3p1,/*using*/sign_save);
|
|
Dbl_setwrapped_exponent(opnd3p1,result_exponent,
|
|
unfl);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized, adjust exponent */
|
|
Dbl_clear_signexponent(opnd1p1);
|
|
Dbl_leftshiftby1(opnd1p1,opnd1p2);
|
|
Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
|
|
}
|
|
/* opnd2 needs to have hidden bit set with msb in hidden bit */
|
|
if (Dbl_isnotzero_exponent(opnd2p1)) {
|
|
Dbl_clear_signexponent_set_hidden(opnd2p1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Dbl_or_signs(opnd3p1,resultp1);
|
|
} else {
|
|
Dbl_and_signs(opnd3p1,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Dbl_iszero_exponent(opnd3p1) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Dbl_signextendedsign(opnd3p1);
|
|
result_exponent = 0;
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
|
|
Dbl_set_sign(opnd3p1,/*using*/sign_save);
|
|
Dbl_setwrapped_exponent(opnd3p1,result_exponent,
|
|
unfl);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized; want to normalize */
|
|
Dbl_clear_signexponent(opnd2p1);
|
|
Dbl_leftshiftby1(opnd2p1,opnd2p2);
|
|
Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
|
|
}
|
|
|
|
/* Multiply the first two source mantissas together */
|
|
|
|
/*
|
|
* The intermediate result will be kept in tmpres,
|
|
* which needs enough room for 106 bits of mantissa,
|
|
* so lets call it a Double extended.
|
|
*/
|
|
Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
|
|
/*
|
|
* Four bits at a time are inspected in each loop, and a
|
|
* simple shift and add multiply algorithm is used.
|
|
*/
|
|
for (count = DBL_P-1; count >= 0; count -= 4) {
|
|
Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
if (Dbit28p2(opnd1p2)) {
|
|
/* Fourword_add should be an ADD followed by 3 ADDC's */
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
|
|
}
|
|
if (Dbit29p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
|
|
}
|
|
if (Dbit30p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
|
|
}
|
|
if (Dbit31p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1, opnd2p2, 0, 0);
|
|
}
|
|
Dbl_rightshiftby4(opnd1p1,opnd1p2);
|
|
}
|
|
if (Is_dexthiddenoverflow(tmpresp1)) {
|
|
/* result mantissa >= 2 (mantissa overflow) */
|
|
mpy_exponent++;
|
|
Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
}
|
|
|
|
/*
|
|
* Restore the sign of the mpy result which was saved in resultp1.
|
|
* The exponent will continue to be kept in mpy_exponent.
|
|
*/
|
|
Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
|
|
|
|
/*
|
|
* No rounding is required, since the result of the multiply
|
|
* is exact in the extended format.
|
|
*/
|
|
|
|
/*
|
|
* Now we are ready to perform the add portion of the operation.
|
|
*
|
|
* The exponents need to be kept as integers for now, since the
|
|
* multiply result might not fit into the exponent field. We
|
|
* can't overflow or underflow because of this yet, since the
|
|
* add could bring the final result back into range.
|
|
*/
|
|
add_exponent = Dbl_exponent(opnd3p1);
|
|
|
|
/*
|
|
* Check for denormalized or zero add operand.
|
|
*/
|
|
if (add_exponent == 0) {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
|
|
/* right is zero */
|
|
/* Left can't be zero and must be result.
|
|
*
|
|
* The final result is now in tmpres and mpy_exponent,
|
|
* and needs to be rounded and squeezed back into
|
|
* double precision format from double extended.
|
|
*/
|
|
result_exponent = mpy_exponent;
|
|
Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
|
|
goto round;
|
|
}
|
|
|
|
/*
|
|
* Neither are zeroes.
|
|
* Adjust exponent and normalize add operand.
|
|
*/
|
|
sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */
|
|
Dbl_clear_signexponent(opnd3p1);
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
|
|
Dbl_set_sign(opnd3p1,sign_save); /* restore sign */
|
|
} else {
|
|
Dbl_clear_exponent_set_hidden(opnd3p1);
|
|
}
|
|
/*
|
|
* Copy opnd3 to the double extended variable called right.
|
|
*/
|
|
Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
|
|
|
|
/*
|
|
* A zero "save" helps discover equal operands (for later),
|
|
* and is used in swapping operands (if needed).
|
|
*/
|
|
Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
|
|
|
|
/*
|
|
* Compare magnitude of operands.
|
|
*/
|
|
Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
|
|
Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
|
|
if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
|
|
Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
|
|
/*
|
|
* Set the left operand to the larger one by XOR swap.
|
|
* First finish the first word "save".
|
|
*/
|
|
Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
|
|
Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
|
|
Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
|
|
rightp2,rightp3,rightp4);
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = add_exponent - mpy_exponent;
|
|
result_exponent = add_exponent;
|
|
} else {
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = mpy_exponent - add_exponent;
|
|
result_exponent = mpy_exponent;
|
|
}
|
|
/* Invariant: left is not smaller than right. */
|
|
|
|
/*
|
|
* Special case alignment of operands that would force alignment
|
|
* beyond the extent of the extension. A further optimization
|
|
* could special case this but only reduces the path length for
|
|
* this infrequent case.
|
|
*/
|
|
if (diff_exponent > DBLEXT_THRESHOLD) {
|
|
diff_exponent = DBLEXT_THRESHOLD;
|
|
}
|
|
|
|
/* Align right operand by shifting it to the right */
|
|
Dblext_clear_sign(rightp1);
|
|
Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
|
|
/*shifted by*/diff_exponent);
|
|
|
|
/* Treat sum and difference of the operands separately. */
|
|
if ((int)save < 0) {
|
|
/*
|
|
* Difference of the two operands. Overflow can occur if the
|
|
* multiply overflowed. A borrow can occur out of the hidden
|
|
* bit and force a post normalization phase.
|
|
*/
|
|
Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
rightp1,rightp2,rightp3,rightp4,
|
|
resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);
|
|
if (Dbl_iszero_hidden(resultp1)) {
|
|
/* Handle normalization */
|
|
/* A straightforward algorithm would now shift the
|
|
* result and extension left until the hidden bit
|
|
* becomes one. Not all of the extension bits need
|
|
* participate in the shift. Only the two most
|
|
* significant bits (round and guard) are needed.
|
|
* If only a single shift is needed then the guard
|
|
* bit becomes a significant low order bit and the
|
|
* extension must participate in the rounding.
|
|
* If more than a single shift is needed, then all
|
|
* bits to the right of the guard bit are zeros,
|
|
* and the guard bit may or may not be zero. */
|
|
Dblext_leftshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
|
|
/* Need to check for a zero result. The sign and
|
|
* exponent fields have already been zeroed. The more
|
|
* efficient test of the full object can be used.
|
|
*/
|
|
if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){
|
|
/* Must have been "x-x" or "x+(-x)". */
|
|
if (Is_rounding_mode(ROUNDMINUS))
|
|
Dbl_setone_sign(resultp1);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
result_exponent--;
|
|
|
|
/* Look to see if normalization is finished. */
|
|
if (Dbl_isone_hidden(resultp1)) {
|
|
/* No further normalization is needed */
|
|
goto round;
|
|
}
|
|
|
|
/* Discover first one bit to determine shift amount.
|
|
* Use a modified binary search. We have already
|
|
* shifted the result one position right and still
|
|
* not found a one so the remainder of the extension
|
|
* must be zero and simplifies rounding. */
|
|
/* Scan bytes */
|
|
while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
|
|
Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
|
|
result_exponent -= 8;
|
|
}
|
|
/* Now narrow it down to the nibble */
|
|
if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
|
|
/* The lower nibble contains the
|
|
* normalizing one */
|
|
Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
|
|
result_exponent -= 4;
|
|
}
|
|
/* Select case where first bit is set (already
|
|
* normalized) otherwise select the proper shift. */
|
|
jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
|
|
if (jumpsize <= 7) switch(jumpsize) {
|
|
case 1:
|
|
Dblext_leftshiftby3(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 3;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
Dblext_leftshiftby2(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 2;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
Dblext_leftshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 1;
|
|
break;
|
|
}
|
|
} /* end if (hidden...)... */
|
|
/* Fall through and round */
|
|
} /* end if (save < 0)... */
|
|
else {
|
|
/* Add magnitudes */
|
|
Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
rightp1,rightp2,rightp3,rightp4,
|
|
/*to*/resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);
|
|
if (Dbl_isone_hiddenoverflow(resultp1)) {
|
|
/* Prenormalization required. */
|
|
Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent++;
|
|
} /* end if hiddenoverflow... */
|
|
} /* end else ...add magnitudes... */
|
|
|
|
/* Round the result. If the extension and lower two words are
|
|
* all zeros, then the result is exact. Otherwise round in the
|
|
* correct direction. Underflow is possible. If a postnormalization
|
|
* is necessary, then the mantissa is all zeros so no shift is needed.
|
|
*/
|
|
round:
|
|
if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
|
|
Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
|
|
result_exponent,is_tiny);
|
|
}
|
|
Dbl_set_sign(resultp1,/*using*/sign_save);
|
|
if (Dblext_isnotzero_mantissap3(resultp3) ||
|
|
Dblext_isnotzero_mantissap4(resultp4)) {
|
|
inexact = TRUE;
|
|
switch(Rounding_mode()) {
|
|
case ROUNDNEAREST: /* The default. */
|
|
if (Dblext_isone_highp3(resultp3)) {
|
|
/* at least 1/2 ulp */
|
|
if (Dblext_isnotzero_low31p3(resultp3) ||
|
|
Dblext_isnotzero_mantissap4(resultp4) ||
|
|
Dblext_isone_lowp2(resultp2)) {
|
|
/* either exactly half way and odd or
|
|
* more than 1/2ulp */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ROUNDPLUS:
|
|
if (Dbl_iszero_sign(resultp1)) {
|
|
/* Round up positive results */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
break;
|
|
|
|
case ROUNDMINUS:
|
|
if (Dbl_isone_sign(resultp1)) {
|
|
/* Round down negative results */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
|
|
case ROUNDZERO:;
|
|
/* truncate is simple */
|
|
} /* end switch... */
|
|
if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
|
|
}
|
|
if (result_exponent >= DBL_INFINITY_EXPONENT) {
|
|
/* trap if OVERFLOWTRAP enabled */
|
|
if (Is_overflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_OVERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return (OPC_2E_OVERFLOWEXCEPTION);
|
|
}
|
|
inexact = TRUE;
|
|
Set_overflowflag();
|
|
/* set result to infinity or largest number */
|
|
Dbl_setoverflow(resultp1,resultp2);
|
|
|
|
} else if (result_exponent <= 0) { /* underflow case */
|
|
if (Is_underflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_UNDERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
else if (inexact && is_tiny) Set_underflowflag();
|
|
}
|
|
else Dbl_set_exponent(resultp1,result_exponent);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Double Floating-point Multiply Negate Fused Add
|
|
*/
|
|
|
|
dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
|
|
dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
|
|
unsigned int *status;
|
|
{
|
|
unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2;
|
|
register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4;
|
|
unsigned int rightp1, rightp2, rightp3, rightp4;
|
|
unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0;
|
|
register int mpy_exponent, add_exponent, count;
|
|
boolean inexact = FALSE, is_tiny = FALSE;
|
|
|
|
unsigned int signlessleft1, signlessright1, save;
|
|
register int result_exponent, diff_exponent;
|
|
int sign_save, jumpsize;
|
|
|
|
Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2);
|
|
Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2);
|
|
Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2);
|
|
|
|
/*
|
|
* set sign bit of result of multiply
|
|
*/
|
|
if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1))
|
|
Dbl_setzerop1(resultp1);
|
|
else
|
|
Dbl_setnegativezerop1(resultp1);
|
|
|
|
/*
|
|
* Generate multiply exponent
|
|
*/
|
|
mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS;
|
|
|
|
/*
|
|
* check first operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd1p1)) {
|
|
if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
|
|
if (Dbl_isnotnan(opnd2p1,opnd2p2) &&
|
|
Dbl_isnotnan(opnd3p1,opnd3p2)) {
|
|
if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) {
|
|
/*
|
|
* invalid since operands are infinity
|
|
* and zero
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
|
|
(Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd1p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd1p1);
|
|
}
|
|
/*
|
|
* is second operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd2p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd2p1);
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd1p1,opnd1p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check second operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd2p1)) {
|
|
if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
|
|
if (Dbl_isnotnan(opnd3p1,opnd3p2)) {
|
|
if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) {
|
|
/*
|
|
* invalid since multiply operands are
|
|
* zero & infinity
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(opnd2p1,opnd2p2);
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Dbl_isinfinity(opnd3p1,opnd3p2) &&
|
|
(Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Dbl_makequietnan(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Dbl_setinfinity_exponentmantissa(resultp1,resultp2);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd2p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd2p1);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Dbl_is_signalingnan(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check third operand for NaN's or infinity
|
|
*/
|
|
if (Dbl_isinfinity_exponent(opnd3p1)) {
|
|
if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
|
|
/* return infinity */
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
} else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Dbl_isone_signaling(opnd3p1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Dbl_set_quiet(opnd3p1);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate multiply mantissa
|
|
*/
|
|
if (Dbl_isnotzero_exponent(opnd1p1)) {
|
|
/* set hidden bit */
|
|
Dbl_clear_signexponent_set_hidden(opnd1p1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Dbl_or_signs(opnd3p1,resultp1);
|
|
} else {
|
|
Dbl_and_signs(opnd3p1,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Dbl_iszero_exponent(opnd3p1) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Dbl_signextendedsign(opnd3p1);
|
|
result_exponent = 0;
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
|
|
Dbl_set_sign(opnd3p1,/*using*/sign_save);
|
|
Dbl_setwrapped_exponent(opnd3p1,result_exponent,
|
|
unfl);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized, adjust exponent */
|
|
Dbl_clear_signexponent(opnd1p1);
|
|
Dbl_leftshiftby1(opnd1p1,opnd1p2);
|
|
Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);
|
|
}
|
|
/* opnd2 needs to have hidden bit set with msb in hidden bit */
|
|
if (Dbl_isnotzero_exponent(opnd2p1)) {
|
|
Dbl_clear_signexponent_set_hidden(opnd2p1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Dbl_or_signs(opnd3p1,resultp1);
|
|
} else {
|
|
Dbl_and_signs(opnd3p1,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Dbl_iszero_exponent(opnd3p1) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Dbl_signextendedsign(opnd3p1);
|
|
result_exponent = 0;
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,result_exponent);
|
|
Dbl_set_sign(opnd3p1,/*using*/sign_save);
|
|
Dbl_setwrapped_exponent(opnd3p1,result_exponent,
|
|
unfl);
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized; want to normalize */
|
|
Dbl_clear_signexponent(opnd2p1);
|
|
Dbl_leftshiftby1(opnd2p1,opnd2p2);
|
|
Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);
|
|
}
|
|
|
|
/* Multiply the first two source mantissas together */
|
|
|
|
/*
|
|
* The intermediate result will be kept in tmpres,
|
|
* which needs enough room for 106 bits of mantissa,
|
|
* so lets call it a Double extended.
|
|
*/
|
|
Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
|
|
/*
|
|
* Four bits at a time are inspected in each loop, and a
|
|
* simple shift and add multiply algorithm is used.
|
|
*/
|
|
for (count = DBL_P-1; count >= 0; count -= 4) {
|
|
Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
if (Dbit28p2(opnd1p2)) {
|
|
/* Fourword_add should be an ADD followed by 3 ADDC's */
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);
|
|
}
|
|
if (Dbit29p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);
|
|
}
|
|
if (Dbit30p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);
|
|
}
|
|
if (Dbit31p2(opnd1p2)) {
|
|
Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,
|
|
opnd2p1, opnd2p2, 0, 0);
|
|
}
|
|
Dbl_rightshiftby4(opnd1p1,opnd1p2);
|
|
}
|
|
if (Is_dexthiddenoverflow(tmpresp1)) {
|
|
/* result mantissa >= 2 (mantissa overflow) */
|
|
mpy_exponent++;
|
|
Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);
|
|
}
|
|
|
|
/*
|
|
* Restore the sign of the mpy result which was saved in resultp1.
|
|
* The exponent will continue to be kept in mpy_exponent.
|
|
*/
|
|
Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));
|
|
|
|
/*
|
|
* No rounding is required, since the result of the multiply
|
|
* is exact in the extended format.
|
|
*/
|
|
|
|
/*
|
|
* Now we are ready to perform the add portion of the operation.
|
|
*
|
|
* The exponents need to be kept as integers for now, since the
|
|
* multiply result might not fit into the exponent field. We
|
|
* can't overflow or underflow because of this yet, since the
|
|
* add could bring the final result back into range.
|
|
*/
|
|
add_exponent = Dbl_exponent(opnd3p1);
|
|
|
|
/*
|
|
* Check for denormalized or zero add operand.
|
|
*/
|
|
if (add_exponent == 0) {
|
|
/* check for zero */
|
|
if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {
|
|
/* right is zero */
|
|
/* Left can't be zero and must be result.
|
|
*
|
|
* The final result is now in tmpres and mpy_exponent,
|
|
* and needs to be rounded and squeezed back into
|
|
* double precision format from double extended.
|
|
*/
|
|
result_exponent = mpy_exponent;
|
|
Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);/*save sign*/
|
|
goto round;
|
|
}
|
|
|
|
/*
|
|
* Neither are zeroes.
|
|
* Adjust exponent and normalize add operand.
|
|
*/
|
|
sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */
|
|
Dbl_clear_signexponent(opnd3p1);
|
|
Dbl_leftshiftby1(opnd3p1,opnd3p2);
|
|
Dbl_normalize(opnd3p1,opnd3p2,add_exponent);
|
|
Dbl_set_sign(opnd3p1,sign_save); /* restore sign */
|
|
} else {
|
|
Dbl_clear_exponent_set_hidden(opnd3p1);
|
|
}
|
|
/*
|
|
* Copy opnd3 to the double extended variable called right.
|
|
*/
|
|
Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);
|
|
|
|
/*
|
|
* A zero "save" helps discover equal operands (for later),
|
|
* and is used in swapping operands (if needed).
|
|
*/
|
|
Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);
|
|
|
|
/*
|
|
* Compare magnitude of operands.
|
|
*/
|
|
Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);
|
|
Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);
|
|
if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
|
|
Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){
|
|
/*
|
|
* Set the left operand to the larger one by XOR swap.
|
|
* First finish the first word "save".
|
|
*/
|
|
Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);
|
|
Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
|
|
Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,
|
|
rightp2,rightp3,rightp4);
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = add_exponent - mpy_exponent;
|
|
result_exponent = add_exponent;
|
|
} else {
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = mpy_exponent - add_exponent;
|
|
result_exponent = mpy_exponent;
|
|
}
|
|
/* Invariant: left is not smaller than right. */
|
|
|
|
/*
|
|
* Special case alignment of operands that would force alignment
|
|
* beyond the extent of the extension. A further optimization
|
|
* could special case this but only reduces the path length for
|
|
* this infrequent case.
|
|
*/
|
|
if (diff_exponent > DBLEXT_THRESHOLD) {
|
|
diff_exponent = DBLEXT_THRESHOLD;
|
|
}
|
|
|
|
/* Align right operand by shifting it to the right */
|
|
Dblext_clear_sign(rightp1);
|
|
Dblext_right_align(rightp1,rightp2,rightp3,rightp4,
|
|
/*shifted by*/diff_exponent);
|
|
|
|
/* Treat sum and difference of the operands separately. */
|
|
if ((int)save < 0) {
|
|
/*
|
|
* Difference of the two operands. Overflow can occur if the
|
|
* multiply overflowed. A borrow can occur out of the hidden
|
|
* bit and force a post normalization phase.
|
|
*/
|
|
Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
rightp1,rightp2,rightp3,rightp4,
|
|
resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);
|
|
if (Dbl_iszero_hidden(resultp1)) {
|
|
/* Handle normalization */
|
|
/* A straightforward algorithm would now shift the
|
|
* result and extension left until the hidden bit
|
|
* becomes one. Not all of the extension bits need
|
|
* participate in the shift. Only the two most
|
|
* significant bits (round and guard) are needed.
|
|
* If only a single shift is needed then the guard
|
|
* bit becomes a significant low order bit and the
|
|
* extension must participate in the rounding.
|
|
* If more than a single shift is needed, then all
|
|
* bits to the right of the guard bit are zeros,
|
|
* and the guard bit may or may not be zero. */
|
|
Dblext_leftshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
|
|
/* Need to check for a zero result. The sign and
|
|
* exponent fields have already been zeroed. The more
|
|
* efficient test of the full object can be used.
|
|
*/
|
|
if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) {
|
|
/* Must have been "x-x" or "x+(-x)". */
|
|
if (Is_rounding_mode(ROUNDMINUS))
|
|
Dbl_setone_sign(resultp1);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
result_exponent--;
|
|
|
|
/* Look to see if normalization is finished. */
|
|
if (Dbl_isone_hidden(resultp1)) {
|
|
/* No further normalization is needed */
|
|
goto round;
|
|
}
|
|
|
|
/* Discover first one bit to determine shift amount.
|
|
* Use a modified binary search. We have already
|
|
* shifted the result one position right and still
|
|
* not found a one so the remainder of the extension
|
|
* must be zero and simplifies rounding. */
|
|
/* Scan bytes */
|
|
while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {
|
|
Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);
|
|
result_exponent -= 8;
|
|
}
|
|
/* Now narrow it down to the nibble */
|
|
if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {
|
|
/* The lower nibble contains the
|
|
* normalizing one */
|
|
Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);
|
|
result_exponent -= 4;
|
|
}
|
|
/* Select case where first bit is set (already
|
|
* normalized) otherwise select the proper shift. */
|
|
jumpsize = Dbl_hiddenhigh3mantissa(resultp1);
|
|
if (jumpsize <= 7) switch(jumpsize) {
|
|
case 1:
|
|
Dblext_leftshiftby3(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 3;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
Dblext_leftshiftby2(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 2;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
Dblext_leftshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent -= 1;
|
|
break;
|
|
}
|
|
} /* end if (hidden...)... */
|
|
/* Fall through and round */
|
|
} /* end if (save < 0)... */
|
|
else {
|
|
/* Add magnitudes */
|
|
Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,
|
|
rightp1,rightp2,rightp3,rightp4,
|
|
/*to*/resultp1,resultp2,resultp3,resultp4);
|
|
sign_save = Dbl_signextendedsign(resultp1);
|
|
if (Dbl_isone_hiddenoverflow(resultp1)) {
|
|
/* Prenormalization required. */
|
|
Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,
|
|
resultp4);
|
|
result_exponent++;
|
|
} /* end if hiddenoverflow... */
|
|
} /* end else ...add magnitudes... */
|
|
|
|
/* Round the result. If the extension and lower two words are
|
|
* all zeros, then the result is exact. Otherwise round in the
|
|
* correct direction. Underflow is possible. If a postnormalization
|
|
* is necessary, then the mantissa is all zeros so no shift is needed.
|
|
*/
|
|
round:
|
|
if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
|
|
Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,
|
|
result_exponent,is_tiny);
|
|
}
|
|
Dbl_set_sign(resultp1,/*using*/sign_save);
|
|
if (Dblext_isnotzero_mantissap3(resultp3) ||
|
|
Dblext_isnotzero_mantissap4(resultp4)) {
|
|
inexact = TRUE;
|
|
switch(Rounding_mode()) {
|
|
case ROUNDNEAREST: /* The default. */
|
|
if (Dblext_isone_highp3(resultp3)) {
|
|
/* at least 1/2 ulp */
|
|
if (Dblext_isnotzero_low31p3(resultp3) ||
|
|
Dblext_isnotzero_mantissap4(resultp4) ||
|
|
Dblext_isone_lowp2(resultp2)) {
|
|
/* either exactly half way and odd or
|
|
* more than 1/2ulp */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ROUNDPLUS:
|
|
if (Dbl_iszero_sign(resultp1)) {
|
|
/* Round up positive results */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
break;
|
|
|
|
case ROUNDMINUS:
|
|
if (Dbl_isone_sign(resultp1)) {
|
|
/* Round down negative results */
|
|
Dbl_increment(resultp1,resultp2);
|
|
}
|
|
|
|
case ROUNDZERO:;
|
|
/* truncate is simple */
|
|
} /* end switch... */
|
|
if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++;
|
|
}
|
|
if (result_exponent >= DBL_INFINITY_EXPONENT) {
|
|
/* Overflow */
|
|
if (Is_overflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_OVERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return (OPC_2E_OVERFLOWEXCEPTION);
|
|
}
|
|
inexact = TRUE;
|
|
Set_overflowflag();
|
|
Dbl_setoverflow(resultp1,resultp2);
|
|
} else if (result_exponent <= 0) { /* underflow case */
|
|
if (Is_underflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Dbl_setwrapped_exponent(resultp1,result_exponent,unfl);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_UNDERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
else if (inexact && is_tiny) Set_underflowflag();
|
|
}
|
|
else Dbl_set_exponent(resultp1,result_exponent);
|
|
Dbl_copytoptr(resultp1,resultp2,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Single Floating-point Multiply Fused Add
|
|
*/
|
|
|
|
sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
|
|
sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
|
|
unsigned int *status;
|
|
{
|
|
unsigned int opnd1, opnd2, opnd3;
|
|
register unsigned int tmpresp1, tmpresp2;
|
|
unsigned int rightp1, rightp2;
|
|
unsigned int resultp1, resultp2 = 0;
|
|
register int mpy_exponent, add_exponent, count;
|
|
boolean inexact = FALSE, is_tiny = FALSE;
|
|
|
|
unsigned int signlessleft1, signlessright1, save;
|
|
register int result_exponent, diff_exponent;
|
|
int sign_save, jumpsize;
|
|
|
|
Sgl_copyfromptr(src1ptr,opnd1);
|
|
Sgl_copyfromptr(src2ptr,opnd2);
|
|
Sgl_copyfromptr(src3ptr,opnd3);
|
|
|
|
/*
|
|
* set sign bit of result of multiply
|
|
*/
|
|
if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))
|
|
Sgl_setnegativezero(resultp1);
|
|
else Sgl_setzero(resultp1);
|
|
|
|
/*
|
|
* Generate multiply exponent
|
|
*/
|
|
mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
|
|
|
|
/*
|
|
* check first operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd1)) {
|
|
if (Sgl_iszero_mantissa(opnd1)) {
|
|
if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
|
|
if (Sgl_iszero_exponentmantissa(opnd2)) {
|
|
/*
|
|
* invalid since operands are infinity
|
|
* and zero
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Sgl_isinfinity(opnd3) &&
|
|
(Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Sgl_setinfinity_exponentmantissa(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd1);
|
|
}
|
|
/*
|
|
* is second operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd2)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd2);
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check second operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd2)) {
|
|
if (Sgl_iszero_mantissa(opnd2)) {
|
|
if (Sgl_isnotnan(opnd3)) {
|
|
if (Sgl_iszero_exponentmantissa(opnd1)) {
|
|
/*
|
|
* invalid since multiply operands are
|
|
* zero & infinity
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(opnd2);
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Sgl_isinfinity(opnd3) &&
|
|
(Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Sgl_setinfinity_exponentmantissa(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd2)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd2);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check third operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd3)) {
|
|
if (Sgl_iszero_mantissa(opnd3)) {
|
|
/* return infinity */
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
} else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate multiply mantissa
|
|
*/
|
|
if (Sgl_isnotzero_exponent(opnd1)) {
|
|
/* set hidden bit */
|
|
Sgl_clear_signexponent_set_hidden(opnd1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd1)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Sgl_iszero_exponentmantissa(opnd3)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Sgl_or_signs(opnd3,resultp1);
|
|
} else {
|
|
Sgl_and_signs(opnd3,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Sgl_iszero_exponent(opnd3) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Sgl_signextendedsign(opnd3);
|
|
result_exponent = 0;
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,result_exponent);
|
|
Sgl_set_sign(opnd3,/*using*/sign_save);
|
|
Sgl_setwrapped_exponent(opnd3,result_exponent,
|
|
unfl);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized, adjust exponent */
|
|
Sgl_clear_signexponent(opnd1);
|
|
Sgl_leftshiftby1(opnd1);
|
|
Sgl_normalize(opnd1,mpy_exponent);
|
|
}
|
|
/* opnd2 needs to have hidden bit set with msb in hidden bit */
|
|
if (Sgl_isnotzero_exponent(opnd2)) {
|
|
Sgl_clear_signexponent_set_hidden(opnd2);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Sgl_iszero_exponentmantissa(opnd3)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Sgl_or_signs(opnd3,resultp1);
|
|
} else {
|
|
Sgl_and_signs(opnd3,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Sgl_iszero_exponent(opnd3) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Sgl_signextendedsign(opnd3);
|
|
result_exponent = 0;
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,result_exponent);
|
|
Sgl_set_sign(opnd3,/*using*/sign_save);
|
|
Sgl_setwrapped_exponent(opnd3,result_exponent,
|
|
unfl);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized; want to normalize */
|
|
Sgl_clear_signexponent(opnd2);
|
|
Sgl_leftshiftby1(opnd2);
|
|
Sgl_normalize(opnd2,mpy_exponent);
|
|
}
|
|
|
|
/* Multiply the first two source mantissas together */
|
|
|
|
/*
|
|
* The intermediate result will be kept in tmpres,
|
|
* which needs enough room for 106 bits of mantissa,
|
|
* so lets call it a Double extended.
|
|
*/
|
|
Sglext_setzero(tmpresp1,tmpresp2);
|
|
|
|
/*
|
|
* Four bits at a time are inspected in each loop, and a
|
|
* simple shift and add multiply algorithm is used.
|
|
*/
|
|
for (count = SGL_P-1; count >= 0; count -= 4) {
|
|
Sglext_rightshiftby4(tmpresp1,tmpresp2);
|
|
if (Sbit28(opnd1)) {
|
|
/* Twoword_add should be an ADD followed by 2 ADDC's */
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
|
|
}
|
|
if (Sbit29(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
|
|
}
|
|
if (Sbit30(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
|
|
}
|
|
if (Sbit31(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
|
|
}
|
|
Sgl_rightshiftby4(opnd1);
|
|
}
|
|
if (Is_sexthiddenoverflow(tmpresp1)) {
|
|
/* result mantissa >= 2 (mantissa overflow) */
|
|
mpy_exponent++;
|
|
Sglext_rightshiftby4(tmpresp1,tmpresp2);
|
|
} else {
|
|
Sglext_rightshiftby3(tmpresp1,tmpresp2);
|
|
}
|
|
|
|
/*
|
|
* Restore the sign of the mpy result which was saved in resultp1.
|
|
* The exponent will continue to be kept in mpy_exponent.
|
|
*/
|
|
Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
|
|
|
|
/*
|
|
* No rounding is required, since the result of the multiply
|
|
* is exact in the extended format.
|
|
*/
|
|
|
|
/*
|
|
* Now we are ready to perform the add portion of the operation.
|
|
*
|
|
* The exponents need to be kept as integers for now, since the
|
|
* multiply result might not fit into the exponent field. We
|
|
* can't overflow or underflow because of this yet, since the
|
|
* add could bring the final result back into range.
|
|
*/
|
|
add_exponent = Sgl_exponent(opnd3);
|
|
|
|
/*
|
|
* Check for denormalized or zero add operand.
|
|
*/
|
|
if (add_exponent == 0) {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd3)) {
|
|
/* right is zero */
|
|
/* Left can't be zero and must be result.
|
|
*
|
|
* The final result is now in tmpres and mpy_exponent,
|
|
* and needs to be rounded and squeezed back into
|
|
* double precision format from double extended.
|
|
*/
|
|
result_exponent = mpy_exponent;
|
|
Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
|
|
goto round;
|
|
}
|
|
|
|
/*
|
|
* Neither are zeroes.
|
|
* Adjust exponent and normalize add operand.
|
|
*/
|
|
sign_save = Sgl_signextendedsign(opnd3); /* save sign */
|
|
Sgl_clear_signexponent(opnd3);
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,add_exponent);
|
|
Sgl_set_sign(opnd3,sign_save); /* restore sign */
|
|
} else {
|
|
Sgl_clear_exponent_set_hidden(opnd3);
|
|
}
|
|
/*
|
|
* Copy opnd3 to the double extended variable called right.
|
|
*/
|
|
Sgl_copyto_sglext(opnd3,rightp1,rightp2);
|
|
|
|
/*
|
|
* A zero "save" helps discover equal operands (for later),
|
|
* and is used in swapping operands (if needed).
|
|
*/
|
|
Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
|
|
|
|
/*
|
|
* Compare magnitude of operands.
|
|
*/
|
|
Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
|
|
Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
|
|
if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
|
|
Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
|
|
/*
|
|
* Set the left operand to the larger one by XOR swap.
|
|
* First finish the first word "save".
|
|
*/
|
|
Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
|
|
Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
|
|
Sglext_swap_lower(tmpresp2,rightp2);
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = add_exponent - mpy_exponent;
|
|
result_exponent = add_exponent;
|
|
} else {
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = mpy_exponent - add_exponent;
|
|
result_exponent = mpy_exponent;
|
|
}
|
|
/* Invariant: left is not smaller than right. */
|
|
|
|
/*
|
|
* Special case alignment of operands that would force alignment
|
|
* beyond the extent of the extension. A further optimization
|
|
* could special case this but only reduces the path length for
|
|
* this infrequent case.
|
|
*/
|
|
if (diff_exponent > SGLEXT_THRESHOLD) {
|
|
diff_exponent = SGLEXT_THRESHOLD;
|
|
}
|
|
|
|
/* Align right operand by shifting it to the right */
|
|
Sglext_clear_sign(rightp1);
|
|
Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
|
|
|
|
/* Treat sum and difference of the operands separately. */
|
|
if ((int)save < 0) {
|
|
/*
|
|
* Difference of the two operands. Overflow can occur if the
|
|
* multiply overflowed. A borrow can occur out of the hidden
|
|
* bit and force a post normalization phase.
|
|
*/
|
|
Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
|
|
resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);
|
|
if (Sgl_iszero_hidden(resultp1)) {
|
|
/* Handle normalization */
|
|
/* A straightforward algorithm would now shift the
|
|
* result and extension left until the hidden bit
|
|
* becomes one. Not all of the extension bits need
|
|
* participate in the shift. Only the two most
|
|
* significant bits (round and guard) are needed.
|
|
* If only a single shift is needed then the guard
|
|
* bit becomes a significant low order bit and the
|
|
* extension must participate in the rounding.
|
|
* If more than a single shift is needed, then all
|
|
* bits to the right of the guard bit are zeros,
|
|
* and the guard bit may or may not be zero. */
|
|
Sglext_leftshiftby1(resultp1,resultp2);
|
|
|
|
/* Need to check for a zero result. The sign and
|
|
* exponent fields have already been zeroed. The more
|
|
* efficient test of the full object can be used.
|
|
*/
|
|
if (Sglext_iszero(resultp1,resultp2)) {
|
|
/* Must have been "x-x" or "x+(-x)". */
|
|
if (Is_rounding_mode(ROUNDMINUS))
|
|
Sgl_setone_sign(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
result_exponent--;
|
|
|
|
/* Look to see if normalization is finished. */
|
|
if (Sgl_isone_hidden(resultp1)) {
|
|
/* No further normalization is needed */
|
|
goto round;
|
|
}
|
|
|
|
/* Discover first one bit to determine shift amount.
|
|
* Use a modified binary search. We have already
|
|
* shifted the result one position right and still
|
|
* not found a one so the remainder of the extension
|
|
* must be zero and simplifies rounding. */
|
|
/* Scan bytes */
|
|
while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
|
|
Sglext_leftshiftby8(resultp1,resultp2);
|
|
result_exponent -= 8;
|
|
}
|
|
/* Now narrow it down to the nibble */
|
|
if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
|
|
/* The lower nibble contains the
|
|
* normalizing one */
|
|
Sglext_leftshiftby4(resultp1,resultp2);
|
|
result_exponent -= 4;
|
|
}
|
|
/* Select case where first bit is set (already
|
|
* normalized) otherwise select the proper shift. */
|
|
jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
|
|
if (jumpsize <= 7) switch(jumpsize) {
|
|
case 1:
|
|
Sglext_leftshiftby3(resultp1,resultp2);
|
|
result_exponent -= 3;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
Sglext_leftshiftby2(resultp1,resultp2);
|
|
result_exponent -= 2;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
Sglext_leftshiftby1(resultp1,resultp2);
|
|
result_exponent -= 1;
|
|
break;
|
|
}
|
|
} /* end if (hidden...)... */
|
|
/* Fall through and round */
|
|
} /* end if (save < 0)... */
|
|
else {
|
|
/* Add magnitudes */
|
|
Sglext_addition(tmpresp1,tmpresp2,
|
|
rightp1,rightp2, /*to*/resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);
|
|
if (Sgl_isone_hiddenoverflow(resultp1)) {
|
|
/* Prenormalization required. */
|
|
Sglext_arithrightshiftby1(resultp1,resultp2);
|
|
result_exponent++;
|
|
} /* end if hiddenoverflow... */
|
|
} /* end else ...add magnitudes... */
|
|
|
|
/* Round the result. If the extension and lower two words are
|
|
* all zeros, then the result is exact. Otherwise round in the
|
|
* correct direction. Underflow is possible. If a postnormalization
|
|
* is necessary, then the mantissa is all zeros so no shift is needed.
|
|
*/
|
|
round:
|
|
if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
|
|
Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
|
|
}
|
|
Sgl_set_sign(resultp1,/*using*/sign_save);
|
|
if (Sglext_isnotzero_mantissap2(resultp2)) {
|
|
inexact = TRUE;
|
|
switch(Rounding_mode()) {
|
|
case ROUNDNEAREST: /* The default. */
|
|
if (Sglext_isone_highp2(resultp2)) {
|
|
/* at least 1/2 ulp */
|
|
if (Sglext_isnotzero_low31p2(resultp2) ||
|
|
Sglext_isone_lowp1(resultp1)) {
|
|
/* either exactly half way and odd or
|
|
* more than 1/2ulp */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ROUNDPLUS:
|
|
if (Sgl_iszero_sign(resultp1)) {
|
|
/* Round up positive results */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
break;
|
|
|
|
case ROUNDMINUS:
|
|
if (Sgl_isone_sign(resultp1)) {
|
|
/* Round down negative results */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
|
|
case ROUNDZERO:;
|
|
/* truncate is simple */
|
|
} /* end switch... */
|
|
if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
|
|
}
|
|
if (result_exponent >= SGL_INFINITY_EXPONENT) {
|
|
/* Overflow */
|
|
if (Is_overflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_OVERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return (OPC_2E_OVERFLOWEXCEPTION);
|
|
}
|
|
inexact = TRUE;
|
|
Set_overflowflag();
|
|
Sgl_setoverflow(resultp1);
|
|
} else if (result_exponent <= 0) { /* underflow case */
|
|
if (Is_underflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_UNDERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
else if (inexact && is_tiny) Set_underflowflag();
|
|
}
|
|
else Sgl_set_exponent(resultp1,result_exponent);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Single Floating-point Multiply Negate Fused Add
|
|
*/
|
|
|
|
sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)
|
|
|
|
sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;
|
|
unsigned int *status;
|
|
{
|
|
unsigned int opnd1, opnd2, opnd3;
|
|
register unsigned int tmpresp1, tmpresp2;
|
|
unsigned int rightp1, rightp2;
|
|
unsigned int resultp1, resultp2 = 0;
|
|
register int mpy_exponent, add_exponent, count;
|
|
boolean inexact = FALSE, is_tiny = FALSE;
|
|
|
|
unsigned int signlessleft1, signlessright1, save;
|
|
register int result_exponent, diff_exponent;
|
|
int sign_save, jumpsize;
|
|
|
|
Sgl_copyfromptr(src1ptr,opnd1);
|
|
Sgl_copyfromptr(src2ptr,opnd2);
|
|
Sgl_copyfromptr(src3ptr,opnd3);
|
|
|
|
/*
|
|
* set sign bit of result of multiply
|
|
*/
|
|
if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2))
|
|
Sgl_setzero(resultp1);
|
|
else
|
|
Sgl_setnegativezero(resultp1);
|
|
|
|
/*
|
|
* Generate multiply exponent
|
|
*/
|
|
mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS;
|
|
|
|
/*
|
|
* check first operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd1)) {
|
|
if (Sgl_iszero_mantissa(opnd1)) {
|
|
if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) {
|
|
if (Sgl_iszero_exponentmantissa(opnd2)) {
|
|
/*
|
|
* invalid since operands are infinity
|
|
* and zero
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Sgl_isinfinity(opnd3) &&
|
|
(Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Sgl_setinfinity_exponentmantissa(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd1)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd1);
|
|
}
|
|
/*
|
|
* is second operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd2)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd2);
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check second operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd2)) {
|
|
if (Sgl_iszero_mantissa(opnd2)) {
|
|
if (Sgl_isnotnan(opnd3)) {
|
|
if (Sgl_iszero_exponentmantissa(opnd1)) {
|
|
/*
|
|
* invalid since multiply operands are
|
|
* zero & infinity
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(opnd2);
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Check third operand for infinity with a
|
|
* sign opposite of the multiply result
|
|
*/
|
|
if (Sgl_isinfinity(opnd3) &&
|
|
(Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) {
|
|
/*
|
|
* invalid since attempting a magnitude
|
|
* subtraction of infinities
|
|
*/
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* return infinity
|
|
*/
|
|
Sgl_setinfinity_exponentmantissa(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd2)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd2);
|
|
}
|
|
/*
|
|
* is third operand a signaling NaN?
|
|
*/
|
|
else if (Sgl_is_signalingnan(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd2,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check third operand for NaN's or infinity
|
|
*/
|
|
if (Sgl_isinfinity_exponent(opnd3)) {
|
|
if (Sgl_iszero_mantissa(opnd3)) {
|
|
/* return infinity */
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
} else {
|
|
/*
|
|
* is NaN; signaling or quiet?
|
|
*/
|
|
if (Sgl_isone_signaling(opnd3)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled())
|
|
return(OPC_2E_INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(opnd3);
|
|
}
|
|
/*
|
|
* return quiet NaN
|
|
*/
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate multiply mantissa
|
|
*/
|
|
if (Sgl_isnotzero_exponent(opnd1)) {
|
|
/* set hidden bit */
|
|
Sgl_clear_signexponent_set_hidden(opnd1);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd1)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Sgl_iszero_exponentmantissa(opnd3)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Sgl_or_signs(opnd3,resultp1);
|
|
} else {
|
|
Sgl_and_signs(opnd3,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Sgl_iszero_exponent(opnd3) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Sgl_signextendedsign(opnd3);
|
|
result_exponent = 0;
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,result_exponent);
|
|
Sgl_set_sign(opnd3,/*using*/sign_save);
|
|
Sgl_setwrapped_exponent(opnd3,result_exponent,
|
|
unfl);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized, adjust exponent */
|
|
Sgl_clear_signexponent(opnd1);
|
|
Sgl_leftshiftby1(opnd1);
|
|
Sgl_normalize(opnd1,mpy_exponent);
|
|
}
|
|
/* opnd2 needs to have hidden bit set with msb in hidden bit */
|
|
if (Sgl_isnotzero_exponent(opnd2)) {
|
|
Sgl_clear_signexponent_set_hidden(opnd2);
|
|
}
|
|
else {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd2)) {
|
|
/*
|
|
* Perform the add opnd3 with zero here.
|
|
*/
|
|
if (Sgl_iszero_exponentmantissa(opnd3)) {
|
|
if (Is_rounding_mode(ROUNDMINUS)) {
|
|
Sgl_or_signs(opnd3,resultp1);
|
|
} else {
|
|
Sgl_and_signs(opnd3,resultp1);
|
|
}
|
|
}
|
|
/*
|
|
* Now let's check for trapped underflow case.
|
|
*/
|
|
else if (Sgl_iszero_exponent(opnd3) &&
|
|
Is_underflowtrap_enabled()) {
|
|
/* need to normalize results mantissa */
|
|
sign_save = Sgl_signextendedsign(opnd3);
|
|
result_exponent = 0;
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,result_exponent);
|
|
Sgl_set_sign(opnd3,/*using*/sign_save);
|
|
Sgl_setwrapped_exponent(opnd3,result_exponent,
|
|
unfl);
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
/* inexact = FALSE */
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
Sgl_copytoptr(opnd3,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
/* is denormalized; want to normalize */
|
|
Sgl_clear_signexponent(opnd2);
|
|
Sgl_leftshiftby1(opnd2);
|
|
Sgl_normalize(opnd2,mpy_exponent);
|
|
}
|
|
|
|
/* Multiply the first two source mantissas together */
|
|
|
|
/*
|
|
* The intermediate result will be kept in tmpres,
|
|
* which needs enough room for 106 bits of mantissa,
|
|
* so lets call it a Double extended.
|
|
*/
|
|
Sglext_setzero(tmpresp1,tmpresp2);
|
|
|
|
/*
|
|
* Four bits at a time are inspected in each loop, and a
|
|
* simple shift and add multiply algorithm is used.
|
|
*/
|
|
for (count = SGL_P-1; count >= 0; count -= 4) {
|
|
Sglext_rightshiftby4(tmpresp1,tmpresp2);
|
|
if (Sbit28(opnd1)) {
|
|
/* Twoword_add should be an ADD followed by 2 ADDC's */
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0);
|
|
}
|
|
if (Sbit29(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0);
|
|
}
|
|
if (Sbit30(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0);
|
|
}
|
|
if (Sbit31(opnd1)) {
|
|
Twoword_add(tmpresp1, tmpresp2, opnd2, 0);
|
|
}
|
|
Sgl_rightshiftby4(opnd1);
|
|
}
|
|
if (Is_sexthiddenoverflow(tmpresp1)) {
|
|
/* result mantissa >= 2 (mantissa overflow) */
|
|
mpy_exponent++;
|
|
Sglext_rightshiftby4(tmpresp1,tmpresp2);
|
|
} else {
|
|
Sglext_rightshiftby3(tmpresp1,tmpresp2);
|
|
}
|
|
|
|
/*
|
|
* Restore the sign of the mpy result which was saved in resultp1.
|
|
* The exponent will continue to be kept in mpy_exponent.
|
|
*/
|
|
Sglext_set_sign(tmpresp1,Sgl_sign(resultp1));
|
|
|
|
/*
|
|
* No rounding is required, since the result of the multiply
|
|
* is exact in the extended format.
|
|
*/
|
|
|
|
/*
|
|
* Now we are ready to perform the add portion of the operation.
|
|
*
|
|
* The exponents need to be kept as integers for now, since the
|
|
* multiply result might not fit into the exponent field. We
|
|
* can't overflow or underflow because of this yet, since the
|
|
* add could bring the final result back into range.
|
|
*/
|
|
add_exponent = Sgl_exponent(opnd3);
|
|
|
|
/*
|
|
* Check for denormalized or zero add operand.
|
|
*/
|
|
if (add_exponent == 0) {
|
|
/* check for zero */
|
|
if (Sgl_iszero_mantissa(opnd3)) {
|
|
/* right is zero */
|
|
/* Left can't be zero and must be result.
|
|
*
|
|
* The final result is now in tmpres and mpy_exponent,
|
|
* and needs to be rounded and squeezed back into
|
|
* double precision format from double extended.
|
|
*/
|
|
result_exponent = mpy_exponent;
|
|
Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);/*save sign*/
|
|
goto round;
|
|
}
|
|
|
|
/*
|
|
* Neither are zeroes.
|
|
* Adjust exponent and normalize add operand.
|
|
*/
|
|
sign_save = Sgl_signextendedsign(opnd3); /* save sign */
|
|
Sgl_clear_signexponent(opnd3);
|
|
Sgl_leftshiftby1(opnd3);
|
|
Sgl_normalize(opnd3,add_exponent);
|
|
Sgl_set_sign(opnd3,sign_save); /* restore sign */
|
|
} else {
|
|
Sgl_clear_exponent_set_hidden(opnd3);
|
|
}
|
|
/*
|
|
* Copy opnd3 to the double extended variable called right.
|
|
*/
|
|
Sgl_copyto_sglext(opnd3,rightp1,rightp2);
|
|
|
|
/*
|
|
* A zero "save" helps discover equal operands (for later),
|
|
* and is used in swapping operands (if needed).
|
|
*/
|
|
Sglext_xortointp1(tmpresp1,rightp1,/*to*/save);
|
|
|
|
/*
|
|
* Compare magnitude of operands.
|
|
*/
|
|
Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1);
|
|
Sglext_copytoint_exponentmantissa(rightp1,signlessright1);
|
|
if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&
|
|
Sglext_ismagnitudeless(signlessleft1,signlessright1)) {
|
|
/*
|
|
* Set the left operand to the larger one by XOR swap.
|
|
* First finish the first word "save".
|
|
*/
|
|
Sglext_xorfromintp1(save,rightp1,/*to*/rightp1);
|
|
Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);
|
|
Sglext_swap_lower(tmpresp2,rightp2);
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = add_exponent - mpy_exponent;
|
|
result_exponent = add_exponent;
|
|
} else {
|
|
/* also setup exponents used in rest of routine */
|
|
diff_exponent = mpy_exponent - add_exponent;
|
|
result_exponent = mpy_exponent;
|
|
}
|
|
/* Invariant: left is not smaller than right. */
|
|
|
|
/*
|
|
* Special case alignment of operands that would force alignment
|
|
* beyond the extent of the extension. A further optimization
|
|
* could special case this but only reduces the path length for
|
|
* this infrequent case.
|
|
*/
|
|
if (diff_exponent > SGLEXT_THRESHOLD) {
|
|
diff_exponent = SGLEXT_THRESHOLD;
|
|
}
|
|
|
|
/* Align right operand by shifting it to the right */
|
|
Sglext_clear_sign(rightp1);
|
|
Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent);
|
|
|
|
/* Treat sum and difference of the operands separately. */
|
|
if ((int)save < 0) {
|
|
/*
|
|
* Difference of the two operands. Overflow can occur if the
|
|
* multiply overflowed. A borrow can occur out of the hidden
|
|
* bit and force a post normalization phase.
|
|
*/
|
|
Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2,
|
|
resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);
|
|
if (Sgl_iszero_hidden(resultp1)) {
|
|
/* Handle normalization */
|
|
/* A straightforward algorithm would now shift the
|
|
* result and extension left until the hidden bit
|
|
* becomes one. Not all of the extension bits need
|
|
* participate in the shift. Only the two most
|
|
* significant bits (round and guard) are needed.
|
|
* If only a single shift is needed then the guard
|
|
* bit becomes a significant low order bit and the
|
|
* extension must participate in the rounding.
|
|
* If more than a single shift is needed, then all
|
|
* bits to the right of the guard bit are zeros,
|
|
* and the guard bit may or may not be zero. */
|
|
Sglext_leftshiftby1(resultp1,resultp2);
|
|
|
|
/* Need to check for a zero result. The sign and
|
|
* exponent fields have already been zeroed. The more
|
|
* efficient test of the full object can be used.
|
|
*/
|
|
if (Sglext_iszero(resultp1,resultp2)) {
|
|
/* Must have been "x-x" or "x+(-x)". */
|
|
if (Is_rounding_mode(ROUNDMINUS))
|
|
Sgl_setone_sign(resultp1);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
return(NOEXCEPTION);
|
|
}
|
|
result_exponent--;
|
|
|
|
/* Look to see if normalization is finished. */
|
|
if (Sgl_isone_hidden(resultp1)) {
|
|
/* No further normalization is needed */
|
|
goto round;
|
|
}
|
|
|
|
/* Discover first one bit to determine shift amount.
|
|
* Use a modified binary search. We have already
|
|
* shifted the result one position right and still
|
|
* not found a one so the remainder of the extension
|
|
* must be zero and simplifies rounding. */
|
|
/* Scan bytes */
|
|
while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) {
|
|
Sglext_leftshiftby8(resultp1,resultp2);
|
|
result_exponent -= 8;
|
|
}
|
|
/* Now narrow it down to the nibble */
|
|
if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) {
|
|
/* The lower nibble contains the
|
|
* normalizing one */
|
|
Sglext_leftshiftby4(resultp1,resultp2);
|
|
result_exponent -= 4;
|
|
}
|
|
/* Select case where first bit is set (already
|
|
* normalized) otherwise select the proper shift. */
|
|
jumpsize = Sgl_hiddenhigh3mantissa(resultp1);
|
|
if (jumpsize <= 7) switch(jumpsize) {
|
|
case 1:
|
|
Sglext_leftshiftby3(resultp1,resultp2);
|
|
result_exponent -= 3;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
Sglext_leftshiftby2(resultp1,resultp2);
|
|
result_exponent -= 2;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
Sglext_leftshiftby1(resultp1,resultp2);
|
|
result_exponent -= 1;
|
|
break;
|
|
}
|
|
} /* end if (hidden...)... */
|
|
/* Fall through and round */
|
|
} /* end if (save < 0)... */
|
|
else {
|
|
/* Add magnitudes */
|
|
Sglext_addition(tmpresp1,tmpresp2,
|
|
rightp1,rightp2, /*to*/resultp1,resultp2);
|
|
sign_save = Sgl_signextendedsign(resultp1);
|
|
if (Sgl_isone_hiddenoverflow(resultp1)) {
|
|
/* Prenormalization required. */
|
|
Sglext_arithrightshiftby1(resultp1,resultp2);
|
|
result_exponent++;
|
|
} /* end if hiddenoverflow... */
|
|
} /* end else ...add magnitudes... */
|
|
|
|
/* Round the result. If the extension and lower two words are
|
|
* all zeros, then the result is exact. Otherwise round in the
|
|
* correct direction. Underflow is possible. If a postnormalization
|
|
* is necessary, then the mantissa is all zeros so no shift is needed.
|
|
*/
|
|
round:
|
|
if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {
|
|
Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny);
|
|
}
|
|
Sgl_set_sign(resultp1,/*using*/sign_save);
|
|
if (Sglext_isnotzero_mantissap2(resultp2)) {
|
|
inexact = TRUE;
|
|
switch(Rounding_mode()) {
|
|
case ROUNDNEAREST: /* The default. */
|
|
if (Sglext_isone_highp2(resultp2)) {
|
|
/* at least 1/2 ulp */
|
|
if (Sglext_isnotzero_low31p2(resultp2) ||
|
|
Sglext_isone_lowp1(resultp1)) {
|
|
/* either exactly half way and odd or
|
|
* more than 1/2ulp */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ROUNDPLUS:
|
|
if (Sgl_iszero_sign(resultp1)) {
|
|
/* Round up positive results */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
break;
|
|
|
|
case ROUNDMINUS:
|
|
if (Sgl_isone_sign(resultp1)) {
|
|
/* Round down negative results */
|
|
Sgl_increment(resultp1);
|
|
}
|
|
|
|
case ROUNDZERO:;
|
|
/* truncate is simple */
|
|
} /* end switch... */
|
|
if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++;
|
|
}
|
|
if (result_exponent >= SGL_INFINITY_EXPONENT) {
|
|
/* Overflow */
|
|
if (Is_overflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_OVERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return (OPC_2E_OVERFLOWEXCEPTION);
|
|
}
|
|
inexact = TRUE;
|
|
Set_overflowflag();
|
|
Sgl_setoverflow(resultp1);
|
|
} else if (result_exponent <= 0) { /* underflow case */
|
|
if (Is_underflowtrap_enabled()) {
|
|
/*
|
|
* Adjust bias of result
|
|
*/
|
|
Sgl_setwrapped_exponent(resultp1,result_exponent,unfl);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled())
|
|
return (OPC_2E_UNDERFLOWEXCEPTION |
|
|
OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(OPC_2E_UNDERFLOWEXCEPTION);
|
|
}
|
|
else if (inexact && is_tiny) Set_underflowflag();
|
|
}
|
|
else Sgl_set_exponent(resultp1,result_exponent);
|
|
Sgl_copytoptr(resultp1,dstptr);
|
|
if (inexact)
|
|
if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION);
|
|
else Set_inexactflag();
|
|
return(NOEXCEPTION);
|
|
}
|
|
|