6db4831e98
Android 14
2684 lines
72 KiB
C
2684 lines
72 KiB
C
/*
|
|
* Copyright © 2008,2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Chris Wilson <chris@chris-wilson.co.uk>
|
|
*
|
|
*/
|
|
|
|
#include <linux/dma_remapping.h>
|
|
#include <linux/reservation.h>
|
|
#include <linux/sync_file.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/drm_syncobj.h>
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_gem_clflush.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
#include "intel_frontbuffer.h"
|
|
|
|
enum {
|
|
FORCE_CPU_RELOC = 1,
|
|
FORCE_GTT_RELOC,
|
|
FORCE_GPU_RELOC,
|
|
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
|
|
};
|
|
|
|
#define __EXEC_OBJECT_HAS_REF BIT(31)
|
|
#define __EXEC_OBJECT_HAS_PIN BIT(30)
|
|
#define __EXEC_OBJECT_HAS_FENCE BIT(29)
|
|
#define __EXEC_OBJECT_NEEDS_MAP BIT(28)
|
|
#define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
|
|
#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
|
|
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
|
|
|
|
#define __EXEC_HAS_RELOC BIT(31)
|
|
#define __EXEC_VALIDATED BIT(30)
|
|
#define __EXEC_INTERNAL_FLAGS (~0u << 30)
|
|
#define UPDATE PIN_OFFSET_FIXED
|
|
|
|
#define BATCH_OFFSET_BIAS (256*1024)
|
|
|
|
#define __I915_EXEC_ILLEGAL_FLAGS \
|
|
(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
|
|
|
|
/* Catch emission of unexpected errors for CI! */
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
|
|
#undef EINVAL
|
|
#define EINVAL ({ \
|
|
DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
|
|
22; \
|
|
})
|
|
#endif
|
|
|
|
/**
|
|
* DOC: User command execution
|
|
*
|
|
* Userspace submits commands to be executed on the GPU as an instruction
|
|
* stream within a GEM object we call a batchbuffer. This instructions may
|
|
* refer to other GEM objects containing auxiliary state such as kernels,
|
|
* samplers, render targets and even secondary batchbuffers. Userspace does
|
|
* not know where in the GPU memory these objects reside and so before the
|
|
* batchbuffer is passed to the GPU for execution, those addresses in the
|
|
* batchbuffer and auxiliary objects are updated. This is known as relocation,
|
|
* or patching. To try and avoid having to relocate each object on the next
|
|
* execution, userspace is told the location of those objects in this pass,
|
|
* but this remains just a hint as the kernel may choose a new location for
|
|
* any object in the future.
|
|
*
|
|
* At the level of talking to the hardware, submitting a batchbuffer for the
|
|
* GPU to execute is to add content to a buffer from which the HW
|
|
* command streamer is reading.
|
|
*
|
|
* 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
|
|
* Execlists, this command is not placed on the same buffer as the
|
|
* remaining items.
|
|
*
|
|
* 2. Add a command to invalidate caches to the buffer.
|
|
*
|
|
* 3. Add a batchbuffer start command to the buffer; the start command is
|
|
* essentially a token together with the GPU address of the batchbuffer
|
|
* to be executed.
|
|
*
|
|
* 4. Add a pipeline flush to the buffer.
|
|
*
|
|
* 5. Add a memory write command to the buffer to record when the GPU
|
|
* is done executing the batchbuffer. The memory write writes the
|
|
* global sequence number of the request, ``i915_request::global_seqno``;
|
|
* the i915 driver uses the current value in the register to determine
|
|
* if the GPU has completed the batchbuffer.
|
|
*
|
|
* 6. Add a user interrupt command to the buffer. This command instructs
|
|
* the GPU to issue an interrupt when the command, pipeline flush and
|
|
* memory write are completed.
|
|
*
|
|
* 7. Inform the hardware of the additional commands added to the buffer
|
|
* (by updating the tail pointer).
|
|
*
|
|
* Processing an execbuf ioctl is conceptually split up into a few phases.
|
|
*
|
|
* 1. Validation - Ensure all the pointers, handles and flags are valid.
|
|
* 2. Reservation - Assign GPU address space for every object
|
|
* 3. Relocation - Update any addresses to point to the final locations
|
|
* 4. Serialisation - Order the request with respect to its dependencies
|
|
* 5. Construction - Construct a request to execute the batchbuffer
|
|
* 6. Submission (at some point in the future execution)
|
|
*
|
|
* Reserving resources for the execbuf is the most complicated phase. We
|
|
* neither want to have to migrate the object in the address space, nor do
|
|
* we want to have to update any relocations pointing to this object. Ideally,
|
|
* we want to leave the object where it is and for all the existing relocations
|
|
* to match. If the object is given a new address, or if userspace thinks the
|
|
* object is elsewhere, we have to parse all the relocation entries and update
|
|
* the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
|
|
* all the target addresses in all of its objects match the value in the
|
|
* relocation entries and that they all match the presumed offsets given by the
|
|
* list of execbuffer objects. Using this knowledge, we know that if we haven't
|
|
* moved any buffers, all the relocation entries are valid and we can skip
|
|
* the update. (If userspace is wrong, the likely outcome is an impromptu GPU
|
|
* hang.) The requirement for using I915_EXEC_NO_RELOC are:
|
|
*
|
|
* The addresses written in the objects must match the corresponding
|
|
* reloc.presumed_offset which in turn must match the corresponding
|
|
* execobject.offset.
|
|
*
|
|
* Any render targets written to in the batch must be flagged with
|
|
* EXEC_OBJECT_WRITE.
|
|
*
|
|
* To avoid stalling, execobject.offset should match the current
|
|
* address of that object within the active context.
|
|
*
|
|
* The reservation is done is multiple phases. First we try and keep any
|
|
* object already bound in its current location - so as long as meets the
|
|
* constraints imposed by the new execbuffer. Any object left unbound after the
|
|
* first pass is then fitted into any available idle space. If an object does
|
|
* not fit, all objects are removed from the reservation and the process rerun
|
|
* after sorting the objects into a priority order (more difficult to fit
|
|
* objects are tried first). Failing that, the entire VM is cleared and we try
|
|
* to fit the execbuf once last time before concluding that it simply will not
|
|
* fit.
|
|
*
|
|
* A small complication to all of this is that we allow userspace not only to
|
|
* specify an alignment and a size for the object in the address space, but
|
|
* we also allow userspace to specify the exact offset. This objects are
|
|
* simpler to place (the location is known a priori) all we have to do is make
|
|
* sure the space is available.
|
|
*
|
|
* Once all the objects are in place, patching up the buried pointers to point
|
|
* to the final locations is a fairly simple job of walking over the relocation
|
|
* entry arrays, looking up the right address and rewriting the value into
|
|
* the object. Simple! ... The relocation entries are stored in user memory
|
|
* and so to access them we have to copy them into a local buffer. That copy
|
|
* has to avoid taking any pagefaults as they may lead back to a GEM object
|
|
* requiring the struct_mutex (i.e. recursive deadlock). So once again we split
|
|
* the relocation into multiple passes. First we try to do everything within an
|
|
* atomic context (avoid the pagefaults) which requires that we never wait. If
|
|
* we detect that we may wait, or if we need to fault, then we have to fallback
|
|
* to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
|
|
* bells yet?) Dropping the mutex means that we lose all the state we have
|
|
* built up so far for the execbuf and we must reset any global data. However,
|
|
* we do leave the objects pinned in their final locations - which is a
|
|
* potential issue for concurrent execbufs. Once we have left the mutex, we can
|
|
* allocate and copy all the relocation entries into a large array at our
|
|
* leisure, reacquire the mutex, reclaim all the objects and other state and
|
|
* then proceed to update any incorrect addresses with the objects.
|
|
*
|
|
* As we process the relocation entries, we maintain a record of whether the
|
|
* object is being written to. Using NORELOC, we expect userspace to provide
|
|
* this information instead. We also check whether we can skip the relocation
|
|
* by comparing the expected value inside the relocation entry with the target's
|
|
* final address. If they differ, we have to map the current object and rewrite
|
|
* the 4 or 8 byte pointer within.
|
|
*
|
|
* Serialising an execbuf is quite simple according to the rules of the GEM
|
|
* ABI. Execution within each context is ordered by the order of submission.
|
|
* Writes to any GEM object are in order of submission and are exclusive. Reads
|
|
* from a GEM object are unordered with respect to other reads, but ordered by
|
|
* writes. A write submitted after a read cannot occur before the read, and
|
|
* similarly any read submitted after a write cannot occur before the write.
|
|
* Writes are ordered between engines such that only one write occurs at any
|
|
* time (completing any reads beforehand) - using semaphores where available
|
|
* and CPU serialisation otherwise. Other GEM access obey the same rules, any
|
|
* write (either via mmaps using set-domain, or via pwrite) must flush all GPU
|
|
* reads before starting, and any read (either using set-domain or pread) must
|
|
* flush all GPU writes before starting. (Note we only employ a barrier before,
|
|
* we currently rely on userspace not concurrently starting a new execution
|
|
* whilst reading or writing to an object. This may be an advantage or not
|
|
* depending on how much you trust userspace not to shoot themselves in the
|
|
* foot.) Serialisation may just result in the request being inserted into
|
|
* a DAG awaiting its turn, but most simple is to wait on the CPU until
|
|
* all dependencies are resolved.
|
|
*
|
|
* After all of that, is just a matter of closing the request and handing it to
|
|
* the hardware (well, leaving it in a queue to be executed). However, we also
|
|
* offer the ability for batchbuffers to be run with elevated privileges so
|
|
* that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
|
|
* Before any batch is given extra privileges we first must check that it
|
|
* contains no nefarious instructions, we check that each instruction is from
|
|
* our whitelist and all registers are also from an allowed list. We first
|
|
* copy the user's batchbuffer to a shadow (so that the user doesn't have
|
|
* access to it, either by the CPU or GPU as we scan it) and then parse each
|
|
* instruction. If everything is ok, we set a flag telling the hardware to run
|
|
* the batchbuffer in trusted mode, otherwise the ioctl is rejected.
|
|
*/
|
|
|
|
struct i915_execbuffer {
|
|
struct drm_i915_private *i915; /** i915 backpointer */
|
|
struct drm_file *file; /** per-file lookup tables and limits */
|
|
struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
|
|
struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
|
|
struct i915_vma **vma;
|
|
unsigned int *flags;
|
|
|
|
struct intel_engine_cs *engine; /** engine to queue the request to */
|
|
struct i915_gem_context *ctx; /** context for building the request */
|
|
struct i915_address_space *vm; /** GTT and vma for the request */
|
|
|
|
struct i915_request *request; /** our request to build */
|
|
struct i915_vma *batch; /** identity of the batch obj/vma */
|
|
|
|
/** actual size of execobj[] as we may extend it for the cmdparser */
|
|
unsigned int buffer_count;
|
|
|
|
/** list of vma not yet bound during reservation phase */
|
|
struct list_head unbound;
|
|
|
|
/** list of vma that have execobj.relocation_count */
|
|
struct list_head relocs;
|
|
|
|
/**
|
|
* Track the most recently used object for relocations, as we
|
|
* frequently have to perform multiple relocations within the same
|
|
* obj/page
|
|
*/
|
|
struct reloc_cache {
|
|
struct drm_mm_node node; /** temporary GTT binding */
|
|
unsigned long vaddr; /** Current kmap address */
|
|
unsigned long page; /** Currently mapped page index */
|
|
unsigned int gen; /** Cached value of INTEL_GEN */
|
|
bool use_64bit_reloc : 1;
|
|
bool has_llc : 1;
|
|
bool has_fence : 1;
|
|
bool needs_unfenced : 1;
|
|
|
|
struct i915_request *rq;
|
|
u32 *rq_cmd;
|
|
unsigned int rq_size;
|
|
} reloc_cache;
|
|
|
|
u64 invalid_flags; /** Set of execobj.flags that are invalid */
|
|
u32 context_flags; /** Set of execobj.flags to insert from the ctx */
|
|
|
|
u32 batch_start_offset; /** Location within object of batch */
|
|
u32 batch_len; /** Length of batch within object */
|
|
u32 batch_flags; /** Flags composed for emit_bb_start() */
|
|
|
|
/**
|
|
* Indicate either the size of the hastable used to resolve
|
|
* relocation handles, or if negative that we are using a direct
|
|
* index into the execobj[].
|
|
*/
|
|
int lut_size;
|
|
struct hlist_head *buckets; /** ht for relocation handles */
|
|
};
|
|
|
|
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
|
|
|
|
/*
|
|
* Used to convert any address to canonical form.
|
|
* Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
|
|
* MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
|
|
* addresses to be in a canonical form:
|
|
* "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
|
|
* canonical form [63:48] == [47]."
|
|
*/
|
|
#define GEN8_HIGH_ADDRESS_BIT 47
|
|
static inline u64 gen8_canonical_addr(u64 address)
|
|
{
|
|
return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
|
|
}
|
|
|
|
static inline u64 gen8_noncanonical_addr(u64 address)
|
|
{
|
|
return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
|
|
}
|
|
|
|
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
|
|
{
|
|
return intel_engine_requires_cmd_parser(eb->engine) ||
|
|
(intel_engine_using_cmd_parser(eb->engine) &&
|
|
eb->args->batch_len);
|
|
}
|
|
|
|
static int eb_create(struct i915_execbuffer *eb)
|
|
{
|
|
if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
|
|
unsigned int size = 1 + ilog2(eb->buffer_count);
|
|
|
|
/*
|
|
* Without a 1:1 association between relocation handles and
|
|
* the execobject[] index, we instead create a hashtable.
|
|
* We size it dynamically based on available memory, starting
|
|
* first with 1:1 assocative hash and scaling back until
|
|
* the allocation succeeds.
|
|
*
|
|
* Later on we use a positive lut_size to indicate we are
|
|
* using this hashtable, and a negative value to indicate a
|
|
* direct lookup.
|
|
*/
|
|
do {
|
|
gfp_t flags;
|
|
|
|
/* While we can still reduce the allocation size, don't
|
|
* raise a warning and allow the allocation to fail.
|
|
* On the last pass though, we want to try as hard
|
|
* as possible to perform the allocation and warn
|
|
* if it fails.
|
|
*/
|
|
flags = GFP_KERNEL;
|
|
if (size > 1)
|
|
flags |= __GFP_NORETRY | __GFP_NOWARN;
|
|
|
|
eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
|
|
flags);
|
|
if (eb->buckets)
|
|
break;
|
|
} while (--size);
|
|
|
|
if (unlikely(!size))
|
|
return -ENOMEM;
|
|
|
|
eb->lut_size = size;
|
|
} else {
|
|
eb->lut_size = -eb->buffer_count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
|
|
const struct i915_vma *vma,
|
|
unsigned int flags)
|
|
{
|
|
if (vma->node.size < entry->pad_to_size)
|
|
return true;
|
|
|
|
if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
|
|
return true;
|
|
|
|
if (flags & EXEC_OBJECT_PINNED &&
|
|
vma->node.start != entry->offset)
|
|
return true;
|
|
|
|
if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
|
|
vma->node.start < BATCH_OFFSET_BIAS)
|
|
return true;
|
|
|
|
if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
|
|
(vma->node.start + vma->node.size + 4095) >> 32)
|
|
return true;
|
|
|
|
if (flags & __EXEC_OBJECT_NEEDS_MAP &&
|
|
!i915_vma_is_map_and_fenceable(vma))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
eb_pin_vma(struct i915_execbuffer *eb,
|
|
const struct drm_i915_gem_exec_object2 *entry,
|
|
struct i915_vma *vma)
|
|
{
|
|
unsigned int exec_flags = *vma->exec_flags;
|
|
u64 pin_flags;
|
|
|
|
if (vma->node.size)
|
|
pin_flags = vma->node.start;
|
|
else
|
|
pin_flags = entry->offset & PIN_OFFSET_MASK;
|
|
|
|
pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
|
|
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
|
|
pin_flags |= PIN_GLOBAL;
|
|
|
|
if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
|
|
return false;
|
|
|
|
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
|
|
if (unlikely(i915_vma_pin_fence(vma))) {
|
|
i915_vma_unpin(vma);
|
|
return false;
|
|
}
|
|
|
|
if (vma->fence)
|
|
exec_flags |= __EXEC_OBJECT_HAS_FENCE;
|
|
}
|
|
|
|
*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
|
|
return !eb_vma_misplaced(entry, vma, exec_flags);
|
|
}
|
|
|
|
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
|
|
{
|
|
GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
|
|
|
|
if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
|
|
__i915_vma_unpin_fence(vma);
|
|
|
|
__i915_vma_unpin(vma);
|
|
}
|
|
|
|
static inline void
|
|
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
|
|
{
|
|
if (!(*flags & __EXEC_OBJECT_HAS_PIN))
|
|
return;
|
|
|
|
__eb_unreserve_vma(vma, *flags);
|
|
*flags &= ~__EXEC_OBJECT_RESERVED;
|
|
}
|
|
|
|
static int
|
|
eb_validate_vma(struct i915_execbuffer *eb,
|
|
struct drm_i915_gem_exec_object2 *entry,
|
|
struct i915_vma *vma)
|
|
{
|
|
if (unlikely(entry->flags & eb->invalid_flags))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Offset can be used as input (EXEC_OBJECT_PINNED), reject
|
|
* any non-page-aligned or non-canonical addresses.
|
|
*/
|
|
if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
|
|
entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
|
|
return -EINVAL;
|
|
|
|
/* pad_to_size was once a reserved field, so sanitize it */
|
|
if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
|
|
if (unlikely(offset_in_page(entry->pad_to_size)))
|
|
return -EINVAL;
|
|
} else {
|
|
entry->pad_to_size = 0;
|
|
}
|
|
|
|
if (unlikely(vma->exec_flags)) {
|
|
DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
|
|
entry->handle, (int)(entry - eb->exec));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* From drm_mm perspective address space is continuous,
|
|
* so from this point we're always using non-canonical
|
|
* form internally.
|
|
*/
|
|
entry->offset = gen8_noncanonical_addr(entry->offset);
|
|
|
|
if (!eb->reloc_cache.has_fence) {
|
|
entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
|
|
} else {
|
|
if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
|
|
eb->reloc_cache.needs_unfenced) &&
|
|
i915_gem_object_is_tiled(vma->obj))
|
|
entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
|
|
}
|
|
|
|
if (!(entry->flags & EXEC_OBJECT_PINNED))
|
|
entry->flags |= eb->context_flags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eb_add_vma(struct i915_execbuffer *eb,
|
|
unsigned int i, unsigned batch_idx,
|
|
struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
|
|
int err;
|
|
|
|
GEM_BUG_ON(i915_vma_is_closed(vma));
|
|
|
|
if (!(eb->args->flags & __EXEC_VALIDATED)) {
|
|
err = eb_validate_vma(eb, entry, vma);
|
|
if (unlikely(err))
|
|
return err;
|
|
}
|
|
|
|
if (eb->lut_size > 0) {
|
|
vma->exec_handle = entry->handle;
|
|
hlist_add_head(&vma->exec_node,
|
|
&eb->buckets[hash_32(entry->handle,
|
|
eb->lut_size)]);
|
|
}
|
|
|
|
if (entry->relocation_count)
|
|
list_add_tail(&vma->reloc_link, &eb->relocs);
|
|
|
|
/*
|
|
* Stash a pointer from the vma to execobj, so we can query its flags,
|
|
* size, alignment etc as provided by the user. Also we stash a pointer
|
|
* to the vma inside the execobj so that we can use a direct lookup
|
|
* to find the right target VMA when doing relocations.
|
|
*/
|
|
eb->vma[i] = vma;
|
|
eb->flags[i] = entry->flags;
|
|
vma->exec_flags = &eb->flags[i];
|
|
|
|
/*
|
|
* SNA is doing fancy tricks with compressing batch buffers, which leads
|
|
* to negative relocation deltas. Usually that works out ok since the
|
|
* relocate address is still positive, except when the batch is placed
|
|
* very low in the GTT. Ensure this doesn't happen.
|
|
*
|
|
* Note that actual hangs have only been observed on gen7, but for
|
|
* paranoia do it everywhere.
|
|
*/
|
|
if (i == batch_idx) {
|
|
if (entry->relocation_count &&
|
|
!(eb->flags[i] & EXEC_OBJECT_PINNED))
|
|
eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
|
|
if (eb->reloc_cache.has_fence)
|
|
eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
|
|
|
|
eb->batch = vma;
|
|
}
|
|
|
|
err = 0;
|
|
if (eb_pin_vma(eb, entry, vma)) {
|
|
if (entry->offset != vma->node.start) {
|
|
entry->offset = vma->node.start | UPDATE;
|
|
eb->args->flags |= __EXEC_HAS_RELOC;
|
|
}
|
|
} else {
|
|
eb_unreserve_vma(vma, vma->exec_flags);
|
|
|
|
list_add_tail(&vma->exec_link, &eb->unbound);
|
|
if (drm_mm_node_allocated(&vma->node))
|
|
err = i915_vma_unbind(vma);
|
|
if (unlikely(err))
|
|
vma->exec_flags = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static inline int use_cpu_reloc(const struct reloc_cache *cache,
|
|
const struct drm_i915_gem_object *obj)
|
|
{
|
|
if (!i915_gem_object_has_struct_page(obj))
|
|
return false;
|
|
|
|
if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
|
|
return true;
|
|
|
|
if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
|
|
return false;
|
|
|
|
return (cache->has_llc ||
|
|
obj->cache_dirty ||
|
|
obj->cache_level != I915_CACHE_NONE);
|
|
}
|
|
|
|
static int eb_reserve_vma(const struct i915_execbuffer *eb,
|
|
struct i915_vma *vma)
|
|
{
|
|
struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
|
|
unsigned int exec_flags = *vma->exec_flags;
|
|
u64 pin_flags;
|
|
int err;
|
|
|
|
pin_flags = PIN_USER | PIN_NONBLOCK;
|
|
if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
|
|
pin_flags |= PIN_GLOBAL;
|
|
|
|
/*
|
|
* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
|
|
* limit address to the first 4GBs for unflagged objects.
|
|
*/
|
|
if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
|
|
pin_flags |= PIN_ZONE_4G;
|
|
|
|
if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
|
|
pin_flags |= PIN_MAPPABLE;
|
|
|
|
if (exec_flags & EXEC_OBJECT_PINNED) {
|
|
pin_flags |= entry->offset | PIN_OFFSET_FIXED;
|
|
pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
|
|
} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
|
|
pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
|
|
}
|
|
|
|
err = i915_vma_pin(vma,
|
|
entry->pad_to_size, entry->alignment,
|
|
pin_flags);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->offset != vma->node.start) {
|
|
entry->offset = vma->node.start | UPDATE;
|
|
eb->args->flags |= __EXEC_HAS_RELOC;
|
|
}
|
|
|
|
if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
|
|
err = i915_vma_pin_fence(vma);
|
|
if (unlikely(err)) {
|
|
i915_vma_unpin(vma);
|
|
return err;
|
|
}
|
|
|
|
if (vma->fence)
|
|
exec_flags |= __EXEC_OBJECT_HAS_FENCE;
|
|
}
|
|
|
|
*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
|
|
GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_reserve(struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
struct list_head last;
|
|
struct i915_vma *vma;
|
|
unsigned int i, pass;
|
|
int err;
|
|
|
|
/*
|
|
* Attempt to pin all of the buffers into the GTT.
|
|
* This is done in 3 phases:
|
|
*
|
|
* 1a. Unbind all objects that do not match the GTT constraints for
|
|
* the execbuffer (fenceable, mappable, alignment etc).
|
|
* 1b. Increment pin count for already bound objects.
|
|
* 2. Bind new objects.
|
|
* 3. Decrement pin count.
|
|
*
|
|
* This avoid unnecessary unbinding of later objects in order to make
|
|
* room for the earlier objects *unless* we need to defragment.
|
|
*/
|
|
|
|
pass = 0;
|
|
err = 0;
|
|
do {
|
|
list_for_each_entry(vma, &eb->unbound, exec_link) {
|
|
err = eb_reserve_vma(eb, vma);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (err != -ENOSPC)
|
|
return err;
|
|
|
|
/* Resort *all* the objects into priority order */
|
|
INIT_LIST_HEAD(&eb->unbound);
|
|
INIT_LIST_HEAD(&last);
|
|
for (i = 0; i < count; i++) {
|
|
unsigned int flags = eb->flags[i];
|
|
struct i915_vma *vma = eb->vma[i];
|
|
|
|
if (flags & EXEC_OBJECT_PINNED &&
|
|
flags & __EXEC_OBJECT_HAS_PIN)
|
|
continue;
|
|
|
|
eb_unreserve_vma(vma, &eb->flags[i]);
|
|
|
|
if (flags & EXEC_OBJECT_PINNED)
|
|
list_add(&vma->exec_link, &eb->unbound);
|
|
else if (flags & __EXEC_OBJECT_NEEDS_MAP)
|
|
list_add_tail(&vma->exec_link, &eb->unbound);
|
|
else
|
|
list_add_tail(&vma->exec_link, &last);
|
|
}
|
|
list_splice_tail(&last, &eb->unbound);
|
|
|
|
switch (pass++) {
|
|
case 0:
|
|
break;
|
|
|
|
case 1:
|
|
/* Too fragmented, unbind everything and retry */
|
|
err = i915_gem_evict_vm(eb->vm);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
default:
|
|
return -ENOSPC;
|
|
}
|
|
} while (1);
|
|
}
|
|
|
|
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
|
|
{
|
|
if (eb->args->flags & I915_EXEC_BATCH_FIRST)
|
|
return 0;
|
|
else
|
|
return eb->buffer_count - 1;
|
|
}
|
|
|
|
static int eb_select_context(struct i915_execbuffer *eb)
|
|
{
|
|
struct i915_gem_context *ctx;
|
|
|
|
ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
|
|
if (unlikely(!ctx))
|
|
return -ENOENT;
|
|
|
|
eb->ctx = ctx;
|
|
eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
|
|
|
|
eb->context_flags = 0;
|
|
if (ctx->flags & CONTEXT_NO_ZEROMAP)
|
|
eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eb_lookup_vmas(struct i915_execbuffer *eb)
|
|
{
|
|
struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned int i, batch;
|
|
int err;
|
|
|
|
if (unlikely(i915_gem_context_is_closed(eb->ctx)))
|
|
return -ENOENT;
|
|
|
|
if (unlikely(i915_gem_context_is_banned(eb->ctx)))
|
|
return -EIO;
|
|
|
|
INIT_LIST_HEAD(&eb->relocs);
|
|
INIT_LIST_HEAD(&eb->unbound);
|
|
|
|
batch = eb_batch_index(eb);
|
|
|
|
for (i = 0; i < eb->buffer_count; i++) {
|
|
u32 handle = eb->exec[i].handle;
|
|
struct i915_lut_handle *lut;
|
|
struct i915_vma *vma;
|
|
|
|
vma = radix_tree_lookup(handles_vma, handle);
|
|
if (likely(vma))
|
|
goto add_vma;
|
|
|
|
obj = i915_gem_object_lookup(eb->file, handle);
|
|
if (unlikely(!obj)) {
|
|
err = -ENOENT;
|
|
goto err_vma;
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, eb->vm, NULL);
|
|
if (unlikely(IS_ERR(vma))) {
|
|
err = PTR_ERR(vma);
|
|
goto err_obj;
|
|
}
|
|
|
|
lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
|
|
if (unlikely(!lut)) {
|
|
err = -ENOMEM;
|
|
goto err_obj;
|
|
}
|
|
|
|
err = radix_tree_insert(handles_vma, handle, vma);
|
|
if (unlikely(err)) {
|
|
kmem_cache_free(eb->i915->luts, lut);
|
|
goto err_obj;
|
|
}
|
|
|
|
/* transfer ref to ctx */
|
|
if (!vma->open_count++)
|
|
i915_vma_reopen(vma);
|
|
list_add(&lut->obj_link, &obj->lut_list);
|
|
list_add(&lut->ctx_link, &eb->ctx->handles_list);
|
|
lut->ctx = eb->ctx;
|
|
lut->handle = handle;
|
|
|
|
add_vma:
|
|
err = eb_add_vma(eb, i, batch, vma);
|
|
if (unlikely(err))
|
|
goto err_vma;
|
|
|
|
GEM_BUG_ON(vma != eb->vma[i]);
|
|
GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
|
|
GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
|
|
eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
|
|
}
|
|
|
|
eb->args->flags |= __EXEC_VALIDATED;
|
|
return eb_reserve(eb);
|
|
|
|
err_obj:
|
|
i915_gem_object_put(obj);
|
|
err_vma:
|
|
eb->vma[i] = NULL;
|
|
return err;
|
|
}
|
|
|
|
static struct i915_vma *
|
|
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
|
|
{
|
|
if (eb->lut_size < 0) {
|
|
if (handle >= -eb->lut_size)
|
|
return NULL;
|
|
return eb->vma[handle];
|
|
} else {
|
|
struct hlist_head *head;
|
|
struct i915_vma *vma;
|
|
|
|
head = &eb->buckets[hash_32(handle, eb->lut_size)];
|
|
hlist_for_each_entry(vma, head, exec_node) {
|
|
if (vma->exec_handle == handle)
|
|
return vma;
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void eb_release_vmas(const struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct i915_vma *vma = eb->vma[i];
|
|
unsigned int flags = eb->flags[i];
|
|
|
|
if (!vma)
|
|
break;
|
|
|
|
GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
|
|
vma->exec_flags = NULL;
|
|
eb->vma[i] = NULL;
|
|
|
|
if (flags & __EXEC_OBJECT_HAS_PIN)
|
|
__eb_unreserve_vma(vma, flags);
|
|
|
|
if (flags & __EXEC_OBJECT_HAS_REF)
|
|
i915_vma_put(vma);
|
|
}
|
|
}
|
|
|
|
static void eb_reset_vmas(const struct i915_execbuffer *eb)
|
|
{
|
|
eb_release_vmas(eb);
|
|
if (eb->lut_size > 0)
|
|
memset(eb->buckets, 0,
|
|
sizeof(struct hlist_head) << eb->lut_size);
|
|
}
|
|
|
|
static void eb_destroy(const struct i915_execbuffer *eb)
|
|
{
|
|
GEM_BUG_ON(eb->reloc_cache.rq);
|
|
|
|
if (eb->lut_size > 0)
|
|
kfree(eb->buckets);
|
|
}
|
|
|
|
static inline u64
|
|
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
|
|
const struct i915_vma *target)
|
|
{
|
|
return gen8_canonical_addr((int)reloc->delta + target->node.start);
|
|
}
|
|
|
|
static void reloc_cache_init(struct reloc_cache *cache,
|
|
struct drm_i915_private *i915)
|
|
{
|
|
cache->page = -1;
|
|
cache->vaddr = 0;
|
|
/* Must be a variable in the struct to allow GCC to unroll. */
|
|
cache->gen = INTEL_GEN(i915);
|
|
cache->has_llc = HAS_LLC(i915);
|
|
cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
|
|
cache->has_fence = cache->gen < 4;
|
|
cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
|
|
cache->node.allocated = false;
|
|
cache->rq = NULL;
|
|
cache->rq_size = 0;
|
|
}
|
|
|
|
static inline void *unmask_page(unsigned long p)
|
|
{
|
|
return (void *)(uintptr_t)(p & PAGE_MASK);
|
|
}
|
|
|
|
static inline unsigned int unmask_flags(unsigned long p)
|
|
{
|
|
return p & ~PAGE_MASK;
|
|
}
|
|
|
|
#define KMAP 0x4 /* after CLFLUSH_FLAGS */
|
|
|
|
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
|
|
{
|
|
struct drm_i915_private *i915 =
|
|
container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
|
|
return &i915->ggtt;
|
|
}
|
|
|
|
static void reloc_gpu_flush(struct reloc_cache *cache)
|
|
{
|
|
GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
|
|
cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
|
|
i915_gem_object_unpin_map(cache->rq->batch->obj);
|
|
i915_gem_chipset_flush(cache->rq->i915);
|
|
|
|
i915_request_add(cache->rq);
|
|
cache->rq = NULL;
|
|
}
|
|
|
|
static void reloc_cache_reset(struct reloc_cache *cache)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (cache->rq)
|
|
reloc_gpu_flush(cache);
|
|
|
|
if (!cache->vaddr)
|
|
return;
|
|
|
|
vaddr = unmask_page(cache->vaddr);
|
|
if (cache->vaddr & KMAP) {
|
|
if (cache->vaddr & CLFLUSH_AFTER)
|
|
mb();
|
|
|
|
kunmap_atomic(vaddr);
|
|
i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
|
|
} else {
|
|
wmb();
|
|
io_mapping_unmap_atomic((void __iomem *)vaddr);
|
|
if (cache->node.allocated) {
|
|
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
|
|
|
|
ggtt->vm.clear_range(&ggtt->vm,
|
|
cache->node.start,
|
|
cache->node.size);
|
|
drm_mm_remove_node(&cache->node);
|
|
} else {
|
|
i915_vma_unpin((struct i915_vma *)cache->node.mm);
|
|
}
|
|
}
|
|
|
|
cache->vaddr = 0;
|
|
cache->page = -1;
|
|
}
|
|
|
|
static void *reloc_kmap(struct drm_i915_gem_object *obj,
|
|
struct reloc_cache *cache,
|
|
unsigned long page)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (cache->vaddr) {
|
|
kunmap_atomic(unmask_page(cache->vaddr));
|
|
} else {
|
|
unsigned int flushes;
|
|
int err;
|
|
|
|
err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
|
|
BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
|
|
|
|
cache->vaddr = flushes | KMAP;
|
|
cache->node.mm = (void *)obj;
|
|
if (flushes)
|
|
mb();
|
|
}
|
|
|
|
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
|
|
cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
|
|
cache->page = page;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void *reloc_iomap(struct drm_i915_gem_object *obj,
|
|
struct reloc_cache *cache,
|
|
unsigned long page)
|
|
{
|
|
struct i915_ggtt *ggtt = cache_to_ggtt(cache);
|
|
unsigned long offset;
|
|
void *vaddr;
|
|
|
|
if (cache->vaddr) {
|
|
io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
|
|
} else {
|
|
struct i915_vma *vma;
|
|
int err;
|
|
|
|
if (use_cpu_reloc(cache, obj))
|
|
return NULL;
|
|
|
|
err = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK |
|
|
PIN_NONFAULT);
|
|
if (IS_ERR(vma)) {
|
|
memset(&cache->node, 0, sizeof(cache->node));
|
|
err = drm_mm_insert_node_in_range
|
|
(&ggtt->vm.mm, &cache->node,
|
|
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
if (err) /* no inactive aperture space, use cpu reloc */
|
|
return NULL;
|
|
} else {
|
|
err = i915_vma_put_fence(vma);
|
|
if (err) {
|
|
i915_vma_unpin(vma);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
cache->node.start = vma->node.start;
|
|
cache->node.mm = (void *)vma;
|
|
}
|
|
}
|
|
|
|
offset = cache->node.start;
|
|
if (cache->node.allocated) {
|
|
wmb();
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, page),
|
|
offset, I915_CACHE_NONE, 0);
|
|
} else {
|
|
offset += page << PAGE_SHIFT;
|
|
}
|
|
|
|
vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
|
|
offset);
|
|
cache->page = page;
|
|
cache->vaddr = (unsigned long)vaddr;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
|
|
struct reloc_cache *cache,
|
|
unsigned long page)
|
|
{
|
|
void *vaddr;
|
|
|
|
if (cache->page == page) {
|
|
vaddr = unmask_page(cache->vaddr);
|
|
} else {
|
|
vaddr = NULL;
|
|
if ((cache->vaddr & KMAP) == 0)
|
|
vaddr = reloc_iomap(obj, cache, page);
|
|
if (!vaddr)
|
|
vaddr = reloc_kmap(obj, cache, page);
|
|
}
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
|
|
{
|
|
if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
|
|
if (flushes & CLFLUSH_BEFORE) {
|
|
clflushopt(addr);
|
|
mb();
|
|
}
|
|
|
|
*addr = value;
|
|
|
|
/*
|
|
* Writes to the same cacheline are serialised by the CPU
|
|
* (including clflush). On the write path, we only require
|
|
* that it hits memory in an orderly fashion and place
|
|
* mb barriers at the start and end of the relocation phase
|
|
* to ensure ordering of clflush wrt to the system.
|
|
*/
|
|
if (flushes & CLFLUSH_AFTER)
|
|
clflushopt(addr);
|
|
} else
|
|
*addr = value;
|
|
}
|
|
|
|
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
|
|
struct i915_vma *vma,
|
|
unsigned int len)
|
|
{
|
|
struct reloc_cache *cache = &eb->reloc_cache;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_request *rq;
|
|
struct i915_vma *batch;
|
|
u32 *cmd;
|
|
int err;
|
|
|
|
GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
|
|
|
|
obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
|
|
if (IS_ERR(obj))
|
|
return PTR_ERR(obj);
|
|
|
|
cmd = i915_gem_object_pin_map(obj,
|
|
cache->has_llc ?
|
|
I915_MAP_FORCE_WB :
|
|
I915_MAP_FORCE_WC);
|
|
i915_gem_object_unpin_pages(obj);
|
|
if (IS_ERR(cmd))
|
|
return PTR_ERR(cmd);
|
|
|
|
err = i915_gem_object_set_to_wc_domain(obj, false);
|
|
if (err)
|
|
goto err_unmap;
|
|
|
|
batch = i915_vma_instance(obj, vma->vm, NULL);
|
|
if (IS_ERR(batch)) {
|
|
err = PTR_ERR(batch);
|
|
goto err_unmap;
|
|
}
|
|
|
|
err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
|
|
if (err)
|
|
goto err_unmap;
|
|
|
|
rq = i915_request_alloc(eb->engine, eb->ctx);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_unpin;
|
|
}
|
|
|
|
err = i915_request_await_object(rq, vma->obj, true);
|
|
if (err)
|
|
goto err_request;
|
|
|
|
err = eb->engine->emit_bb_start(rq,
|
|
batch->node.start, PAGE_SIZE,
|
|
cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
|
|
if (err)
|
|
goto err_request;
|
|
|
|
GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
|
|
err = i915_vma_move_to_active(batch, rq, 0);
|
|
if (err)
|
|
goto skip_request;
|
|
|
|
err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
|
|
if (err)
|
|
goto skip_request;
|
|
|
|
rq->batch = batch;
|
|
i915_vma_unpin(batch);
|
|
|
|
cache->rq = rq;
|
|
cache->rq_cmd = cmd;
|
|
cache->rq_size = 0;
|
|
|
|
/* Return with batch mapping (cmd) still pinned */
|
|
return 0;
|
|
|
|
skip_request:
|
|
i915_request_skip(rq, err);
|
|
err_request:
|
|
i915_request_add(rq);
|
|
err_unpin:
|
|
i915_vma_unpin(batch);
|
|
err_unmap:
|
|
i915_gem_object_unpin_map(obj);
|
|
return err;
|
|
}
|
|
|
|
static u32 *reloc_gpu(struct i915_execbuffer *eb,
|
|
struct i915_vma *vma,
|
|
unsigned int len)
|
|
{
|
|
struct reloc_cache *cache = &eb->reloc_cache;
|
|
u32 *cmd;
|
|
|
|
if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
|
|
reloc_gpu_flush(cache);
|
|
|
|
if (unlikely(!cache->rq)) {
|
|
int err;
|
|
|
|
/* If we need to copy for the cmdparser, we will stall anyway */
|
|
if (eb_use_cmdparser(eb))
|
|
return ERR_PTR(-EWOULDBLOCK);
|
|
|
|
if (!intel_engine_can_store_dword(eb->engine))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
err = __reloc_gpu_alloc(eb, vma, len);
|
|
if (unlikely(err))
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
cmd = cache->rq_cmd + cache->rq_size;
|
|
cache->rq_size += len;
|
|
|
|
return cmd;
|
|
}
|
|
|
|
static u64
|
|
relocate_entry(struct i915_vma *vma,
|
|
const struct drm_i915_gem_relocation_entry *reloc,
|
|
struct i915_execbuffer *eb,
|
|
const struct i915_vma *target)
|
|
{
|
|
u64 offset = reloc->offset;
|
|
u64 target_offset = relocation_target(reloc, target);
|
|
bool wide = eb->reloc_cache.use_64bit_reloc;
|
|
void *vaddr;
|
|
|
|
if (!eb->reloc_cache.vaddr &&
|
|
(DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
|
|
!reservation_object_test_signaled_rcu(vma->resv, true))) {
|
|
const unsigned int gen = eb->reloc_cache.gen;
|
|
unsigned int len;
|
|
u32 *batch;
|
|
u64 addr;
|
|
|
|
if (wide)
|
|
len = offset & 7 ? 8 : 5;
|
|
else if (gen >= 4)
|
|
len = 4;
|
|
else
|
|
len = 3;
|
|
|
|
batch = reloc_gpu(eb, vma, len);
|
|
if (IS_ERR(batch))
|
|
goto repeat;
|
|
|
|
addr = gen8_canonical_addr(vma->node.start + offset);
|
|
if (wide) {
|
|
if (offset & 7) {
|
|
*batch++ = MI_STORE_DWORD_IMM_GEN4;
|
|
*batch++ = lower_32_bits(addr);
|
|
*batch++ = upper_32_bits(addr);
|
|
*batch++ = lower_32_bits(target_offset);
|
|
|
|
addr = gen8_canonical_addr(addr + 4);
|
|
|
|
*batch++ = MI_STORE_DWORD_IMM_GEN4;
|
|
*batch++ = lower_32_bits(addr);
|
|
*batch++ = upper_32_bits(addr);
|
|
*batch++ = upper_32_bits(target_offset);
|
|
} else {
|
|
*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
|
|
*batch++ = lower_32_bits(addr);
|
|
*batch++ = upper_32_bits(addr);
|
|
*batch++ = lower_32_bits(target_offset);
|
|
*batch++ = upper_32_bits(target_offset);
|
|
}
|
|
} else if (gen >= 6) {
|
|
*batch++ = MI_STORE_DWORD_IMM_GEN4;
|
|
*batch++ = 0;
|
|
*batch++ = addr;
|
|
*batch++ = target_offset;
|
|
} else if (gen >= 4) {
|
|
*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
|
|
*batch++ = 0;
|
|
*batch++ = addr;
|
|
*batch++ = target_offset;
|
|
} else {
|
|
*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
|
|
*batch++ = addr;
|
|
*batch++ = target_offset;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
repeat:
|
|
vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
|
|
if (IS_ERR(vaddr))
|
|
return PTR_ERR(vaddr);
|
|
|
|
clflush_write32(vaddr + offset_in_page(offset),
|
|
lower_32_bits(target_offset),
|
|
eb->reloc_cache.vaddr);
|
|
|
|
if (wide) {
|
|
offset += sizeof(u32);
|
|
target_offset >>= 32;
|
|
wide = false;
|
|
goto repeat;
|
|
}
|
|
|
|
out:
|
|
return target->node.start | UPDATE;
|
|
}
|
|
|
|
static u64
|
|
eb_relocate_entry(struct i915_execbuffer *eb,
|
|
struct i915_vma *vma,
|
|
const struct drm_i915_gem_relocation_entry *reloc)
|
|
{
|
|
struct i915_vma *target;
|
|
int err;
|
|
|
|
/* we've already hold a reference to all valid objects */
|
|
target = eb_get_vma(eb, reloc->target_handle);
|
|
if (unlikely(!target))
|
|
return -ENOENT;
|
|
|
|
/* Validate that the target is in a valid r/w GPU domain */
|
|
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
|
|
DRM_DEBUG("reloc with multiple write domains: "
|
|
"target %d offset %d "
|
|
"read %08x write %08x",
|
|
reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely((reloc->write_domain | reloc->read_domains)
|
|
& ~I915_GEM_GPU_DOMAINS)) {
|
|
DRM_DEBUG("reloc with read/write non-GPU domains: "
|
|
"target %d offset %d "
|
|
"read %08x write %08x",
|
|
reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reloc->write_domain) {
|
|
*target->exec_flags |= EXEC_OBJECT_WRITE;
|
|
|
|
/*
|
|
* Sandybridge PPGTT errata: We need a global gtt mapping
|
|
* for MI and pipe_control writes because the gpu doesn't
|
|
* properly redirect them through the ppgtt for non_secure
|
|
* batchbuffers.
|
|
*/
|
|
if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
|
|
IS_GEN6(eb->i915)) {
|
|
err = i915_vma_bind(target, target->obj->cache_level,
|
|
PIN_GLOBAL);
|
|
if (WARN_ONCE(err,
|
|
"Unexpected failure to bind target VMA!"))
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the relocation already has the right value in it, no
|
|
* more work needs to be done.
|
|
*/
|
|
if (!DBG_FORCE_RELOC &&
|
|
gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
|
|
return 0;
|
|
|
|
/* Check that the relocation address is valid... */
|
|
if (unlikely(reloc->offset >
|
|
vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
|
|
DRM_DEBUG("Relocation beyond object bounds: "
|
|
"target %d offset %d size %d.\n",
|
|
reloc->target_handle,
|
|
(int)reloc->offset,
|
|
(int)vma->size);
|
|
return -EINVAL;
|
|
}
|
|
if (unlikely(reloc->offset & 3)) {
|
|
DRM_DEBUG("Relocation not 4-byte aligned: "
|
|
"target %d offset %d.\n",
|
|
reloc->target_handle,
|
|
(int)reloc->offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If we write into the object, we need to force the synchronisation
|
|
* barrier, either with an asynchronous clflush or if we executed the
|
|
* patching using the GPU (though that should be serialised by the
|
|
* timeline). To be completely sure, and since we are required to
|
|
* do relocations we are already stalling, disable the user's opt
|
|
* out of our synchronisation.
|
|
*/
|
|
*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
|
|
|
|
/* and update the user's relocation entry */
|
|
return relocate_entry(vma, reloc, eb, target);
|
|
}
|
|
|
|
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
|
|
{
|
|
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
|
|
struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
|
|
struct drm_i915_gem_relocation_entry __user *urelocs;
|
|
const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
|
|
unsigned int remain;
|
|
|
|
urelocs = u64_to_user_ptr(entry->relocs_ptr);
|
|
remain = entry->relocation_count;
|
|
if (unlikely(remain > N_RELOC(ULONG_MAX)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We must check that the entire relocation array is safe
|
|
* to read. However, if the array is not writable the user loses
|
|
* the updated relocation values.
|
|
*/
|
|
if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
|
|
return -EFAULT;
|
|
|
|
do {
|
|
struct drm_i915_gem_relocation_entry *r = stack;
|
|
unsigned int count =
|
|
min_t(unsigned int, remain, ARRAY_SIZE(stack));
|
|
unsigned int copied;
|
|
|
|
/*
|
|
* This is the fast path and we cannot handle a pagefault
|
|
* whilst holding the struct mutex lest the user pass in the
|
|
* relocations contained within a mmaped bo. For in such a case
|
|
* we, the page fault handler would call i915_gem_fault() and
|
|
* we would try to acquire the struct mutex again. Obviously
|
|
* this is bad and so lockdep complains vehemently.
|
|
*/
|
|
pagefault_disable();
|
|
copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
|
|
pagefault_enable();
|
|
if (unlikely(copied)) {
|
|
remain = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
remain -= count;
|
|
do {
|
|
u64 offset = eb_relocate_entry(eb, vma, r);
|
|
|
|
if (likely(offset == 0)) {
|
|
} else if ((s64)offset < 0) {
|
|
remain = (int)offset;
|
|
goto out;
|
|
} else {
|
|
/*
|
|
* Note that reporting an error now
|
|
* leaves everything in an inconsistent
|
|
* state as we have *already* changed
|
|
* the relocation value inside the
|
|
* object. As we have not changed the
|
|
* reloc.presumed_offset or will not
|
|
* change the execobject.offset, on the
|
|
* call we may not rewrite the value
|
|
* inside the object, leaving it
|
|
* dangling and causing a GPU hang. Unless
|
|
* userspace dynamically rebuilds the
|
|
* relocations on each execbuf rather than
|
|
* presume a static tree.
|
|
*
|
|
* We did previously check if the relocations
|
|
* were writable (access_ok), an error now
|
|
* would be a strange race with mprotect,
|
|
* having already demonstrated that we
|
|
* can read from this userspace address.
|
|
*/
|
|
offset = gen8_canonical_addr(offset & ~UPDATE);
|
|
__put_user(offset,
|
|
&urelocs[r-stack].presumed_offset);
|
|
}
|
|
} while (r++, --count);
|
|
urelocs += ARRAY_SIZE(stack);
|
|
} while (remain);
|
|
out:
|
|
reloc_cache_reset(&eb->reloc_cache);
|
|
return remain;
|
|
}
|
|
|
|
static int
|
|
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
|
|
{
|
|
const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
|
|
struct drm_i915_gem_relocation_entry *relocs =
|
|
u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < entry->relocation_count; i++) {
|
|
u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
|
|
|
|
if ((s64)offset < 0) {
|
|
err = (int)offset;
|
|
goto err;
|
|
}
|
|
}
|
|
err = 0;
|
|
err:
|
|
reloc_cache_reset(&eb->reloc_cache);
|
|
return err;
|
|
}
|
|
|
|
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
|
|
{
|
|
const char __user *addr, *end;
|
|
unsigned long size;
|
|
char __maybe_unused c;
|
|
|
|
size = entry->relocation_count;
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
if (size > N_RELOC(ULONG_MAX))
|
|
return -EINVAL;
|
|
|
|
addr = u64_to_user_ptr(entry->relocs_ptr);
|
|
size *= sizeof(struct drm_i915_gem_relocation_entry);
|
|
if (!access_ok(VERIFY_READ, addr, size))
|
|
return -EFAULT;
|
|
|
|
end = addr + size;
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
int err = __get_user(c, addr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return __get_user(c, end - 1);
|
|
}
|
|
|
|
static int eb_copy_relocations(const struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
const unsigned int nreloc = eb->exec[i].relocation_count;
|
|
struct drm_i915_gem_relocation_entry __user *urelocs;
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
unsigned long size;
|
|
unsigned long copied;
|
|
|
|
if (nreloc == 0)
|
|
continue;
|
|
|
|
err = check_relocations(&eb->exec[i]);
|
|
if (err)
|
|
goto err;
|
|
|
|
urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
|
|
size = nreloc * sizeof(*relocs);
|
|
|
|
relocs = kvmalloc_array(size, 1, GFP_KERNEL);
|
|
if (!relocs) {
|
|
kvfree(relocs);
|
|
err = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
/* copy_from_user is limited to < 4GiB */
|
|
copied = 0;
|
|
do {
|
|
unsigned int len =
|
|
min_t(u64, BIT_ULL(31), size - copied);
|
|
|
|
if (__copy_from_user((char *)relocs + copied,
|
|
(char __user *)urelocs + copied,
|
|
len)) {
|
|
kvfree(relocs);
|
|
err = -EFAULT;
|
|
goto err;
|
|
}
|
|
|
|
copied += len;
|
|
} while (copied < size);
|
|
|
|
/*
|
|
* As we do not update the known relocation offsets after
|
|
* relocating (due to the complexities in lock handling),
|
|
* we need to mark them as invalid now so that we force the
|
|
* relocation processing next time. Just in case the target
|
|
* object is evicted and then rebound into its old
|
|
* presumed_offset before the next execbuffer - if that
|
|
* happened we would make the mistake of assuming that the
|
|
* relocations were valid.
|
|
*/
|
|
if (!user_access_begin(VERIFY_WRITE, urelocs, size))
|
|
goto end_user;
|
|
|
|
for (copied = 0; copied < nreloc; copied++)
|
|
unsafe_put_user(-1,
|
|
&urelocs[copied].presumed_offset,
|
|
end_user);
|
|
end_user:
|
|
user_access_end();
|
|
|
|
eb->exec[i].relocs_ptr = (uintptr_t)relocs;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
while (i--) {
|
|
struct drm_i915_gem_relocation_entry *relocs =
|
|
u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
|
|
if (eb->exec[i].relocation_count)
|
|
kvfree(relocs);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
if (unlikely(i915_modparams.prefault_disable))
|
|
return 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
int err;
|
|
|
|
err = check_relocations(&eb->exec[i]);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_device *dev = &eb->i915->drm;
|
|
bool have_copy = false;
|
|
struct i915_vma *vma;
|
|
int err = 0;
|
|
|
|
repeat:
|
|
if (signal_pending(current)) {
|
|
err = -ERESTARTSYS;
|
|
goto out;
|
|
}
|
|
|
|
/* We may process another execbuffer during the unlock... */
|
|
eb_reset_vmas(eb);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
/*
|
|
* We take 3 passes through the slowpatch.
|
|
*
|
|
* 1 - we try to just prefault all the user relocation entries and
|
|
* then attempt to reuse the atomic pagefault disabled fast path again.
|
|
*
|
|
* 2 - we copy the user entries to a local buffer here outside of the
|
|
* local and allow ourselves to wait upon any rendering before
|
|
* relocations
|
|
*
|
|
* 3 - we already have a local copy of the relocation entries, but
|
|
* were interrupted (EAGAIN) whilst waiting for the objects, try again.
|
|
*/
|
|
if (!err) {
|
|
err = eb_prefault_relocations(eb);
|
|
} else if (!have_copy) {
|
|
err = eb_copy_relocations(eb);
|
|
have_copy = err == 0;
|
|
} else {
|
|
cond_resched();
|
|
err = 0;
|
|
}
|
|
if (err) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/* A frequent cause for EAGAIN are currently unavailable client pages */
|
|
flush_workqueue(eb->i915->mm.userptr_wq);
|
|
|
|
err = i915_mutex_lock_interruptible(dev);
|
|
if (err) {
|
|
mutex_lock(&dev->struct_mutex);
|
|
goto out;
|
|
}
|
|
|
|
/* reacquire the objects */
|
|
err = eb_lookup_vmas(eb);
|
|
if (err)
|
|
goto err;
|
|
|
|
GEM_BUG_ON(!eb->batch);
|
|
|
|
list_for_each_entry(vma, &eb->relocs, reloc_link) {
|
|
if (!have_copy) {
|
|
pagefault_disable();
|
|
err = eb_relocate_vma(eb, vma);
|
|
pagefault_enable();
|
|
if (err)
|
|
goto repeat;
|
|
} else {
|
|
err = eb_relocate_vma_slow(eb, vma);
|
|
if (err)
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Leave the user relocations as are, this is the painfully slow path,
|
|
* and we want to avoid the complication of dropping the lock whilst
|
|
* having buffers reserved in the aperture and so causing spurious
|
|
* ENOSPC for random operations.
|
|
*/
|
|
|
|
err:
|
|
if (err == -EAGAIN)
|
|
goto repeat;
|
|
|
|
out:
|
|
if (have_copy) {
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
const struct drm_i915_gem_exec_object2 *entry =
|
|
&eb->exec[i];
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
|
|
if (!entry->relocation_count)
|
|
continue;
|
|
|
|
relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
|
|
kvfree(relocs);
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int eb_relocate(struct i915_execbuffer *eb)
|
|
{
|
|
if (eb_lookup_vmas(eb))
|
|
goto slow;
|
|
|
|
/* The objects are in their final locations, apply the relocations. */
|
|
if (eb->args->flags & __EXEC_HAS_RELOC) {
|
|
struct i915_vma *vma;
|
|
|
|
list_for_each_entry(vma, &eb->relocs, reloc_link) {
|
|
if (eb_relocate_vma(eb, vma))
|
|
goto slow;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
slow:
|
|
return eb_relocate_slow(eb);
|
|
}
|
|
|
|
static int eb_move_to_gpu(struct i915_execbuffer *eb)
|
|
{
|
|
const unsigned int count = eb->buffer_count;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
unsigned int flags = eb->flags[i];
|
|
struct i915_vma *vma = eb->vma[i];
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (flags & EXEC_OBJECT_CAPTURE) {
|
|
struct i915_capture_list *capture;
|
|
|
|
capture = kmalloc(sizeof(*capture), GFP_KERNEL);
|
|
if (unlikely(!capture))
|
|
return -ENOMEM;
|
|
|
|
capture->next = eb->request->capture_list;
|
|
capture->vma = eb->vma[i];
|
|
eb->request->capture_list = capture;
|
|
}
|
|
|
|
/*
|
|
* If the GPU is not _reading_ through the CPU cache, we need
|
|
* to make sure that any writes (both previous GPU writes from
|
|
* before a change in snooping levels and normal CPU writes)
|
|
* caught in that cache are flushed to main memory.
|
|
*
|
|
* We want to say
|
|
* obj->cache_dirty &&
|
|
* !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
|
|
* but gcc's optimiser doesn't handle that as well and emits
|
|
* two jumps instead of one. Maybe one day...
|
|
*/
|
|
if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
|
|
if (i915_gem_clflush_object(obj, 0))
|
|
flags &= ~EXEC_OBJECT_ASYNC;
|
|
}
|
|
|
|
if (flags & EXEC_OBJECT_ASYNC)
|
|
continue;
|
|
|
|
err = i915_request_await_object
|
|
(eb->request, obj, flags & EXEC_OBJECT_WRITE);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
unsigned int flags = eb->flags[i];
|
|
struct i915_vma *vma = eb->vma[i];
|
|
|
|
err = i915_vma_move_to_active(vma, eb->request, flags);
|
|
if (unlikely(err)) {
|
|
i915_request_skip(eb->request, err);
|
|
return err;
|
|
}
|
|
|
|
__eb_unreserve_vma(vma, flags);
|
|
vma->exec_flags = NULL;
|
|
|
|
if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
|
|
i915_vma_put(vma);
|
|
}
|
|
eb->exec = NULL;
|
|
|
|
/* Unconditionally flush any chipset caches (for streaming writes). */
|
|
i915_gem_chipset_flush(eb->i915);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
|
|
{
|
|
if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
|
|
return false;
|
|
|
|
/* Kernel clipping was a DRI1 misfeature */
|
|
if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
|
|
if (exec->num_cliprects || exec->cliprects_ptr)
|
|
return false;
|
|
}
|
|
|
|
if (exec->DR4 == 0xffffffff) {
|
|
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
|
|
exec->DR4 = 0;
|
|
}
|
|
if (exec->DR1 || exec->DR4)
|
|
return false;
|
|
|
|
if ((exec->batch_start_offset | exec->batch_len) & 0x7)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
|
|
{
|
|
u32 *cs;
|
|
int i;
|
|
|
|
if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
|
|
DRM_DEBUG("sol reset is gen7/rcs only\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cs = intel_ring_begin(rq, 4 * 2 + 2);
|
|
if (IS_ERR(cs))
|
|
return PTR_ERR(cs);
|
|
|
|
*cs++ = MI_LOAD_REGISTER_IMM(4);
|
|
for (i = 0; i < 4; i++) {
|
|
*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
|
|
*cs++ = 0;
|
|
}
|
|
*cs++ = MI_NOOP;
|
|
intel_ring_advance(rq, cs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *
|
|
shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_i915_private *dev_priv = eb->i915;
|
|
struct i915_address_space *vm;
|
|
u64 flags;
|
|
|
|
/*
|
|
* PPGTT backed shadow buffers must be mapped RO, to prevent
|
|
* post-scan tampering
|
|
*/
|
|
if (CMDPARSER_USES_GGTT(dev_priv)) {
|
|
flags = PIN_GLOBAL;
|
|
vm = &dev_priv->ggtt.vm;
|
|
} else if (eb->vm->has_read_only) {
|
|
flags = PIN_USER;
|
|
vm = eb->vm;
|
|
i915_gem_object_set_readonly(obj);
|
|
} else {
|
|
DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
|
|
}
|
|
|
|
static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
|
|
{
|
|
struct drm_i915_gem_object *shadow_batch_obj;
|
|
struct i915_vma *vma;
|
|
u64 batch_start;
|
|
u64 shadow_batch_start;
|
|
int err;
|
|
|
|
shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
|
|
PAGE_ALIGN(eb->batch_len));
|
|
if (IS_ERR(shadow_batch_obj))
|
|
return ERR_CAST(shadow_batch_obj);
|
|
|
|
vma = shadow_batch_pin(eb, shadow_batch_obj);
|
|
if (IS_ERR(vma))
|
|
goto out;
|
|
|
|
batch_start = gen8_canonical_addr(eb->batch->node.start) +
|
|
eb->batch_start_offset;
|
|
|
|
shadow_batch_start = gen8_canonical_addr(vma->node.start);
|
|
|
|
err = intel_engine_cmd_parser(eb->ctx,
|
|
eb->engine,
|
|
eb->batch->obj,
|
|
batch_start,
|
|
eb->batch_start_offset,
|
|
eb->batch_len,
|
|
shadow_batch_obj,
|
|
shadow_batch_start);
|
|
|
|
if (err) {
|
|
i915_vma_unpin(vma);
|
|
|
|
/*
|
|
* Unsafe GGTT-backed buffers can still be submitted safely
|
|
* as non-secure.
|
|
* For PPGTT backing however, we have no choice but to forcibly
|
|
* reject unsafe buffers
|
|
*/
|
|
if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
|
|
/* Execute original buffer non-secure */
|
|
vma = NULL;
|
|
else
|
|
vma = ERR_PTR(err);
|
|
|
|
goto out;
|
|
}
|
|
|
|
eb->vma[eb->buffer_count] = i915_vma_get(vma);
|
|
eb->flags[eb->buffer_count] =
|
|
__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
|
|
vma->exec_flags = &eb->flags[eb->buffer_count];
|
|
eb->buffer_count++;
|
|
eb->batch_start_offset = 0;
|
|
eb->batch = vma;
|
|
|
|
/* eb->batch_len unchanged */
|
|
|
|
if (CMDPARSER_USES_GGTT(eb->i915))
|
|
eb->batch_flags |= I915_DISPATCH_SECURE;
|
|
|
|
out:
|
|
i915_gem_object_unpin_pages(shadow_batch_obj);
|
|
return vma;
|
|
}
|
|
|
|
static void
|
|
add_to_client(struct i915_request *rq, struct drm_file *file)
|
|
{
|
|
rq->file_priv = file->driver_priv;
|
|
list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
|
|
}
|
|
|
|
static int eb_submit(struct i915_execbuffer *eb)
|
|
{
|
|
int err;
|
|
|
|
err = eb_move_to_gpu(eb);
|
|
if (err)
|
|
return err;
|
|
|
|
if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
|
|
err = i915_reset_gen7_sol_offsets(eb->request);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = eb->engine->emit_bb_start(eb->request,
|
|
eb->batch->node.start +
|
|
eb->batch_start_offset,
|
|
eb->batch_len,
|
|
eb->batch_flags);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find one BSD ring to dispatch the corresponding BSD command.
|
|
* The engine index is returned.
|
|
*/
|
|
static unsigned int
|
|
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
|
|
/* Check whether the file_priv has already selected one ring. */
|
|
if ((int)file_priv->bsd_engine < 0)
|
|
file_priv->bsd_engine = atomic_fetch_xor(1,
|
|
&dev_priv->mm.bsd_engine_dispatch_index);
|
|
|
|
return file_priv->bsd_engine;
|
|
}
|
|
|
|
#define I915_USER_RINGS (4)
|
|
|
|
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
|
|
[I915_EXEC_DEFAULT] = RCS,
|
|
[I915_EXEC_RENDER] = RCS,
|
|
[I915_EXEC_BLT] = BCS,
|
|
[I915_EXEC_BSD] = VCS,
|
|
[I915_EXEC_VEBOX] = VECS
|
|
};
|
|
|
|
static struct intel_engine_cs *
|
|
eb_select_engine(struct drm_i915_private *dev_priv,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_execbuffer2 *args)
|
|
{
|
|
unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
|
|
struct intel_engine_cs *engine;
|
|
|
|
if (user_ring_id > I915_USER_RINGS) {
|
|
DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
|
|
return NULL;
|
|
}
|
|
|
|
if ((user_ring_id != I915_EXEC_BSD) &&
|
|
((args->flags & I915_EXEC_BSD_MASK) != 0)) {
|
|
DRM_DEBUG("execbuf with non bsd ring but with invalid "
|
|
"bsd dispatch flags: %d\n", (int)(args->flags));
|
|
return NULL;
|
|
}
|
|
|
|
if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
|
|
unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
|
|
|
|
if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
|
|
bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
|
|
} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
|
|
bsd_idx <= I915_EXEC_BSD_RING2) {
|
|
bsd_idx >>= I915_EXEC_BSD_SHIFT;
|
|
bsd_idx--;
|
|
} else {
|
|
DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
|
|
bsd_idx);
|
|
return NULL;
|
|
}
|
|
|
|
engine = dev_priv->engine[_VCS(bsd_idx)];
|
|
} else {
|
|
engine = dev_priv->engine[user_ring_map[user_ring_id]];
|
|
}
|
|
|
|
if (!engine) {
|
|
DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
|
|
return NULL;
|
|
}
|
|
|
|
return engine;
|
|
}
|
|
|
|
static void
|
|
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
|
|
{
|
|
while (n--)
|
|
drm_syncobj_put(ptr_mask_bits(fences[n], 2));
|
|
kvfree(fences);
|
|
}
|
|
|
|
static struct drm_syncobj **
|
|
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
|
|
struct drm_file *file)
|
|
{
|
|
const unsigned long nfences = args->num_cliprects;
|
|
struct drm_i915_gem_exec_fence __user *user;
|
|
struct drm_syncobj **fences;
|
|
unsigned long n;
|
|
int err;
|
|
|
|
if (!(args->flags & I915_EXEC_FENCE_ARRAY))
|
|
return NULL;
|
|
|
|
/* Check multiplication overflow for access_ok() and kvmalloc_array() */
|
|
BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
|
|
if (nfences > min_t(unsigned long,
|
|
ULONG_MAX / sizeof(*user),
|
|
SIZE_MAX / sizeof(*fences)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
user = u64_to_user_ptr(args->cliprects_ptr);
|
|
if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
fences = kvmalloc_array(nfences, sizeof(*fences),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (!fences)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (n = 0; n < nfences; n++) {
|
|
struct drm_i915_gem_exec_fence fence;
|
|
struct drm_syncobj *syncobj;
|
|
|
|
if (__copy_from_user(&fence, user++, sizeof(fence))) {
|
|
err = -EFAULT;
|
|
goto err;
|
|
}
|
|
|
|
if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
|
|
err = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
syncobj = drm_syncobj_find(file, fence.handle);
|
|
if (!syncobj) {
|
|
DRM_DEBUG("Invalid syncobj handle provided\n");
|
|
err = -ENOENT;
|
|
goto err;
|
|
}
|
|
|
|
BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
|
|
~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
|
|
|
|
fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
|
|
}
|
|
|
|
return fences;
|
|
|
|
err:
|
|
__free_fence_array(fences, n);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void
|
|
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
|
|
struct drm_syncobj **fences)
|
|
{
|
|
if (fences)
|
|
__free_fence_array(fences, args->num_cliprects);
|
|
}
|
|
|
|
static int
|
|
await_fence_array(struct i915_execbuffer *eb,
|
|
struct drm_syncobj **fences)
|
|
{
|
|
const unsigned int nfences = eb->args->num_cliprects;
|
|
unsigned int n;
|
|
int err;
|
|
|
|
for (n = 0; n < nfences; n++) {
|
|
struct drm_syncobj *syncobj;
|
|
struct dma_fence *fence;
|
|
unsigned int flags;
|
|
|
|
syncobj = ptr_unpack_bits(fences[n], &flags, 2);
|
|
if (!(flags & I915_EXEC_FENCE_WAIT))
|
|
continue;
|
|
|
|
fence = drm_syncobj_fence_get(syncobj);
|
|
if (!fence)
|
|
return -EINVAL;
|
|
|
|
err = i915_request_await_dma_fence(eb->request, fence);
|
|
dma_fence_put(fence);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
signal_fence_array(struct i915_execbuffer *eb,
|
|
struct drm_syncobj **fences)
|
|
{
|
|
const unsigned int nfences = eb->args->num_cliprects;
|
|
struct dma_fence * const fence = &eb->request->fence;
|
|
unsigned int n;
|
|
|
|
for (n = 0; n < nfences; n++) {
|
|
struct drm_syncobj *syncobj;
|
|
unsigned int flags;
|
|
|
|
syncobj = ptr_unpack_bits(fences[n], &flags, 2);
|
|
if (!(flags & I915_EXEC_FENCE_SIGNAL))
|
|
continue;
|
|
|
|
drm_syncobj_replace_fence(syncobj, fence);
|
|
}
|
|
}
|
|
|
|
static int
|
|
i915_gem_do_execbuffer(struct drm_device *dev,
|
|
struct drm_file *file,
|
|
struct drm_i915_gem_execbuffer2 *args,
|
|
struct drm_i915_gem_exec_object2 *exec,
|
|
struct drm_syncobj **fences)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct i915_execbuffer eb;
|
|
struct dma_fence *in_fence = NULL;
|
|
struct sync_file *out_fence = NULL;
|
|
int out_fence_fd = -1;
|
|
int err;
|
|
|
|
BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
|
|
BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
|
|
~__EXEC_OBJECT_UNKNOWN_FLAGS);
|
|
|
|
eb.i915 = i915;
|
|
eb.file = file;
|
|
eb.args = args;
|
|
if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
|
|
args->flags |= __EXEC_HAS_RELOC;
|
|
|
|
eb.exec = exec;
|
|
eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
|
|
eb.vma[0] = NULL;
|
|
eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
|
|
|
|
eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
|
|
if (USES_FULL_PPGTT(eb.i915))
|
|
eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
|
|
reloc_cache_init(&eb.reloc_cache, eb.i915);
|
|
|
|
eb.buffer_count = args->buffer_count;
|
|
eb.batch_start_offset = args->batch_start_offset;
|
|
eb.batch_len = args->batch_len;
|
|
|
|
eb.batch_flags = 0;
|
|
if (args->flags & I915_EXEC_SECURE) {
|
|
if (INTEL_GEN(i915) >= 11)
|
|
return -ENODEV;
|
|
|
|
/* Return -EPERM to trigger fallback code on old binaries. */
|
|
if (!HAS_SECURE_BATCHES(i915))
|
|
return -EPERM;
|
|
|
|
if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
eb.batch_flags |= I915_DISPATCH_SECURE;
|
|
}
|
|
if (args->flags & I915_EXEC_IS_PINNED)
|
|
eb.batch_flags |= I915_DISPATCH_PINNED;
|
|
|
|
eb.engine = eb_select_engine(eb.i915, file, args);
|
|
if (!eb.engine)
|
|
return -EINVAL;
|
|
|
|
if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
|
|
if (!HAS_RESOURCE_STREAMER(eb.i915)) {
|
|
DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
|
|
return -EINVAL;
|
|
}
|
|
if (eb.engine->id != RCS) {
|
|
DRM_DEBUG("RS is not available on %s\n",
|
|
eb.engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
eb.batch_flags |= I915_DISPATCH_RS;
|
|
}
|
|
|
|
if (args->flags & I915_EXEC_FENCE_IN) {
|
|
in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
|
|
if (!in_fence)
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (args->flags & I915_EXEC_FENCE_OUT) {
|
|
out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
|
|
if (out_fence_fd < 0) {
|
|
err = out_fence_fd;
|
|
goto err_in_fence;
|
|
}
|
|
}
|
|
|
|
err = eb_create(&eb);
|
|
if (err)
|
|
goto err_out_fence;
|
|
|
|
GEM_BUG_ON(!eb.lut_size);
|
|
|
|
err = eb_select_context(&eb);
|
|
if (unlikely(err))
|
|
goto err_destroy;
|
|
|
|
/*
|
|
* Take a local wakeref for preparing to dispatch the execbuf as
|
|
* we expect to access the hardware fairly frequently in the
|
|
* process. Upon first dispatch, we acquire another prolonged
|
|
* wakeref that we hold until the GPU has been idle for at least
|
|
* 100ms.
|
|
*/
|
|
intel_runtime_pm_get(eb.i915);
|
|
|
|
err = i915_mutex_lock_interruptible(dev);
|
|
if (err)
|
|
goto err_rpm;
|
|
|
|
err = eb_relocate(&eb);
|
|
if (err) {
|
|
/*
|
|
* If the user expects the execobject.offset and
|
|
* reloc.presumed_offset to be an exact match,
|
|
* as for using NO_RELOC, then we cannot update
|
|
* the execobject.offset until we have completed
|
|
* relocation.
|
|
*/
|
|
args->flags &= ~__EXEC_HAS_RELOC;
|
|
goto err_vma;
|
|
}
|
|
|
|
if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
|
|
DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
|
|
err = -EINVAL;
|
|
goto err_vma;
|
|
}
|
|
if (eb.batch_start_offset > eb.batch->size ||
|
|
eb.batch_len > eb.batch->size - eb.batch_start_offset) {
|
|
DRM_DEBUG("Attempting to use out-of-bounds batch\n");
|
|
err = -EINVAL;
|
|
goto err_vma;
|
|
}
|
|
|
|
if (eb.batch_len == 0)
|
|
eb.batch_len = eb.batch->size - eb.batch_start_offset;
|
|
|
|
if (eb_use_cmdparser(&eb)) {
|
|
struct i915_vma *vma;
|
|
|
|
vma = eb_parse(&eb);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err_vma;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
|
|
* batch" bit. Hence we need to pin secure batches into the global gtt.
|
|
* hsw should have this fixed, but bdw mucks it up again. */
|
|
if (eb.batch_flags & I915_DISPATCH_SECURE) {
|
|
struct i915_vma *vma;
|
|
|
|
/*
|
|
* So on first glance it looks freaky that we pin the batch here
|
|
* outside of the reservation loop. But:
|
|
* - The batch is already pinned into the relevant ppgtt, so we
|
|
* already have the backing storage fully allocated.
|
|
* - No other BO uses the global gtt (well contexts, but meh),
|
|
* so we don't really have issues with multiple objects not
|
|
* fitting due to fragmentation.
|
|
* So this is actually safe.
|
|
*/
|
|
vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
goto err_vma;
|
|
}
|
|
|
|
eb.batch = vma;
|
|
}
|
|
|
|
/* All GPU relocation batches must be submitted prior to the user rq */
|
|
GEM_BUG_ON(eb.reloc_cache.rq);
|
|
|
|
/* Allocate a request for this batch buffer nice and early. */
|
|
eb.request = i915_request_alloc(eb.engine, eb.ctx);
|
|
if (IS_ERR(eb.request)) {
|
|
err = PTR_ERR(eb.request);
|
|
goto err_batch_unpin;
|
|
}
|
|
|
|
if (in_fence) {
|
|
err = i915_request_await_dma_fence(eb.request, in_fence);
|
|
if (err < 0)
|
|
goto err_request;
|
|
}
|
|
|
|
if (fences) {
|
|
err = await_fence_array(&eb, fences);
|
|
if (err)
|
|
goto err_request;
|
|
}
|
|
|
|
if (out_fence_fd != -1) {
|
|
out_fence = sync_file_create(&eb.request->fence);
|
|
if (!out_fence) {
|
|
err = -ENOMEM;
|
|
goto err_request;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Whilst this request exists, batch_obj will be on the
|
|
* active_list, and so will hold the active reference. Only when this
|
|
* request is retired will the the batch_obj be moved onto the
|
|
* inactive_list and lose its active reference. Hence we do not need
|
|
* to explicitly hold another reference here.
|
|
*/
|
|
eb.request->batch = eb.batch;
|
|
|
|
trace_i915_request_queue(eb.request, eb.batch_flags);
|
|
err = eb_submit(&eb);
|
|
err_request:
|
|
i915_request_add(eb.request);
|
|
add_to_client(eb.request, file);
|
|
|
|
if (fences)
|
|
signal_fence_array(&eb, fences);
|
|
|
|
if (out_fence) {
|
|
if (err == 0) {
|
|
fd_install(out_fence_fd, out_fence->file);
|
|
args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
|
|
args->rsvd2 |= (u64)out_fence_fd << 32;
|
|
out_fence_fd = -1;
|
|
} else {
|
|
fput(out_fence->file);
|
|
}
|
|
}
|
|
|
|
err_batch_unpin:
|
|
if (eb.batch_flags & I915_DISPATCH_SECURE)
|
|
i915_vma_unpin(eb.batch);
|
|
err_vma:
|
|
if (eb.exec)
|
|
eb_release_vmas(&eb);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
err_rpm:
|
|
intel_runtime_pm_put(eb.i915);
|
|
i915_gem_context_put(eb.ctx);
|
|
err_destroy:
|
|
eb_destroy(&eb);
|
|
err_out_fence:
|
|
if (out_fence_fd != -1)
|
|
put_unused_fd(out_fence_fd);
|
|
err_in_fence:
|
|
dma_fence_put(in_fence);
|
|
return err;
|
|
}
|
|
|
|
static size_t eb_element_size(void)
|
|
{
|
|
return (sizeof(struct drm_i915_gem_exec_object2) +
|
|
sizeof(struct i915_vma *) +
|
|
sizeof(unsigned int));
|
|
}
|
|
|
|
static bool check_buffer_count(size_t count)
|
|
{
|
|
const size_t sz = eb_element_size();
|
|
|
|
/*
|
|
* When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
|
|
* array size (see eb_create()). Otherwise, we can accept an array as
|
|
* large as can be addressed (though use large arrays at your peril)!
|
|
*/
|
|
|
|
return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
|
|
}
|
|
|
|
/*
|
|
* Legacy execbuffer just creates an exec2 list from the original exec object
|
|
* list array and passes it to the real function.
|
|
*/
|
|
int
|
|
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_execbuffer *args = data;
|
|
struct drm_i915_gem_execbuffer2 exec2;
|
|
struct drm_i915_gem_exec_object *exec_list = NULL;
|
|
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
|
|
const size_t count = args->buffer_count;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
if (!check_buffer_count(count)) {
|
|
DRM_DEBUG("execbuf2 with %zd buffers\n", count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
exec2.buffers_ptr = args->buffers_ptr;
|
|
exec2.buffer_count = args->buffer_count;
|
|
exec2.batch_start_offset = args->batch_start_offset;
|
|
exec2.batch_len = args->batch_len;
|
|
exec2.DR1 = args->DR1;
|
|
exec2.DR4 = args->DR4;
|
|
exec2.num_cliprects = args->num_cliprects;
|
|
exec2.cliprects_ptr = args->cliprects_ptr;
|
|
exec2.flags = I915_EXEC_RENDER;
|
|
i915_execbuffer2_set_context_id(exec2, 0);
|
|
|
|
if (!i915_gem_check_execbuffer(&exec2))
|
|
return -EINVAL;
|
|
|
|
/* Copy in the exec list from userland */
|
|
exec_list = kvmalloc_array(count, sizeof(*exec_list),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
exec2_list = kvmalloc_array(count + 1, eb_element_size(),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (exec_list == NULL || exec2_list == NULL) {
|
|
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
|
|
args->buffer_count);
|
|
kvfree(exec_list);
|
|
kvfree(exec2_list);
|
|
return -ENOMEM;
|
|
}
|
|
err = copy_from_user(exec_list,
|
|
u64_to_user_ptr(args->buffers_ptr),
|
|
sizeof(*exec_list) * count);
|
|
if (err) {
|
|
DRM_DEBUG("copy %d exec entries failed %d\n",
|
|
args->buffer_count, err);
|
|
kvfree(exec_list);
|
|
kvfree(exec2_list);
|
|
return -EFAULT;
|
|
}
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
exec2_list[i].handle = exec_list[i].handle;
|
|
exec2_list[i].relocation_count = exec_list[i].relocation_count;
|
|
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
|
|
exec2_list[i].alignment = exec_list[i].alignment;
|
|
exec2_list[i].offset = exec_list[i].offset;
|
|
if (INTEL_GEN(to_i915(dev)) < 4)
|
|
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
|
|
else
|
|
exec2_list[i].flags = 0;
|
|
}
|
|
|
|
err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
|
|
if (exec2.flags & __EXEC_HAS_RELOC) {
|
|
struct drm_i915_gem_exec_object __user *user_exec_list =
|
|
u64_to_user_ptr(args->buffers_ptr);
|
|
|
|
/* Copy the new buffer offsets back to the user's exec list. */
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
if (!(exec2_list[i].offset & UPDATE))
|
|
continue;
|
|
|
|
exec2_list[i].offset =
|
|
gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
|
|
exec2_list[i].offset &= PIN_OFFSET_MASK;
|
|
if (__copy_to_user(&user_exec_list[i].offset,
|
|
&exec2_list[i].offset,
|
|
sizeof(user_exec_list[i].offset)))
|
|
break;
|
|
}
|
|
}
|
|
|
|
kvfree(exec_list);
|
|
kvfree(exec2_list);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_execbuffer2 *args = data;
|
|
struct drm_i915_gem_exec_object2 *exec2_list;
|
|
struct drm_syncobj **fences = NULL;
|
|
const size_t count = args->buffer_count;
|
|
int err;
|
|
|
|
if (!check_buffer_count(count)) {
|
|
DRM_DEBUG("execbuf2 with %zd buffers\n", count);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!i915_gem_check_execbuffer(args))
|
|
return -EINVAL;
|
|
|
|
/* Allocate an extra slot for use by the command parser */
|
|
exec2_list = kvmalloc_array(count + 1, eb_element_size(),
|
|
__GFP_NOWARN | GFP_KERNEL);
|
|
if (exec2_list == NULL) {
|
|
DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
|
|
count);
|
|
return -ENOMEM;
|
|
}
|
|
if (copy_from_user(exec2_list,
|
|
u64_to_user_ptr(args->buffers_ptr),
|
|
sizeof(*exec2_list) * count)) {
|
|
DRM_DEBUG("copy %zd exec entries failed\n", count);
|
|
kvfree(exec2_list);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (args->flags & I915_EXEC_FENCE_ARRAY) {
|
|
fences = get_fence_array(args, file);
|
|
if (IS_ERR(fences)) {
|
|
kvfree(exec2_list);
|
|
return PTR_ERR(fences);
|
|
}
|
|
}
|
|
|
|
err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
|
|
|
|
/*
|
|
* Now that we have begun execution of the batchbuffer, we ignore
|
|
* any new error after this point. Also given that we have already
|
|
* updated the associated relocations, we try to write out the current
|
|
* object locations irrespective of any error.
|
|
*/
|
|
if (args->flags & __EXEC_HAS_RELOC) {
|
|
struct drm_i915_gem_exec_object2 __user *user_exec_list =
|
|
u64_to_user_ptr(args->buffers_ptr);
|
|
unsigned int i;
|
|
|
|
/* Copy the new buffer offsets back to the user's exec list. */
|
|
/*
|
|
* Note: count * sizeof(*user_exec_list) does not overflow,
|
|
* because we checked 'count' in check_buffer_count().
|
|
*
|
|
* And this range already got effectively checked earlier
|
|
* when we did the "copy_from_user()" above.
|
|
*/
|
|
if (!user_access_begin(VERIFY_WRITE, user_exec_list,
|
|
count * sizeof(*user_exec_list)))
|
|
goto end_user;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
if (!(exec2_list[i].offset & UPDATE))
|
|
continue;
|
|
|
|
exec2_list[i].offset =
|
|
gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
|
|
unsafe_put_user(exec2_list[i].offset,
|
|
&user_exec_list[i].offset,
|
|
end_user);
|
|
}
|
|
end_user:
|
|
user_access_end();
|
|
}
|
|
|
|
args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
|
|
put_fence_array(args, fences);
|
|
kvfree(exec2_list);
|
|
return err;
|
|
}
|