kernel_samsung_a34x-permissive/drivers/gpu/drm/i915/intel_bios.c
2024-04-28 15:51:13 +02:00

2162 lines
58 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drm_dp_helper.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/**
* DOC: Video BIOS Table (VBT)
*
* The Video BIOS Table, or VBT, provides platform and board specific
* configuration information to the driver that is not discoverable or available
* through other means. The configuration is mostly related to display
* hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
* the PCI ROM.
*
* The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
* Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
* contain the actual configuration information. The VBT Header, and thus the
* VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
* BDB Header. The data blocks are concatenated after the BDB Header. The data
* blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
* data. (Block 53, the MIPI Sequence Block is an exception.)
*
* The driver parses the VBT during load. The relevant information is stored in
* driver private data for ease of use, and the actual VBT is not read after
* that.
*/
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
/* Get BDB block size given a pointer to Block ID. */
static u32 _get_blocksize(const u8 *block_base)
{
/* The MIPI Sequence Block v3+ has a separate size field. */
if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
return *((const u32 *)(block_base + 4));
else
return *((const u16 *)(block_base + 1));
}
/* Get BDB block size give a pointer to data after Block ID and Block Size. */
static u32 get_blocksize(const void *block_data)
{
return _get_blocksize(block_data - 3);
}
static const void *
find_section(const void *_bdb, int section_id)
{
const struct bdb_header *bdb = _bdb;
const u8 *base = _bdb;
int index = 0;
u32 total, current_size;
u8 current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
current_size = _get_blocksize(base + index);
index += 3;
if (index + current_size > total)
return NULL;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
((dvo_timing->hsync_pulse_width_hi << 8) |
dvo_timing->hsync_pulse_width_lo);
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
((dvo_timing->vsync_pulse_width_hi << 4) |
dvo_timing->vsync_pulse_width_lo);
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
dvo_timing->himage_lo;
panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
dvo_timing->vimage_lo;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* get lvds_fp_timing entry
* this function may return NULL if the corresponding entry is invalid
*/
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header *bdb,
const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
size_t ofs;
if (index >= ARRAY_SIZE(ptrs->ptr))
return NULL;
ofs = ptrs->ptr[index].fp_timing_offset;
if (ofs < data_ofs ||
ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
return NULL;
return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
}
/* Try to find integrated panel data */
static void
parse_lfp_panel_data(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int panel_type;
int drrs_mode;
int ret;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
dev_priv->vbt.lvds_dither = lvds_options->pixel_dither;
ret = intel_opregion_get_panel_type(dev_priv);
if (ret >= 0) {
WARN_ON(ret > 0xf);
panel_type = ret;
DRM_DEBUG_KMS("Panel type: %d (OpRegion)\n", panel_type);
} else {
if (lvds_options->panel_type > 0xf) {
DRM_DEBUG_KMS("Invalid VBT panel type 0x%x\n",
lvds_options->panel_type);
return;
}
panel_type = lvds_options->panel_type;
DRM_DEBUG_KMS("Panel type: %d (VBT)\n", panel_type);
}
dev_priv->vbt.panel_type = panel_type;
drrs_mode = (lvds_options->dps_panel_type_bits
>> (panel_type * 2)) & MODE_MASK;
/*
* VBT has static DRRS = 0 and seamless DRRS = 2.
* The below piece of code is required to adjust vbt.drrs_type
* to match the enum drrs_support_type.
*/
switch (drrs_mode) {
case 0:
dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is static\n");
break;
case 2:
dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
DRM_DEBUG_KMS("DRRS supported mode is seamless\n");
break;
default:
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
DRM_DEBUG_KMS("DRRS not supported (VBT input)\n");
break;
}
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
if (fp_timing) {
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
DRM_DEBUG_KMS("VBT initial LVDS value %x\n",
dev_priv->vbt.bios_lvds_val);
}
}
}
static void
parse_lfp_backlight(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_lfp_backlight_data *backlight_data;
const struct bdb_lfp_backlight_data_entry *entry;
int panel_type = dev_priv->vbt.panel_type;
backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
if (!backlight_data)
return;
if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n",
backlight_data->entry_size);
return;
}
entry = &backlight_data->data[panel_type];
dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
if (!dev_priv->vbt.backlight.present) {
DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n",
entry->type);
return;
}
dev_priv->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
if (bdb->version >= 191 &&
get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
const struct bdb_lfp_backlight_control_method *method;
method = &backlight_data->backlight_control[panel_type];
dev_priv->vbt.backlight.type = method->type;
dev_priv->vbt.backlight.controller = method->controller;
}
dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm;
dev_priv->vbt.backlight.min_brightness = entry->min_brightness;
DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, "
"active %s, min brightness %u, level %u, controller %u\n",
dev_priv->vbt.backlight.pwm_freq_hz,
dev_priv->vbt.backlight.active_low_pwm ? "low" : "high",
dev_priv->vbt.backlight.min_brightness,
backlight_data->level[panel_type],
dev_priv->vbt.backlight.controller);
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct lvds_dvo_timing *dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915_modparams.vbt_sdvo_panel_type;
if (index == -2) {
DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dvo_timing)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_i915_private *dev_priv,
bool alternate)
{
switch (INTEL_GEN(dev_priv)) {
case 2:
return alternate ? 66667 : 48000;
case 3:
case 4:
return alternate ? 100000 : 96000;
default:
return alternate ? 100000 : 120000;
}
}
static void
parse_general_features(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (!general)
return;
dev_priv->vbt.int_tv_support = general->int_tv_support;
/* int_crt_support can't be trusted on earlier platforms */
if (bdb->version >= 155 &&
(HAS_DDI(dev_priv) || IS_VALLEYVIEW(dev_priv)))
dev_priv->vbt.int_crt_support = general->int_crt_support;
dev_priv->vbt.lvds_use_ssc = general->enable_ssc;
dev_priv->vbt.lvds_ssc_freq =
intel_bios_ssc_frequency(dev_priv, general->ssc_freq);
dev_priv->vbt.display_clock_mode = general->display_clock_mode;
dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
dev_priv->vbt.int_tv_support,
dev_priv->vbt.int_crt_support,
dev_priv->vbt.lvds_use_ssc,
dev_priv->vbt.lvds_ssc_freq,
dev_priv->vbt.display_clock_mode,
dev_priv->vbt.fdi_rx_polarity_inverted);
}
static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions *defs, int i)
{
return (const void *) &defs->devices[i * defs->child_dev_size];
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, u8 bdb_version)
{
struct sdvo_device_mapping *mapping;
const struct child_device_config *child;
int i, count = 0;
/*
* Only parse SDVO mappings on gens that could have SDVO. This isn't
* accurate and doesn't have to be, as long as it's not too strict.
*/
if (!IS_GEN(dev_priv, 3, 7)) {
DRM_DEBUG_KMS("Skipping SDVO device mapping\n");
return;
}
for (i = 0, count = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child->slave_addr != SLAVE_ADDR1 &&
child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (child->dvo_port != DEVICE_PORT_DVOB &&
child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
continue;
}
DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
" %s port\n",
child->slave_addr,
(child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
mapping = &dev_priv->vbt.sdvo_mappings[child->dvo_port - 1];
if (!mapping->initialized) {
mapping->dvo_port = child->dvo_port;
mapping->slave_addr = child->slave_addr;
mapping->dvo_wiring = child->dvo_wiring;
mapping->ddc_pin = child->ddc_pin;
mapping->i2c_pin = child->i2c_pin;
mapping->initialized = 1;
DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
mapping->dvo_port,
mapping->slave_addr,
mapping->dvo_wiring,
mapping->ddc_pin,
mapping->i2c_pin);
} else {
DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
}
}
static void
parse_driver_features(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (INTEL_GEN(dev_priv) >= 5) {
/*
* Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
* to mean "eDP". The VBT spec doesn't agree with that
* interpretation, but real world VBTs seem to.
*/
if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
dev_priv->vbt.int_lvds_support = 0;
} else {
/*
* FIXME it's not clear which BDB version has the LVDS config
* bits defined. Revision history in the VBT spec says:
* "0.92 | Add two definitions for VBT value of LVDS Active
* Config (00b and 11b values defined) | 06/13/2005"
* but does not the specify the BDB version.
*
* So far version 134 (on i945gm) is the oldest VBT observed
* in the wild with the bits correctly populated. Version
* 108 (on i85x) does not have the bits correctly populated.
*/
if (bdb->version >= 134 &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
dev_priv->vbt.int_lvds_support = 0;
}
DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* driver->drrs_enabled=false
*/
if (!driver->drrs_enabled)
dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED;
dev_priv->vbt.psr.enable = driver->psr_enabled;
}
static void
parse_edp(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
{
const struct bdb_edp *edp;
const struct edp_power_seq *edp_pps;
const struct edp_fast_link_params *edp_link_params;
int panel_type = dev_priv->vbt.panel_type;
edp = find_section(bdb, BDB_EDP);
if (!edp)
return;
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->vbt.edp.bpp = 18;
break;
case EDP_24BPP:
dev_priv->vbt.edp.bpp = 24;
break;
case EDP_30BPP:
dev_priv->vbt.edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->fast_link_params[panel_type];
dev_priv->vbt.edp.pps = *edp_pps;
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
dev_priv->vbt.edp.rate = DP_LINK_BW_1_62;
break;
case EDP_RATE_2_7:
dev_priv->vbt.edp.rate = DP_LINK_BW_2_7;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n",
edp_link_params->rate);
break;
}
switch (edp_link_params->lanes) {
case EDP_LANE_1:
dev_priv->vbt.edp.lanes = 1;
break;
case EDP_LANE_2:
dev_priv->vbt.edp.lanes = 2;
break;
case EDP_LANE_4:
dev_priv->vbt.edp.lanes = 4;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n",
edp_link_params->lanes);
break;
}
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
dev_priv->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n",
edp_link_params->preemphasis);
break;
}
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
dev_priv->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n",
edp_link_params->vswing);
break;
}
if (bdb->version >= 173) {
u8 vswing;
/* Don't read from VBT if module parameter has valid value*/
if (i915_modparams.edp_vswing) {
dev_priv->vbt.edp.low_vswing =
i915_modparams.edp_vswing == 1;
} else {
vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
dev_priv->vbt.edp.low_vswing = vswing == 0;
}
}
}
static void
parse_psr(struct drm_i915_private *dev_priv, const struct bdb_header *bdb)
{
const struct bdb_psr *psr;
const struct psr_table *psr_table;
int panel_type = dev_priv->vbt.panel_type;
psr = find_section(bdb, BDB_PSR);
if (!psr) {
DRM_DEBUG_KMS("No PSR BDB found.\n");
return;
}
psr_table = &psr->psr_table[panel_type];
dev_priv->vbt.psr.full_link = psr_table->full_link;
dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
/* Allowed VBT values goes from 0 to 15 */
dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
switch (psr_table->lines_to_wait) {
case 0:
dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
break;
case 1:
dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
break;
case 2:
dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
break;
case 3:
dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
break;
default:
DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n",
psr_table->lines_to_wait);
break;
}
/*
* New psr options 0=500us, 1=100us, 2=2500us, 3=0us
* Old decimal value is wake up time in multiples of 100 us.
*/
if (bdb->version >= 205 &&
(IS_GEN9_BC(dev_priv) || IS_GEMINILAKE(dev_priv) ||
INTEL_GEN(dev_priv) >= 10)) {
switch (psr_table->tp1_wakeup_time) {
case 0:
dev_priv->vbt.psr.tp1_wakeup_time_us = 500;
break;
case 1:
dev_priv->vbt.psr.tp1_wakeup_time_us = 100;
break;
case 3:
dev_priv->vbt.psr.tp1_wakeup_time_us = 0;
break;
default:
DRM_DEBUG_KMS("VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp1_wakeup_time);
/* fallthrough */
case 2:
dev_priv->vbt.psr.tp1_wakeup_time_us = 2500;
break;
}
switch (psr_table->tp2_tp3_wakeup_time) {
case 0:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 500;
break;
case 1:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 100;
break;
case 3:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 0;
break;
default:
DRM_DEBUG_KMS("VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp2_tp3_wakeup_time);
/* fallthrough */
case 2:
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
break;
}
} else {
dev_priv->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
dev_priv->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
}
}
static void parse_dsi_backlight_ports(struct drm_i915_private *dev_priv,
u16 version, enum port port)
{
if (!dev_priv->vbt.dsi.config->dual_link || version < 197) {
dev_priv->vbt.dsi.bl_ports = BIT(port);
if (dev_priv->vbt.dsi.config->cabc_supported)
dev_priv->vbt.dsi.cabc_ports = BIT(port);
return;
}
switch (dev_priv->vbt.dsi.config->dl_dcs_backlight_ports) {
case DL_DCS_PORT_A:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
dev_priv->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
break;
}
if (!dev_priv->vbt.dsi.config->cabc_supported)
return;
switch (dev_priv->vbt.dsi.config->dl_dcs_cabc_ports) {
case DL_DCS_PORT_A:
dev_priv->vbt.dsi.cabc_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
dev_priv->vbt.dsi.cabc_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
dev_priv->vbt.dsi.cabc_ports =
BIT(PORT_A) | BIT(PORT_C);
break;
}
}
static void
parse_mipi_config(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_mipi_config *start;
const struct mipi_config *config;
const struct mipi_pps_data *pps;
int panel_type = dev_priv->vbt.panel_type;
enum port port;
/* parse MIPI blocks only if LFP type is MIPI */
if (!intel_bios_is_dsi_present(dev_priv, &port))
return;
/* Initialize this to undefined indicating no generic MIPI support */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
/* Block #40 is already parsed and panel_fixed_mode is
* stored in dev_priv->lfp_lvds_vbt_mode
* resuse this when needed
*/
/* Parse #52 for panel index used from panel_type already
* parsed
*/
start = find_section(bdb, BDB_MIPI_CONFIG);
if (!start) {
DRM_DEBUG_KMS("No MIPI config BDB found");
return;
}
DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n",
panel_type);
/*
* get hold of the correct configuration block and pps data as per
* the panel_type as index
*/
config = &start->config[panel_type];
pps = &start->pps[panel_type];
/* store as of now full data. Trim when we realise all is not needed */
dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
if (!dev_priv->vbt.dsi.config)
return;
dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
if (!dev_priv->vbt.dsi.pps) {
kfree(dev_priv->vbt.dsi.config);
return;
}
parse_dsi_backlight_ports(dev_priv, bdb->version, port);
/* We have mandatory mipi config blocks. Initialize as generic panel */
dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
}
/* Find the sequence block and size for the given panel. */
static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
u16 panel_id, u32 *seq_size)
{
u32 total = get_blocksize(sequence);
const u8 *data = &sequence->data[0];
u8 current_id;
u32 current_size;
int header_size = sequence->version >= 3 ? 5 : 3;
int index = 0;
int i;
/* skip new block size */
if (sequence->version >= 3)
data += 4;
for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
if (index + header_size > total) {
DRM_ERROR("Invalid sequence block (header)\n");
return NULL;
}
current_id = *(data + index);
if (sequence->version >= 3)
current_size = *((const u32 *)(data + index + 1));
else
current_size = *((const u16 *)(data + index + 1));
index += header_size;
if (index + current_size > total) {
DRM_ERROR("Invalid sequence block\n");
return NULL;
}
if (current_id == panel_id) {
*seq_size = current_size;
return data + index;
}
index += current_size;
}
DRM_ERROR("Sequence block detected but no valid configuration\n");
return NULL;
}
static int goto_next_sequence(const u8 *data, int index, int total)
{
u16 len;
/* Skip Sequence Byte. */
for (index = index + 1; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
switch (operation_byte) {
case MIPI_SEQ_ELEM_END:
return index;
case MIPI_SEQ_ELEM_SEND_PKT:
if (index + 4 > total)
return 0;
len = *((const u16 *)(data + index + 2)) + 4;
break;
case MIPI_SEQ_ELEM_DELAY:
len = 4;
break;
case MIPI_SEQ_ELEM_GPIO:
len = 2;
break;
case MIPI_SEQ_ELEM_I2C:
if (index + 7 > total)
return 0;
len = *(data + index + 6) + 7;
break;
default:
DRM_ERROR("Unknown operation byte\n");
return 0;
}
}
return 0;
}
static int goto_next_sequence_v3(const u8 *data, int index, int total)
{
int seq_end;
u16 len;
u32 size_of_sequence;
/*
* Could skip sequence based on Size of Sequence alone, but also do some
* checking on the structure.
*/
if (total < 5) {
DRM_ERROR("Too small sequence size\n");
return 0;
}
/* Skip Sequence Byte. */
index++;
/*
* Size of Sequence. Excludes the Sequence Byte and the size itself,
* includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
* byte.
*/
size_of_sequence = *((const u32 *)(data + index));
index += 4;
seq_end = index + size_of_sequence;
if (seq_end > total) {
DRM_ERROR("Invalid sequence size\n");
return 0;
}
for (; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
if (operation_byte == MIPI_SEQ_ELEM_END) {
if (index != seq_end) {
DRM_ERROR("Invalid element structure\n");
return 0;
}
return index;
}
len = *(data + index);
index++;
/*
* FIXME: Would be nice to check elements like for v1/v2 in
* goto_next_sequence() above.
*/
switch (operation_byte) {
case MIPI_SEQ_ELEM_SEND_PKT:
case MIPI_SEQ_ELEM_DELAY:
case MIPI_SEQ_ELEM_GPIO:
case MIPI_SEQ_ELEM_I2C:
case MIPI_SEQ_ELEM_SPI:
case MIPI_SEQ_ELEM_PMIC:
break;
default:
DRM_ERROR("Unknown operation byte %u\n",
operation_byte);
break;
}
}
return 0;
}
/*
* Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
* skip all delay + gpio operands and stop at the first DSI packet op.
*/
static int get_init_otp_deassert_fragment_len(struct drm_i915_private *dev_priv)
{
const u8 *data = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
int index, len;
if (WARN_ON(!data || dev_priv->vbt.dsi.seq_version != 1))
return 0;
/* index = 1 to skip sequence byte */
for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
switch (data[index]) {
case MIPI_SEQ_ELEM_SEND_PKT:
return index == 1 ? 0 : index;
case MIPI_SEQ_ELEM_DELAY:
len = 5; /* 1 byte for operand + uint32 */
break;
case MIPI_SEQ_ELEM_GPIO:
len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
break;
default:
return 0;
}
}
return 0;
}
/*
* Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
* The deassert must be done before calling intel_dsi_device_ready, so for
* these devices we split the init OTP sequence into a deassert sequence and
* the actual init OTP part.
*/
static void fixup_mipi_sequences(struct drm_i915_private *dev_priv)
{
u8 *init_otp;
int len;
/* Limit this to VLV for now. */
if (!IS_VALLEYVIEW(dev_priv))
return;
/* Limit this to v1 vid-mode sequences */
if (dev_priv->vbt.dsi.config->is_cmd_mode ||
dev_priv->vbt.dsi.seq_version != 1)
return;
/* Only do this if there are otp and assert seqs and no deassert seq */
if (!dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
!dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
return;
/* The deassert-sequence ends at the first DSI packet */
len = get_init_otp_deassert_fragment_len(dev_priv);
if (!len)
return;
DRM_DEBUG_KMS("Using init OTP fragment to deassert reset\n");
/* Copy the fragment, update seq byte and terminate it */
init_otp = (u8 *)dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
dev_priv->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
if (!dev_priv->vbt.dsi.deassert_seq)
return;
dev_priv->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
dev_priv->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
/* Use the copy for deassert */
dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
dev_priv->vbt.dsi.deassert_seq;
/* Replace the last byte of the fragment with init OTP seq byte */
init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
}
static void
parse_mipi_sequence(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
int panel_type = dev_priv->vbt.panel_type;
const struct bdb_mipi_sequence *sequence;
const u8 *seq_data;
u32 seq_size;
u8 *data;
int index = 0;
/* Only our generic panel driver uses the sequence block. */
if (dev_priv->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
return;
sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
if (!sequence) {
DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n");
return;
}
/* Fail gracefully for forward incompatible sequence block. */
if (sequence->version >= 4) {
DRM_ERROR("Unable to parse MIPI Sequence Block v%u\n",
sequence->version);
return;
}
DRM_DEBUG_DRIVER("Found MIPI sequence block v%u\n", sequence->version);
seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
if (!seq_data)
return;
data = kmemdup(seq_data, seq_size, GFP_KERNEL);
if (!data)
return;
/* Parse the sequences, store pointers to each sequence. */
for (;;) {
u8 seq_id = *(data + index);
if (seq_id == MIPI_SEQ_END)
break;
if (seq_id >= MIPI_SEQ_MAX) {
DRM_ERROR("Unknown sequence %u\n", seq_id);
goto err;
}
/* Log about presence of sequences we won't run. */
if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
DRM_DEBUG_KMS("Unsupported sequence %u\n", seq_id);
dev_priv->vbt.dsi.sequence[seq_id] = data + index;
if (sequence->version >= 3)
index = goto_next_sequence_v3(data, index, seq_size);
else
index = goto_next_sequence(data, index, seq_size);
if (!index) {
DRM_ERROR("Invalid sequence %u\n", seq_id);
goto err;
}
}
dev_priv->vbt.dsi.data = data;
dev_priv->vbt.dsi.size = seq_size;
dev_priv->vbt.dsi.seq_version = sequence->version;
fixup_mipi_sequences(dev_priv);
DRM_DEBUG_DRIVER("MIPI related VBT parsing complete\n");
return;
err:
kfree(data);
memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence));
}
static u8 translate_iboost(u8 val)
{
static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
if (val >= ARRAY_SIZE(mapping)) {
DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
return 0;
}
return mapping[val];
}
static void sanitize_ddc_pin(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum port p;
if (!info->alternate_ddc_pin)
return;
for_each_port_masked(p, (1 << port) - 1) {
struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
if (info->alternate_ddc_pin != i->alternate_ddc_pin)
continue;
DRM_DEBUG_KMS("port %c trying to use the same DDC pin (0x%x) as port %c, "
"disabling port %c DVI/HDMI support\n",
port_name(p), i->alternate_ddc_pin,
port_name(port), port_name(p));
/*
* If we have multiple ports supposedly sharing the
* pin, then dvi/hdmi couldn't exist on the shared
* port. Otherwise they share the same ddc bin and
* system couldn't communicate with them separately.
*
* Due to parsing the ports in alphabetical order,
* a higher port will always clobber a lower one.
*/
i->supports_dvi = false;
i->supports_hdmi = false;
i->alternate_ddc_pin = 0;
}
}
static void sanitize_aux_ch(struct drm_i915_private *dev_priv,
enum port port)
{
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
enum port p;
if (!info->alternate_aux_channel)
return;
for_each_port_masked(p, (1 << port) - 1) {
struct ddi_vbt_port_info *i = &dev_priv->vbt.ddi_port_info[p];
if (info->alternate_aux_channel != i->alternate_aux_channel)
continue;
DRM_DEBUG_KMS("port %c trying to use the same AUX CH (0x%x) as port %c, "
"disabling port %c DP support\n",
port_name(p), i->alternate_aux_channel,
port_name(port), port_name(p));
/*
* If we have multiple ports supposedlt sharing the
* aux channel, then DP couldn't exist on the shared
* port. Otherwise they share the same aux channel
* and system couldn't communicate with them separately.
*
* Due to parsing the ports in alphabetical order,
* a higher port will always clobber a lower one.
*/
i->supports_dp = false;
i->alternate_aux_channel = 0;
}
}
static const u8 cnp_ddc_pin_map[] = {
[0] = 0, /* N/A */
[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
};
static const u8 icp_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
};
static u8 map_ddc_pin(struct drm_i915_private *dev_priv, u8 vbt_pin)
{
const u8 *ddc_pin_map;
int n_entries;
if (HAS_PCH_ICP(dev_priv)) {
ddc_pin_map = icp_ddc_pin_map;
n_entries = ARRAY_SIZE(icp_ddc_pin_map);
} else if (HAS_PCH_CNP(dev_priv)) {
ddc_pin_map = cnp_ddc_pin_map;
n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
} else {
/* Assuming direct map */
return vbt_pin;
}
if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
return ddc_pin_map[vbt_pin];
DRM_DEBUG_KMS("Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
vbt_pin);
return 0;
}
static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port,
u8 bdb_version)
{
struct child_device_config *it, *child = NULL;
struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
int i, j;
bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
/* Each DDI port can have more than one value on the "DVO Port" field,
* so look for all the possible values for each port.
*/
int dvo_ports[][3] = {
{DVO_PORT_HDMIA, DVO_PORT_DPA, -1},
{DVO_PORT_HDMIB, DVO_PORT_DPB, -1},
{DVO_PORT_HDMIC, DVO_PORT_DPC, -1},
{DVO_PORT_HDMID, DVO_PORT_DPD, -1},
{DVO_PORT_CRT, DVO_PORT_HDMIE, DVO_PORT_DPE},
{DVO_PORT_HDMIF, DVO_PORT_DPF, -1},
};
/*
* Find the first child device to reference the port, report if more
* than one found.
*/
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
it = dev_priv->vbt.child_dev + i;
for (j = 0; j < 3; j++) {
if (dvo_ports[port][j] == -1)
break;
if (it->dvo_port == dvo_ports[port][j]) {
if (child) {
DRM_DEBUG_KMS("More than one child device for port %c in VBT, using the first.\n",
port_name(port));
} else {
child = it;
}
}
}
}
if (!child)
return;
is_dvi = child->device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
is_dp = child->device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
is_crt = child->device_type & DEVICE_TYPE_ANALOG_OUTPUT;
is_hdmi = is_dvi && (child->device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
is_edp = is_dp && (child->device_type & DEVICE_TYPE_INTERNAL_CONNECTOR);
if (port == PORT_A && is_dvi) {
DRM_DEBUG_KMS("VBT claims port A supports DVI%s, ignoring\n",
is_hdmi ? "/HDMI" : "");
is_dvi = false;
is_hdmi = false;
}
info->supports_dvi = is_dvi;
info->supports_hdmi = is_hdmi;
info->supports_dp = is_dp;
info->supports_edp = is_edp;
DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n",
port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt);
if (is_edp && is_dvi)
DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n",
port_name(port));
if (is_crt && port != PORT_E)
DRM_DEBUG_KMS("Port %c is analog\n", port_name(port));
if (is_crt && (is_dvi || is_dp))
DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n",
port_name(port));
if (is_dvi && (port == PORT_A || port == PORT_E))
DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port));
if (!is_dvi && !is_dp && !is_crt)
DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n",
port_name(port));
if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E))
DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port));
if (is_dvi) {
u8 ddc_pin;
ddc_pin = map_ddc_pin(dev_priv, child->ddc_pin);
if (intel_gmbus_is_valid_pin(dev_priv, ddc_pin)) {
info->alternate_ddc_pin = ddc_pin;
sanitize_ddc_pin(dev_priv, port);
} else {
DRM_DEBUG_KMS("Port %c has invalid DDC pin %d, "
"sticking to defaults\n",
port_name(port), ddc_pin);
}
}
if (is_dp) {
info->alternate_aux_channel = child->aux_channel;
sanitize_aux_ch(dev_priv, port);
}
if (bdb_version >= 158) {
/* The VBT HDMI level shift values match the table we have. */
u8 hdmi_level_shift = child->hdmi_level_shifter_value;
DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n",
port_name(port),
hdmi_level_shift);
info->hdmi_level_shift = hdmi_level_shift;
}
if (bdb_version >= 204) {
int max_tmds_clock;
switch (child->hdmi_max_data_rate) {
default:
MISSING_CASE(child->hdmi_max_data_rate);
/* fall through */
case HDMI_MAX_DATA_RATE_PLATFORM:
max_tmds_clock = 0;
break;
case HDMI_MAX_DATA_RATE_297:
max_tmds_clock = 297000;
break;
case HDMI_MAX_DATA_RATE_165:
max_tmds_clock = 165000;
break;
}
if (max_tmds_clock)
DRM_DEBUG_KMS("VBT HDMI max TMDS clock for port %c: %d kHz\n",
port_name(port), max_tmds_clock);
info->max_tmds_clock = max_tmds_clock;
}
/* Parse the I_boost config for SKL and above */
if (bdb_version >= 196 && child->iboost) {
info->dp_boost_level = translate_iboost(child->dp_iboost_level);
DRM_DEBUG_KMS("VBT (e)DP boost level for port %c: %d\n",
port_name(port), info->dp_boost_level);
info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
DRM_DEBUG_KMS("VBT HDMI boost level for port %c: %d\n",
port_name(port), info->hdmi_boost_level);
}
/* DP max link rate for CNL+ */
if (bdb_version >= 216) {
switch (child->dp_max_link_rate) {
default:
case VBT_DP_MAX_LINK_RATE_HBR3:
info->dp_max_link_rate = 810000;
break;
case VBT_DP_MAX_LINK_RATE_HBR2:
info->dp_max_link_rate = 540000;
break;
case VBT_DP_MAX_LINK_RATE_HBR:
info->dp_max_link_rate = 270000;
break;
case VBT_DP_MAX_LINK_RATE_LBR:
info->dp_max_link_rate = 162000;
break;
}
DRM_DEBUG_KMS("VBT DP max link rate for port %c: %d\n",
port_name(port), info->dp_max_link_rate);
}
}
static void parse_ddi_ports(struct drm_i915_private *dev_priv, u8 bdb_version)
{
enum port port;
if (!HAS_DDI(dev_priv) && !IS_CHERRYVIEW(dev_priv))
return;
if (!dev_priv->vbt.child_dev_num)
return;
if (bdb_version < 155)
return;
for (port = PORT_A; port < I915_MAX_PORTS; port++)
parse_ddi_port(dev_priv, port, bdb_version);
}
static void
parse_general_definitions(struct drm_i915_private *dev_priv,
const struct bdb_header *bdb)
{
const struct bdb_general_definitions *defs;
const struct child_device_config *child;
int i, child_device_num, count;
u8 expected_size;
u16 block_size;
int bus_pin;
defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!defs) {
DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
return;
}
block_size = get_blocksize(defs);
if (block_size < sizeof(*defs)) {
DRM_DEBUG_KMS("General definitions block too small (%u)\n",
block_size);
return;
}
bus_pin = defs->crt_ddc_gmbus_pin;
DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_valid_pin(dev_priv, bus_pin))
dev_priv->vbt.crt_ddc_pin = bus_pin;
if (bdb->version < 106) {
expected_size = 22;
} else if (bdb->version < 111) {
expected_size = 27;
} else if (bdb->version < 195) {
expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
} else if (bdb->version == 195) {
expected_size = 37;
} else if (bdb->version <= 215) {
expected_size = 38;
} else if (bdb->version <= 216) {
expected_size = 39;
} else {
expected_size = sizeof(*child);
BUILD_BUG_ON(sizeof(*child) < 39);
DRM_DEBUG_DRIVER("Expected child device config size for VBT version %u not known; assuming %u\n",
bdb->version, expected_size);
}
/* Flag an error for unexpected size, but continue anyway. */
if (defs->child_dev_size != expected_size)
DRM_ERROR("Unexpected child device config size %u (expected %u for VBT version %u)\n",
defs->child_dev_size, expected_size, bdb->version);
/* The legacy sized child device config is the minimum we need. */
if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
DRM_DEBUG_KMS("Child device config size %u is too small.\n",
defs->child_dev_size);
return;
}
/* get the number of child device */
child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
count = 0;
/* get the number of child device that is present */
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
count++;
}
if (!count) {
DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
return;
}
dev_priv->vbt.child_dev = kcalloc(count, sizeof(*child), GFP_KERNEL);
if (!dev_priv->vbt.child_dev) {
DRM_DEBUG_KMS("No memory space for child device\n");
return;
}
dev_priv->vbt.child_dev_num = count;
count = 0;
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
/*
* Copy as much as we know (sizeof) and is available
* (child_dev_size) of the child device. Accessing the data must
* depend on VBT version.
*/
memcpy(dev_priv->vbt.child_dev + count, child,
min_t(size_t, defs->child_dev_size, sizeof(*child)));
count++;
}
}
/* Common defaults which may be overridden by VBT. */
static void
init_vbt_defaults(struct drm_i915_private *dev_priv)
{
enum port port;
dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
/* Default to having backlight */
dev_priv->vbt.backlight.present = true;
/* LFP panel data */
dev_priv->vbt.lvds_dither = 1;
/* SDVO panel data */
dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
/* general features */
dev_priv->vbt.int_tv_support = 1;
dev_priv->vbt.int_crt_support = 1;
/* driver features */
dev_priv->vbt.int_lvds_support = 1;
/* Default to using SSC */
dev_priv->vbt.lvds_use_ssc = 1;
/*
* Core/SandyBridge/IvyBridge use alternative (120MHz) reference
* clock for LVDS.
*/
dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev_priv,
!HAS_PCH_SPLIT(dev_priv));
DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq);
for (port = PORT_A; port < I915_MAX_PORTS; port++) {
struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN;
}
}
/* Defaults to initialize only if there is no VBT. */
static void
init_vbt_missing_defaults(struct drm_i915_private *dev_priv)
{
enum port port;
for (port = PORT_A; port < I915_MAX_PORTS; port++) {
struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[port];
info->supports_dvi = (port != PORT_A && port != PORT_E);
info->supports_hdmi = info->supports_dvi;
info->supports_dp = (port != PORT_E);
}
}
static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
{
const void *_vbt = vbt;
return _vbt + vbt->bdb_offset;
}
/**
* intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
* @buf: pointer to a buffer to validate
* @size: size of the buffer
*
* Returns true on valid VBT.
*/
bool intel_bios_is_valid_vbt(const void *buf, size_t size)
{
const struct vbt_header *vbt = buf;
const struct bdb_header *bdb;
if (!vbt)
return false;
if (sizeof(struct vbt_header) > size) {
DRM_DEBUG_DRIVER("VBT header incomplete\n");
return false;
}
if (memcmp(vbt->signature, "$VBT", 4)) {
DRM_DEBUG_DRIVER("VBT invalid signature\n");
return false;
}
if (range_overflows_t(size_t,
vbt->bdb_offset,
sizeof(struct bdb_header),
size)) {
DRM_DEBUG_DRIVER("BDB header incomplete\n");
return false;
}
bdb = get_bdb_header(vbt);
if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
DRM_DEBUG_DRIVER("BDB incomplete\n");
return false;
}
return vbt;
}
static const struct vbt_header *find_vbt(void __iomem *bios, size_t size)
{
size_t i;
/* Scour memory looking for the VBT signature. */
for (i = 0; i + 4 < size; i++) {
void *vbt;
if (ioread32(bios + i) != *((const u32 *) "$VBT"))
continue;
/*
* This is the one place where we explicitly discard the address
* space (__iomem) of the BIOS/VBT.
*/
vbt = (void __force *) bios + i;
if (intel_bios_is_valid_vbt(vbt, size - i))
return vbt;
break;
}
return NULL;
}
/**
* intel_bios_init - find VBT and initialize settings from the BIOS
* @dev_priv: i915 device instance
*
* Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
* was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
* initialize some defaults if the VBT is not present at all.
*/
void intel_bios_init(struct drm_i915_private *dev_priv)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
const struct vbt_header *vbt = dev_priv->opregion.vbt;
const struct bdb_header *bdb;
u8 __iomem *bios = NULL;
if (INTEL_INFO(dev_priv)->num_pipes == 0) {
DRM_DEBUG_KMS("Skipping VBT init due to disabled display.\n");
return;
}
init_vbt_defaults(dev_priv);
/* If the OpRegion does not have VBT, look in PCI ROM. */
if (!vbt) {
size_t size;
bios = pci_map_rom(pdev, &size);
if (!bios)
goto out;
vbt = find_vbt(bios, size);
if (!vbt)
goto out;
DRM_DEBUG_KMS("Found valid VBT in PCI ROM\n");
}
bdb = get_bdb_header(vbt);
DRM_DEBUG_KMS("VBT signature \"%.*s\", BDB version %d\n",
(int)sizeof(vbt->signature), vbt->signature, bdb->version);
/* Grab useful general definitions */
parse_general_features(dev_priv, bdb);
parse_general_definitions(dev_priv, bdb);
parse_lfp_panel_data(dev_priv, bdb);
parse_lfp_backlight(dev_priv, bdb);
parse_sdvo_panel_data(dev_priv, bdb);
parse_driver_features(dev_priv, bdb);
parse_edp(dev_priv, bdb);
parse_psr(dev_priv, bdb);
parse_mipi_config(dev_priv, bdb);
parse_mipi_sequence(dev_priv, bdb);
/* Further processing on pre-parsed data */
parse_sdvo_device_mapping(dev_priv, bdb->version);
parse_ddi_ports(dev_priv, bdb->version);
out:
if (!vbt) {
DRM_INFO("Failed to find VBIOS tables (VBT)\n");
init_vbt_missing_defaults(dev_priv);
}
if (bios)
pci_unmap_rom(pdev, bios);
}
/**
* intel_bios_cleanup - Free any resources allocated by intel_bios_init()
* @dev_priv: i915 device instance
*/
void intel_bios_cleanup(struct drm_i915_private *dev_priv)
{
kfree(dev_priv->vbt.child_dev);
dev_priv->vbt.child_dev = NULL;
dev_priv->vbt.child_dev_num = 0;
kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
kfree(dev_priv->vbt.dsi.data);
dev_priv->vbt.dsi.data = NULL;
kfree(dev_priv->vbt.dsi.pps);
dev_priv->vbt.dsi.pps = NULL;
kfree(dev_priv->vbt.dsi.config);
dev_priv->vbt.dsi.config = NULL;
kfree(dev_priv->vbt.dsi.deassert_seq);
dev_priv->vbt.dsi.deassert_seq = NULL;
}
/**
* intel_bios_is_tv_present - is integrated TV present in VBT
* @dev_priv: i915 device instance
*
* Return true if TV is present. If no child devices were parsed from VBT,
* assume TV is present.
*/
bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv)
{
const struct child_device_config *child;
int i;
if (!dev_priv->vbt.int_tv_support)
return false;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
/*
* If the device type is not TV, continue.
*/
switch (child->device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (child->addin_offset)
return true;
}
return false;
}
/**
* intel_bios_is_lvds_present - is LVDS present in VBT
* @dev_priv: i915 device instance
* @i2c_pin: i2c pin for LVDS if present
*
* Return true if LVDS is present. If no child devices were parsed from VBT,
* assume LVDS is present.
*/
bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin)
{
const struct child_device_config *child;
int i;
if (!dev_priv->vbt.child_dev_num)
return true;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(dev_priv, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (dev_priv->opregion.vbt)
return true;
}
return false;
}
/**
* intel_bios_is_port_present - is the specified digital port present
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if the device in %port is present.
*/
bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port)
{
const struct child_device_config *child;
static const struct {
u16 dp, hdmi;
} port_mapping[] = {
[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
};
int i;
/* FIXME maybe deal with port A as well? */
if (WARN_ON(port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
return false;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if ((child->dvo_port == port_mapping[port].dp ||
child->dvo_port == port_mapping[port].hdmi) &&
(child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
return true;
}
return false;
}
/**
* intel_bios_is_port_edp - is the device in given port eDP
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if the device in %port is eDP.
*/
bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
const struct child_device_config *child;
static const short port_mapping[] = {
[PORT_B] = DVO_PORT_DPB,
[PORT_C] = DVO_PORT_DPC,
[PORT_D] = DVO_PORT_DPD,
[PORT_E] = DVO_PORT_DPE,
[PORT_F] = DVO_PORT_DPF,
};
int i;
if (HAS_DDI(dev_priv))
return dev_priv->vbt.ddi_port_info[port].supports_edp;
if (!dev_priv->vbt.child_dev_num)
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child->dvo_port == port_mapping[port] &&
(child->device_type & DEVICE_TYPE_eDP_BITS) ==
(DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
return true;
}
return false;
}
static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
enum port port)
{
static const struct {
u16 dp, hdmi;
} port_mapping[] = {
/*
* Buggy VBTs may declare DP ports as having
* HDMI type dvo_port :( So let's check both.
*/
[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
};
if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
return false;
if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
(DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
return false;
if (child->dvo_port == port_mapping[port].dp)
return true;
/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
if (child->dvo_port == port_mapping[port].hdmi &&
child->aux_channel != 0)
return true;
return false;
}
bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (child_dev_is_dp_dual_mode(child, port))
return true;
}
return false;
}
/**
* intel_bios_is_dsi_present - is DSI present in VBT
* @dev_priv: i915 device instance
* @port: port for DSI if present
*
* Return true if DSI is present, and return the port in %port.
*/
bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv,
enum port *port)
{
const struct child_device_config *child;
u8 dvo_port;
int i;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
dvo_port = child->dvo_port;
switch (dvo_port) {
case DVO_PORT_MIPIA:
case DVO_PORT_MIPIC:
if (port)
*port = dvo_port - DVO_PORT_MIPIA;
return true;
case DVO_PORT_MIPIB:
case DVO_PORT_MIPID:
DRM_DEBUG_KMS("VBT has unsupported DSI port %c\n",
port_name(dvo_port - DVO_PORT_MIPIA));
break;
}
}
return false;
}
/**
* intel_bios_is_port_hpd_inverted - is HPD inverted for %port
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if HPD should be inverted for %port.
*/
bool
intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
if (WARN_ON_ONCE(!IS_GEN9_LP(dev_priv)))
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!child->hpd_invert)
continue;
switch (child->dvo_port) {
case DVO_PORT_DPA:
case DVO_PORT_HDMIA:
if (port == PORT_A)
return true;
break;
case DVO_PORT_DPB:
case DVO_PORT_HDMIB:
if (port == PORT_B)
return true;
break;
case DVO_PORT_DPC:
case DVO_PORT_HDMIC:
if (port == PORT_C)
return true;
break;
default:
break;
}
}
return false;
}
/**
* intel_bios_is_lspcon_present - if LSPCON is attached on %port
* @dev_priv: i915 device instance
* @port: port to check
*
* Return true if LSPCON is present on this port
*/
bool
intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
enum port port)
{
const struct child_device_config *child;
int i;
if (!HAS_LSPCON(dev_priv))
return false;
for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
child = dev_priv->vbt.child_dev + i;
if (!child->lspcon)
continue;
switch (child->dvo_port) {
case DVO_PORT_DPA:
case DVO_PORT_HDMIA:
if (port == PORT_A)
return true;
break;
case DVO_PORT_DPB:
case DVO_PORT_HDMIB:
if (port == PORT_B)
return true;
break;
case DVO_PORT_DPC:
case DVO_PORT_HDMIC:
if (port == PORT_C)
return true;
break;
case DVO_PORT_DPD:
case DVO_PORT_HDMID:
if (port == PORT_D)
return true;
break;
case DVO_PORT_DPF:
case DVO_PORT_HDMIF:
if (port == PORT_F)
return true;
break;
default:
break;
}
}
return false;
}