kernel_samsung_a34x-permissive/drivers/scsi/ufs/ufs-mediatek.c
2024-04-28 15:49:01 +02:00

2102 lines
50 KiB
C
Executable file

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 MediaTek Inc.
* Authors:
* Stanley Chu <stanley.chu@mediatek.com>
* Peter Wang <peter.wang@mediatek.com>
*/
#include <asm/unaligned.h>
#include <linux/arm-smccc.h>
#include <linux/bitfield.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/rpmb.h>
#include <linux/soc/mediatek/mtk_sip_svc.h>
#include <linux/soc/mediatek/mtk-pm-qos.h>
#include <mt-plat/mtk_boot.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#ifdef CONFIG_MTK_AEE_FEATURE
#include <mt-plat/aee.h>
#endif
#include <mt-plat/upmu_common.h>
#define CREATE_TRACE_POINTS
#include "trace/events/ufs_mtk.h"
#include "ufshcd.h"
#include "ufshcd-crypto.h"
#include "ufshcd-pltfrm.h"
#include "ufs_quirks.h"
#include "ufs-mediatek.h"
#include "ufs-mediatek-dbg.h"
#include "ufs-mtk-block.h"
#include "unipro.h"
#if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785)
#include "mtk_clkbuf_ctl.h"
#endif
#if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB)
#include "ufshpb.h"
#endif
u32 ufs_mtk_qcmd_r_cmd_cnt;
u32 ufs_mtk_qcmd_w_cmd_cnt;
static bool ufs_mtk_is_data_write_cmd(char cmd_op, bool isolation);
static bool ufs_mtk_is_data_cmd(char cmd_op, bool isolation);
#define ufs_mtk_smc(cmd, val, res) \
arm_smccc_smc(MTK_SIP_UFS_CONTROL, \
cmd, val, 0, 0, 0, 0, 0, &(res))
#define ufs_mtk_va09_pwr_ctrl(res, on) \
ufs_mtk_smc(UFS_MTK_SIP_VA09_PWR_CTRL, on, res)
#define ufs_mtk_crypto_ctrl(res, enable) \
ufs_mtk_smc(UFS_MTK_SIP_CRYPTO_CTRL, enable, res)
#define ufs_mtk_ref_clk_notify(on, res) \
ufs_mtk_smc(UFS_MTK_SIP_REF_CLK_NOTIFICATION, on, res)
#define ufs_mtk_device_reset_ctrl(high, res) \
ufs_mtk_smc(UFS_MTK_SIP_DEVICE_RESET, high, res)
#if defined(PMIC_RG_LDO_VUFS_LP_ADDR)
#define ufs_mtk_vufs_set_lpm(on) \
pmic_config_interface(PMIC_RG_LDO_VUFS_LP_ADDR, \
(on), \
PMIC_RG_LDO_VUFS_LP_MASK, \
PMIC_RG_LDO_VUFS_LP_SHIFT)
#else
#define ufs_mtk_vufs_set_lpm(on)
#endif
int ufsdbg_perf_dump = 0;
static struct ufs_hba *ufs_mtk_hba;
static const struct ufs_mtk_host_cfg ufs_mtk_mt8183_cfg = {
.quirks = UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8
#if defined(CONFIG_MACH_MT6877)
| UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON
#elif defined(CONFIG_MACH_MT6893)
| UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC | UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON
#endif
};
static const struct of_device_id ufs_mtk_of_match[] = {
{
.compatible = "mediatek,mt8183-ufshci",
.data = &ufs_mtk_mt8183_cfg
},
{},
};
#if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785)
extern bool clk_buf_ctrl(enum clk_buf_id id, bool onoff);
#endif
struct rpmb_dev *ufs_mtk_rpmb_get_raw_dev()
{
struct ufs_mtk_host *host = ufshcd_get_variant(ufs_mtk_hba);
return host->rawdev_ufs_rpmb;
}
/* Read Geometry Descriptor for RPMB initialization */
static inline int ufshcd_read_geometry_desc_param(struct ufs_hba *hba,
enum geometry_desc_param param_offset,
u8 *param_read_buf, u32 param_size)
{
return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0,
param_offset, param_read_buf, param_size);
}
/*
* RPMB feature
*/
#define SEC_PROTOCOL_UFS 0xEC
#define SEC_SPECIFIC_UFS_RPMB 0x0001
#define SEC_PROTOCOL_CMD_SIZE 12
#define SEC_PROTOCOL_RETRIES 3
#define SEC_PROTOCOL_RETRIES_ON_RESET 10
#define SEC_PROTOCOL_TIMEOUT msecs_to_jiffies(30000)
int ufs_mtk_rpmb_security_out(struct scsi_device *sdev,
struct rpmb_frame *frames, u32 cnt)
{
struct scsi_sense_hdr sshdr = {0};
u32 trans_len = cnt * sizeof(struct rpmb_frame);
int reset_retries = SEC_PROTOCOL_RETRIES_ON_RESET;
int ret;
u8 cmd[SEC_PROTOCOL_CMD_SIZE];
memset(cmd, 0, SEC_PROTOCOL_CMD_SIZE);
cmd[0] = SECURITY_PROTOCOL_OUT;
cmd[1] = SEC_PROTOCOL_UFS;
put_unaligned_be16(SEC_SPECIFIC_UFS_RPMB, cmd + 2);
cmd[4] = 0; /* inc_512 bit 7 set to 0 */
put_unaligned_be32(trans_len, cmd + 6); /* transfer length */
/* Ensure device is resumed before RPMB operation */
scsi_autopm_get_device(sdev);
retry:
ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE,
frames, trans_len, &sshdr,
SEC_PROTOCOL_TIMEOUT, SEC_PROTOCOL_RETRIES,
NULL);
if (ret && scsi_sense_valid(&sshdr) &&
sshdr.sense_key == UNIT_ATTENTION)
/*
* Device reset might occur several times,
* give it one more chance
*/
if (--reset_retries > 0)
goto retry;
if (ret)
dev_err(&sdev->sdev_gendev, "%s: failed with err %0x\n",
__func__, ret);
if (driver_byte(ret) & DRIVER_SENSE)
scsi_print_sense_hdr(sdev, "rpmb: security out", &sshdr);
/* Allow device to be runtime suspended */
scsi_autopm_put_device(sdev);
return ret;
}
int ufs_mtk_rpmb_security_in(struct scsi_device *sdev,
struct rpmb_frame *frames, u32 cnt)
{
struct scsi_sense_hdr sshdr = {0};
u32 alloc_len = cnt * sizeof(struct rpmb_frame);
int reset_retries = SEC_PROTOCOL_RETRIES_ON_RESET;
int ret;
u8 cmd[SEC_PROTOCOL_CMD_SIZE];
memset(cmd, 0, SEC_PROTOCOL_CMD_SIZE);
cmd[0] = SECURITY_PROTOCOL_IN;
cmd[1] = SEC_PROTOCOL_UFS;
put_unaligned_be16(SEC_SPECIFIC_UFS_RPMB, cmd + 2);
cmd[4] = 0; /* inc_512 bit 7 set to 0 */
put_unaligned_be32(alloc_len, cmd + 6); /* allocation length */
/* Ensure device is resumed before RPMB operation */
scsi_autopm_get_device(sdev);
retry:
ret = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE,
frames, alloc_len, &sshdr,
SEC_PROTOCOL_TIMEOUT, SEC_PROTOCOL_RETRIES,
NULL);
if (ret && scsi_sense_valid(&sshdr) &&
sshdr.sense_key == UNIT_ATTENTION)
/*
* Device reset might occur several times,
* give it one more chance
*/
if (--reset_retries > 0)
goto retry;
/* Allow device to be runtime suspended */
scsi_autopm_put_device(sdev);
if (ret)
dev_err(&sdev->sdev_gendev, "%s: failed with err %0x\n",
__func__, ret);
if (driver_byte(ret) & DRIVER_SENSE)
scsi_print_sense_hdr(sdev, "rpmb: security in", &sshdr);
return ret;
}
static int ufs_mtk_rpmb_cmd_seq(struct device *dev,
struct rpmb_cmd *cmds, u32 ncmds)
{
unsigned long flags;
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct scsi_device *sdev;
struct rpmb_cmd *cmd;
int i;
int ret;
spin_lock_irqsave(hba->host->host_lock, flags);
sdev = host->sdev_ufs_rpmb;
if (sdev) {
ret = scsi_device_get(sdev);
if (!ret && !scsi_device_online(sdev)) {
ret = -ENODEV;
scsi_device_put(sdev);
}
} else {
ret = -ENODEV;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret)
return ret;
/*
* Send all command one by one.
* Use rpmb lock to prevent other rpmb read/write threads cut in line.
* Use mutex not spin lock because in/out function might sleep.
*/
down(&host->rpmb_sem);
for (ret = 0, i = 0; i < ncmds && !ret; i++) {
cmd = &cmds[i];
if (cmd->flags & RPMB_F_WRITE)
ret = ufs_mtk_rpmb_security_out(sdev, cmd->frames,
cmd->nframes);
else
ret = ufs_mtk_rpmb_security_in(sdev, cmd->frames,
cmd->nframes);
}
up(&host->rpmb_sem);
scsi_device_put(sdev);
return ret;
}
static struct rpmb_ops ufs_mtk_rpmb_dev_ops = {
.cmd_seq = ufs_mtk_rpmb_cmd_seq,
.type = RPMB_TYPE_UFS,
};
void ufs_mtk_rpmb_add(struct ufs_hba *hba, struct scsi_device *sdev_rpmb)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct rpmb_dev *rdev;
u8 rw_size;
int ret;
host->sdev_ufs_rpmb = sdev_rpmb;
ret = ufshcd_read_geometry_desc_param(hba,
GEOMETRY_DESC_PARAM_RPMB_RW_SIZE,
&rw_size, sizeof(rw_size));
if (ret) {
dev_warn(hba->dev, "%s: cannot get rpmb rw limit %d\n",
dev_name(hba->dev), ret);
/* fallback to singel frame write */
rw_size = 1;
}
if (hba->dev_quirks & UFS_DEVICE_QUIRK_LIMITED_RPMB_MAX_RW_SIZE) {
if (rw_size > 8)
rw_size = 8;
}
dev_info(hba->dev, "rpmb rw_size: %d\n", rw_size);
ufs_mtk_rpmb_dev_ops.reliable_wr_cnt = rw_size;
/* MTK PATCH: Add handling for scsi_device_get */
if (unlikely(scsi_device_get(host->sdev_ufs_rpmb)))
goto out_put_dev;
rdev = rpmb_dev_register(hba->dev, &ufs_mtk_rpmb_dev_ops);
if (IS_ERR(rdev)) {
dev_warn(hba->dev, "%s: cannot register to rpmb %ld\n",
dev_name(hba->dev), PTR_ERR(rdev));
goto out_put_dev;
}
/*
* MTK PATCH: Preserve rpmb_dev to globals for connection of legacy
* rpmb ioctl solution.
*/
host->rawdev_ufs_rpmb = rdev;
/*
* Initialize rpmb semaphore.
*/
sema_init(&host->rpmb_sem, 1);
return;
out_put_dev:
scsi_device_put(host->sdev_ufs_rpmb);
host->sdev_ufs_rpmb = NULL;
host->rawdev_ufs_rpmb = NULL;
}
void ufs_mtk_rpmb_remove(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
unsigned long flags;
if (!host->sdev_ufs_rpmb || !hba->host)
return;
rpmb_dev_unregister(hba->dev);
/*
* MTK Bug Fix:
*
* To prevent calling schedule() with preemption disabled,
* spin_lock_irqsave shall be behind rpmb_dev_unregister().
*/
spin_lock_irqsave(hba->host->host_lock, flags);
scsi_device_put(host->sdev_ufs_rpmb);
host->sdev_ufs_rpmb = NULL;
host->rawdev_ufs_rpmb = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
void ufs_mtk_rpmb_quiesce(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (host->sdev_ufs_rpmb)
scsi_device_quiesce(host->sdev_ufs_rpmb);
}
/**
* ufs_mtk_ioctl_rpmb - perform user rpmb read/write request
* @hba: per-adapter instance
* @buf_user: user space buffer for ioctl rpmb_cmd data
* @return: 0 for success negative error code otherwise
*
* Expected/Submitted buffer structure is struct rpmb_cmd.
* It will read/write data to rpmb
*/
int ufs_mtk_ioctl_rpmb(struct ufs_hba *hba, const void __user *buf_user)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct rpmb_cmd cmd[3];
struct rpmb_frame *frame_buf = NULL;
struct rpmb_frame *frames = NULL;
int size = 0;
int nframes = 0;
unsigned long flags;
struct scsi_device *sdev;
int ret;
int i;
/* Get scsi device */
spin_lock_irqsave(hba->host->host_lock, flags);
sdev = host->sdev_ufs_rpmb;
if (sdev) {
ret = scsi_device_get(sdev);
if (!ret && !scsi_device_online(sdev)) {
ret = -ENODEV;
scsi_device_put(sdev);
}
} else {
ret = -ENODEV;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret) {
dev_info(hba->dev,
"%s: failed get rpmb device, ret %d\n",
__func__, ret);
goto out;
}
/* Get cmd params from user buffer */
ret = copy_from_user((void *) cmd,
buf_user, sizeof(struct rpmb_cmd) * 3);
if (ret) {
dev_info(hba->dev,
"%s: failed copying cmd buffer from user, ret %d\n",
__func__, ret);
goto out_put;
}
/* Check number of rpmb frames */
for (i = 0; i < 3; i++) {
ret = (int)rpmb_get_rw_size(ufs_mtk_rpmb_get_raw_dev());
if (cmd[i].nframes > ret) {
dev_info(hba->dev,
"%s: number of rpmb frames %u exceeds limit %d\n",
__func__, cmd[i].nframes, ret);
ret = -EINVAL;
goto out_put;
}
}
/* Prepaer frame buffer */
for (i = 0; i < 3; i++)
nframes += cmd[i].nframes;
frame_buf = kcalloc(nframes, sizeof(struct rpmb_frame), GFP_KERNEL);
if (!frame_buf) {
ret = -ENOMEM;
goto out_put;
}
frames = frame_buf;
/*
* Send all command one by one.
* Use rpmb lock to prevent other rpmb read/write threads cut in line.
* Use mutex not spin lock because in/out function might sleep.
*/
down(&host->rpmb_sem);
for (i = 0; i < 3; i++) {
if (cmd[i].nframes == 0)
break;
/* Get frames from user buffer */
size = sizeof(struct rpmb_frame) * cmd[i].nframes;
ret = copy_from_user((void *) frames, cmd[i].frames, size);
if (ret) {
dev_err(hba->dev,
"%s: failed from user, ret %d\n",
__func__, ret);
break;
}
/* Do rpmb in out */
if (cmd[i].flags & RPMB_F_WRITE) {
ret = ufs_mtk_rpmb_security_out(sdev, frames,
cmd[i].nframes);
if (ret) {
dev_err(hba->dev,
"%s: failed rpmb out, err %d\n",
__func__, ret);
break;
}
} else {
ret = ufs_mtk_rpmb_security_in(sdev, frames,
cmd[i].nframes);
if (ret) {
dev_err(hba->dev,
"%s: failed rpmb in, err %d\n",
__func__, ret);
break;
}
/* Copy frames to user buffer */
ret = copy_to_user((void *) cmd[i].frames,
frames, size);
if (ret) {
dev_err(hba->dev,
"%s: failed to user, err %d\n",
__func__, ret);
break;
}
}
frames += cmd[i].nframes;
}
up(&host->rpmb_sem);
kfree(frame_buf);
out_put:
scsi_device_put(sdev);
out:
return ret;
}
bool ufs_mtk_has_broken_auto_hibern8(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
return (ufshcd_is_auto_hibern8_supported(hba) && hba->ahit &&
host->cfg &&
(host->cfg->quirks & UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8));
}
bool ufs_mtk_get_unipro_lpm(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
return host->unipro_lpm;
}
static void ufs_mtk_parse_dt(struct ufs_mtk_host *host)
{
struct ufs_hba *hba = host->hba;
struct device *dev = hba->dev;
int ret;
u32 tmp;
/*
* Parse reference clock control setting
* SW mode: 0 (use external function to control ref-clk)
* Half-HW mode: 1 (use ufshci register to control ref-clk,
* but cannot turn off)
* HW mode: 2 (use ufshci register to control ref-clk)
*/
ret = of_property_read_u32(dev->of_node, "mediatek,refclk_ctrl",
&host->refclk_ctrl);
if (ret) {
dev_dbg(hba->dev,
"%s: failed to read mediatek,refclk_ctrl, ret=%d\n",
__func__, ret);
host->refclk_ctrl = REF_CLK_SW_MODE;
}
/* get and enable va09 regulator */
host->reg_va09 = regulator_get(hba->dev, "va09");
if (!host->reg_va09) {
dev_info(hba->dev, "%s: failed to get va09!\n",
__func__);
}
tmp = 0;
ret = of_property_read_u32(dev->of_node, "mediatek,vreg_vufs_lpm",
&tmp);
if (ret)
host->vreg_lpm_supported = FALSE;
else
host->vreg_lpm_supported = tmp ? TRUE : FALSE;
if (of_property_read_bool(dev->of_node, "mediatek,ufs-qos")) {
host->qos_allowed = true;
host->qos_enabled = true;
}
}
void ufs_mtk_cfg_unipro_cg(struct ufs_hba *hba, bool enable)
{
u32 tmp = 0;
if (enable) {
ufshcd_dme_get(hba,
UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp);
tmp = tmp |
(1 << RX_SYMBOL_CLK_GATE_EN) |
(1 << SYS_CLK_GATE_EN) |
(1 << TX_CLK_GATE_EN);
ufshcd_dme_set(hba,
UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp);
ufshcd_dme_get(hba,
UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp);
tmp = tmp & ~(1 << TX_SYMBOL_CLK_REQ_FORCE);
ufshcd_dme_set(hba,
UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp);
} else {
ufshcd_dme_get(hba,
UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp);
tmp = tmp & ~((1 << RX_SYMBOL_CLK_GATE_EN) |
(1 << SYS_CLK_GATE_EN) |
(1 << TX_CLK_GATE_EN));
ufshcd_dme_set(hba,
UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp);
ufshcd_dme_get(hba,
UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp);
tmp = tmp | (1 << TX_SYMBOL_CLK_REQ_FORCE);
ufshcd_dme_set(hba,
UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp);
}
}
static void ufs_mtk_crypto_enable(struct ufs_hba *hba)
{
struct arm_smccc_res res;
ufs_mtk_crypto_ctrl(res, 1);
if (res.a0) {
dev_info(hba->dev, "%s: crypto enable failed, err: %lu\n",
__func__, res.a0);
}
}
static void ufs_mtk_host_reset(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
reset_control_assert(host->hci_reset);
reset_control_assert(host->crypto_reset);
reset_control_assert(host->unipro_reset);
usleep_range(100, 110);
reset_control_deassert(host->unipro_reset);
reset_control_deassert(host->crypto_reset);
reset_control_deassert(host->hci_reset);
}
static int ufs_mtk_init_reset_control(struct ufs_hba *hba,
struct reset_control **rc,
char *str)
{
*rc = devm_reset_control_get(hba->dev, str);
if (IS_ERR(*rc)) {
dev_info(hba->dev, "Failed to get %s: %d\n", str,
PTR_ERR(*rc));
*rc = NULL;
return PTR_ERR(*rc);
}
return 0;
}
static void ufs_mtk_init_reset(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
ufs_mtk_init_reset_control(hba, &host->hci_reset,
"hci_rst");
ufs_mtk_init_reset_control(hba, &host->unipro_reset,
"unipro_rst");
ufs_mtk_init_reset_control(hba, &host->crypto_reset,
"crypto_rst");
}
static int ufs_mtk_hce_enable_notify(struct ufs_hba *hba,
enum ufs_notify_change_status status)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (status == PRE_CHANGE) {
if (host->unipro_lpm) {
hba->hba_enable_delay_us = 0;
} else {
hba->hba_enable_delay_us = 600;
ufs_mtk_host_reset(hba);
}
if (ufshcd_hba_is_crypto_supported(hba))
ufs_mtk_crypto_enable(hba);
}
return 0;
}
static void ufs_mtk_pm_qos(struct ufs_hba *hba, bool qos_en)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (host && host->pm_qos_init) {
if (qos_en)
pm_qos_update_request(
&host->req_cpu_dma_latency, 0);
else
pm_qos_update_request(
&host->req_cpu_dma_latency,
PM_QOS_DEFAULT_VALUE);
}
}
static int ufs_mtk_bind_mphy(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct device *dev = hba->dev;
struct device_node *np = dev->of_node;
int err = 0;
host->mphy = devm_of_phy_get_by_index(dev, np, 0);
if (IS_ERR(host->mphy)) {
err = PTR_ERR(host->mphy);
if (err == -EPROBE_DEFER)
dev_info(dev, "%s: ufs mphy hasn't probed yet. err = %d\n",
__func__, err);
else if (err == -ENODEV) {
dev_info(dev, "%s: ufs mphy is no dev. err = %d\n",
__func__, err);
/*
* Allow unbound mphy because not every platform needs specific
* mphy control
*/
err = 0;
} else {
dev_info(dev, "%s: ufs mphy get failed. err = %d\n",
__func__, err);
}
host->mphy = NULL;
} else {
dev_info(dev, "%s: ufs mphy is found.\n", __func__);
}
return err;
}
static int ufs_mtk_setup_ref_clk(struct ufs_hba *hba, bool on)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct arm_smccc_res res;
ktime_t timeout, time_checked;
u32 value;
if (host->ref_clk_enabled == on)
return 0;
if (on) {
#if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785)
clk_buf_ctrl(CLK_BUF_UFS, on);
#else
ufs_mtk_ref_clk_notify(on, res);
#endif
ufshcd_delay_us(host->ref_clk_ungating_wait_us, 10);
}
/* This is HW and Half-HW flow, SW flow should ignore */
if (host->refclk_ctrl == REF_CLK_SW_MODE)
goto out;
/* Half-HW mode cannot turn off ref-clk, release xoufs spm req only */
if (host->refclk_ctrl == REF_CLK_HALF_HW_MODE) {
ufshcd_writel(hba, REFCLK_RELEASE, REG_UFS_REFCLK_CTRL);
goto out;
}
/*
* REG_UFS_REFCLK_CTRL[0] is xoufs_req_s
* REG_UFS_REFCLK_CTRL[1] is xoufs_ack_s
* xoufs_req_s is used for XOUFS Clock request to SPM
* SW sets xoufs_ack_s to trigger Clock Request for XOUFS, and
* check xoufs_ack_s set for clock avialable.
* SW clears xoufs_ack_s to trigger Clock Release for XOUFS, and
* check xoufs_ack_s clear for clock off.
*/
if (on)
ufshcd_writel(hba, REFCLK_REQUEST, REG_UFS_REFCLK_CTRL);
else
ufshcd_writel(hba, REFCLK_RELEASE, REG_UFS_REFCLK_CTRL);
/* Wait for ack */
timeout = ktime_add_us(ktime_get(), REFCLK_REQ_TIMEOUT_US);
do {
time_checked = ktime_get();
value = ufshcd_readl(hba, REG_UFS_REFCLK_CTRL);
/* Wait until ack bit equals to req bit */
if (((value & REFCLK_ACK) >> 1) == (value & REFCLK_REQUEST))
goto out;
usleep_range(100, 200);
} while (ktime_before(time_checked, timeout));
dev_err(hba->dev, "missing ack of refclk req, reg: 0x%x\n", value);
ufs_mtk_ref_clk_notify(host->ref_clk_enabled, res);
return -ETIMEDOUT;
out:
host->ref_clk_enabled = on;
if (!on) {
ufshcd_delay_us(host->ref_clk_gating_wait_us, 10);
#if defined(CONFIG_MACH_MT6781) || defined(CONFIG_MACH_MT6785)
clk_buf_ctrl(CLK_BUF_UFS, on);
#else
ufs_mtk_ref_clk_notify(on, res);
#endif
}
return 0;
}
static void ufs_mtk_setup_ref_clk_wait_us(struct ufs_hba *hba,
u16 gating_us, u16 ungating_us)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (hba->dev_info.clk_gating_wait_us) {
host->ref_clk_gating_wait_us =
hba->dev_info.clk_gating_wait_us;
} else {
host->ref_clk_gating_wait_us = gating_us;
}
host->ref_clk_ungating_wait_us = ungating_us;
}
int ufs_mtk_wait_link_state(struct ufs_hba *hba, u32 state,
unsigned long max_wait_ms)
{
ktime_t timeout, time_checked;
u32 val;
timeout = ktime_add_ms(ktime_get(), max_wait_ms);
do {
time_checked = ktime_get();
ufshcd_writel(hba, 0x20, REG_UFS_DEBUG_SEL);
val = ufshcd_readl(hba, REG_UFS_PROBE);
val = val >> 28;
if (val == state)
return 0;
/* Sleep for max. 200us */
usleep_range(100, 200);
} while (ktime_before(time_checked, timeout));
if (val == state)
return 0;
return -ETIMEDOUT;
}
static int ufs_mtk_mphy_power_on(struct ufs_hba *hba, bool on)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct phy *mphy = host->mphy;
struct arm_smccc_res res;
int ret = 0;
if (!mphy || !(on ^ host->mphy_powered_on))
return 0;
if (on) {
if (host->reg_va09) {
ret = regulator_enable(host->reg_va09);
if (ret < 0)
goto out;
/* wait 200 us to stablize VA09 */
usleep_range(200, 210);
ufs_mtk_va09_pwr_ctrl(res, 1);
}
phy_power_on(mphy);
} else {
phy_power_off(mphy);
if (host->reg_va09) {
ufs_mtk_va09_pwr_ctrl(res, 0);
ret = regulator_disable(host->reg_va09);
if (ret < 0)
goto out;
}
}
out:
if (ret) {
dev_info(hba->dev,
"failed to %s va09: %d\n",
on ? "enable" : "disable",
ret);
} else {
host->mphy_powered_on = on;
}
return ret;
}
static void ufs_mtk_get_controller_version(struct ufs_hba *hba)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
int ret, ver = 0;
if (host->hw_ver.major)
return;
/* Set default (minimum) version anyway */
host->hw_ver.major = 2;
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_LOCALVERINFO), &ver);
if (!ret) {
if (ver >= UFS_UNIPRO_VER_1_8)
host->hw_ver.major = 3;
}
}
static int ufs_mtk_host_clk_get(struct device *dev, const char *name,
struct clk **clk_out)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk))
err = PTR_ERR(clk);
else
*clk_out = clk;
return err;
}
static bool ufs_mtk_is_data_write_cmd(char cmd_op, bool isolation)
{
if (cmd_op == WRITE_10 || cmd_op == WRITE_16 || cmd_op == WRITE_6)
return true;
if (isolation) {
if ((cmd_op == WRITE_BUFFER) ||
(cmd_op == UNMAP) ||
(cmd_op == FORMAT_UNIT) ||
(cmd_op == SECURITY_PROTOCOL_OUT))
return true;
}
#if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB)
/* All data out operation need check */
if (isolation) {
if (cmd_op == UFSHPB_WRITE_BUFFER)
return true;
}
#endif
return false;
}
static bool ufs_mtk_is_data_cmd(char cmd_op, bool isolation)
{
if (cmd_op == WRITE_10 || cmd_op == READ_10 ||
cmd_op == WRITE_16 || cmd_op == READ_16 ||
cmd_op == WRITE_6 || cmd_op == READ_6)
return true;
if (isolation) {
if ((cmd_op == WRITE_BUFFER) ||
(cmd_op == UNMAP) ||
(cmd_op == FORMAT_UNIT) ||
(cmd_op == SECURITY_PROTOCOL_OUT))
return true;
}
#if defined(CONFIG_SCSI_UFS_HPB) || defined(CONFIG_SCSI_SKHPB)
if (cmd_op == UFSHPB_READ_BUFFER || cmd_op == UFSHPB_WRITE_BUFFER)
return true;
#endif
return false;
}
int ufs_mtk_perf_heurisic_if_allow_cmd(struct ufs_hba *hba, struct scsi_cmnd *cmd)
{
if (!(hba->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC))
return 0;
/* Check rw commands only and allow all other commands. */
if (ufs_mtk_is_data_cmd(cmd->cmnd[0], true)) {
if (!hba->ufs_mtk_qcmd_r_cmd_cnt &&
!hba->ufs_mtk_qcmd_w_cmd_cnt) {
/* Case: no on-going r or w commands. */
if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true))
hba->ufs_mtk_qcmd_w_cmd_cnt++;
else
hba->ufs_mtk_qcmd_r_cmd_cnt++;
} else {
if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true)) {
if (hba->ufs_mtk_qcmd_r_cmd_cnt)
return 1;
hba->ufs_mtk_qcmd_w_cmd_cnt++;
} else {
if (hba->ufs_mtk_qcmd_w_cmd_cnt)
return 1;
hba->ufs_mtk_qcmd_r_cmd_cnt++;
}
}
}
return 0;
}
void ufs_mtk_perf_heurisic_req_done(struct ufs_hba *hba, struct scsi_cmnd *cmd)
{
if (!(hba->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC))
return;
if (ufs_mtk_is_data_cmd(cmd->cmnd[0], true)) {
if (ufs_mtk_is_data_write_cmd(cmd->cmnd[0], true))
hba->ufs_mtk_qcmd_w_cmd_cnt--;
else
hba->ufs_mtk_qcmd_r_cmd_cnt--;
}
}
bool ufs_mtk_perf_is_supported(struct ufs_mtk_host *host)
{
if (!host->crypto_clk_mux ||
!host->crypto_parent_clk_normal ||
!host->crypto_parent_clk_perf ||
!host->req_vcore ||
host->crypto_vcore_opp < 0)
return false;
else
return true;
}
int ufs_mtk_perf_setup_req(struct ufs_mtk_host *host, bool perf)
{
int err = 0;
err = clk_prepare_enable(host->crypto_clk_mux);
if (err) {
dev_info(host->hba->dev, "%s: clk_prepare_enable(): %d\n",
__func__, err);
goto out;
}
if (perf) {
mtk_pm_qos_update_request(host->req_vcore,
host->crypto_vcore_opp);
err = clk_set_parent(host->crypto_clk_mux,
host->crypto_parent_clk_perf);
} else {
err = clk_set_parent(host->crypto_clk_mux,
host->crypto_parent_clk_normal);
mtk_pm_qos_update_request(host->req_vcore,
MTK_PM_QOS_VCORE_OPP_DEFAULT_VALUE);
}
if (err)
dev_info(host->hba->dev, "%s: clk_set_parent(): %d\n",
__func__, err);
clk_disable_unprepare(host->crypto_clk_mux);
out:
ufs_mtk_dbg_add_trace(dev_name(host->hba->dev), "perf_mode", perf,
0, (u32) err, 0, 0, 0, 0, 0);
return err;
}
int ufs_mtk_perf_setup_crypto_clk(struct ufs_mtk_host *host, bool perf)
{
int err = 0;
bool rpm_resumed = false;
bool clk_prepared = false;
if (!ufs_mtk_perf_is_supported(host)) {
dev_info(host->hba->dev, "%s: perf mode is unsupported\n", __func__);
err = -ENOTSUPP;
goto out;
}
/* runtime resume shall be prior to blocking requests */
pm_runtime_get_sync(host->hba->dev);
rpm_resumed = true;
/*
* reuse clk scaling preparation function to wait until all
* on-going commands are done, and then block future commands
*/
err = ufshcd_clock_scaling_prepare(host->hba);
if (err) {
dev_info(host->hba->dev, "%s: ufshcd_clock_scaling_prepare(): %d\n",
__func__, err);
goto out;
}
clk_prepared = true;
err = ufs_mtk_perf_setup_req(host, perf);
out:
/*
* add event before any possible incoming commands
* by unblocking requests in ufshcd_clock_scaling_unprepare()
*/
dev_info(host->hba->dev, "perf mode: request %s %s\n",
perf ? "enable" : "disable",
err ? "failed" : "ok");
if (clk_prepared)
ufshcd_clock_scaling_unprepare(host->hba);
if (rpm_resumed)
pm_runtime_put_sync(host->hba->dev);
return err;
}
int ufs_mtk_perf_setup(struct ufs_mtk_host *host, bool perf)
{
int err = 0;
if (!ufs_mtk_perf_is_supported(host) ||
(host->perf_mode != PERF_AUTO)) {
/* return without error */
return 0;
}
err = ufs_mtk_perf_setup_req(host, perf);
if (!err)
host->perf_enable = perf;
else
dev_info(host->hba->dev, "%s: %s perf mode fail %d\n",
__func__, perf ? "enable":"disable", err);
return err;
}
static int ufs_mtk_perf_init_crypto(struct ufs_hba *hba)
{
int err = 0;
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct device_node *np = hba->dev->of_node;
err = ufs_mtk_host_clk_get(hba->dev,
"ufs-vendor-crypto-clk-mux",
&host->crypto_clk_mux);
if (err) {
dev_info(hba->dev,
"%s: failed to get ufs-vendor-crypto-clk-mux, err: %d",
__func__, err);
goto out;
}
err = ufs_mtk_host_clk_get(hba->dev,
"ufs-vendor-crypto-normal-parent-clk",
&host->crypto_parent_clk_normal);
if (err) {
dev_info(hba->dev,
"%s: failed to get ufs-vendor-crypto-normal-parent-clk, err: %d",
__func__, err);
goto out;
}
err = ufs_mtk_host_clk_get(hba->dev,
"ufs-vendor-crypto-perf-parent-clk",
&host->crypto_parent_clk_perf);
if (err) {
dev_info(hba->dev,
"%s: failed to get ufs-vendor-crypto-perf-parent-clk, err: %d",
__func__, err);
goto out;
}
err = of_property_read_s32(np, "mediatek,perf-crypto-vcore",
&host->crypto_vcore_opp);
if (err) {
dev_info(hba->dev,
"%s: failed to get mediatek,perf-crypto-vcore",
__func__);
host->crypto_vcore_opp = -1;
goto out;
}
/* init VCORE QOS */
host->req_vcore = devm_kzalloc(hba->dev, sizeof(*host->req_vcore),
GFP_KERNEL);
if (!host->req_vcore) {
err = -ENOMEM;
goto out;
}
mtk_pm_qos_add_request(host->req_vcore, MTK_PM_QOS_VCORE_OPP,
MTK_PM_QOS_VCORE_OPP_DEFAULT_VALUE);
out:
if (!err)
host->perf_mode = PERF_AUTO;
else
host->perf_mode = PERF_FORCE_DISABLE;
return err;
}
/**
* ufs_mtk_setup_clocks - enables/disable clocks
* @hba: host controller instance
* @on: If true, enable clocks else disable them.
* @status: PRE_CHANGE or POST_CHANGE notify
*
* Returns 0 on success, non-zero on failure.
*/
static int ufs_mtk_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct phy *mphy;
int ret = 0;
/*
* In case ufs_mtk_init() is not yet done, simply ignore.
* This ufs_mtk_setup_clocks() shall be called from
* ufs_mtk_init() after init is done.
*/
if (!host)
return 0;
mphy = host->mphy;
if (!on && status == PRE_CHANGE) {
/*
* Gate ref-clk and poweroff mphy if link state is in OFF
* or Hibern8 by either ufshcd_link_state_transition() or
* Auto-Hibern8.
*/
if (!ufshcd_is_link_active(hba) ||
(!ufshcd_can_hibern8_during_gating(hba) &&
ufshcd_is_auto_hibern8_enabled(hba))) {
ret = ufs_mtk_wait_link_state(hba,
VS_LINK_HIBERN8,
15);
if (!ret) {
ret = ufs_mtk_perf_setup(host, false);
if (ret)
goto out;
ufs_mtk_pm_qos(hba, on);
ufs_mtk_setup_ref_clk(hba, on);
phy_power_off(mphy);
}
}
if (host && host->qos_enabled)
ufs_mtk_biolog_clk_gating(true);
} else if (on && status == POST_CHANGE) {
phy_power_on(mphy);
ufs_mtk_setup_ref_clk(hba, on);
ufs_mtk_pm_qos(hba, on);
ufs_mtk_perf_setup(host, true);
if (host && host->qos_enabled)
ufs_mtk_biolog_clk_gating(false);
}
out:
return ret;
}
/**
* ufs_mtk_init - find other essential mmio bases
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_mtk_init(struct ufs_hba *hba)
{
const struct of_device_id *id;
struct device *dev = hba->dev;
struct ufs_mtk_host *host;
int err = 0;
struct platform_device *pdev;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
err = -ENOMEM;
dev_info(dev, "%s: no memory for mtk ufs host\n", __func__);
goto out;
}
ufs_mtk_hba = hba;
host->hba = hba;
ufshcd_set_variant(hba, host);
/* Get host quirks */
id = of_match_device(ufs_mtk_of_match, dev);
if (!id) {
err = -EINVAL;
goto out;
}
if (id->data) {
host->cfg = (struct ufs_mtk_host_cfg *)id->data;
if (host->cfg->quirks & UFS_MTK_HOST_QUIRK_BROKEN_AUTO_HIBERN8)
host->auto_hibern_enabled = true;
}
/* Rename device to unify device path for booting storage device. */
device_rename(hba->dev, "bootdevice");
/*
* fix uaf(use afer free) issue: modify pdev->name,
* device_rename will free pdev->name
*/
pdev = to_platform_device(hba->dev);
pdev->name = pdev->dev.kobj.name;
err = ufs_mtk_bind_mphy(hba);
if (err)
goto out_variant_clear;
ufs_mtk_init_reset(hba);
ufs_mtk_parse_dt(host);
/* Enable runtime autosuspend */
hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
/* Enable clock-gating */
hba->caps |= UFSHCD_CAP_CLK_GATING;
/* Allow auto bkops to enabled during runtime suspend */
/* Need to fix VCCQ2 issue first */
/* hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND; */
/*
* ufshcd_vops_init() is invoked after
* ufshcd_setup_clock(true) in ufshcd_hba_init() thus
* phy clock setup is skipped.
*
* Enable phy power and clocks specifically here.
*/
ufs_mtk_mphy_power_on(hba, true);
ufs_mtk_setup_clocks(hba, true, POST_CHANGE);
ufs_mtk_perf_init_crypto(hba);
pm_qos_add_request(&host->req_cpu_dma_latency, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
host->pm_qos_init = true;
ufs_mtk_biolog_init(host->qos_allowed);
ufsdbg_register(hba->dev);
goto out;
out_variant_clear:
ufshcd_set_variant(hba, NULL);
out:
return err;
}
/**
* ufs_mtk_exit - release resource
* @hba: host controller instance
*/
void ufs_mtk_exit(struct ufs_hba *hba)
{
struct ufs_mtk_host *host;
host = ufshcd_get_variant(hba);
if (host && host->pm_qos_init) {
/* remove pm_qos when exit */
mtk_pm_qos_remove_request(host->req_vcore);
pm_qos_remove_request(&host->req_cpu_dma_latency);
host->pm_qos_init = false;
}
/* prevent pointer is used after hba is freed */
ufs_mtk_hba = NULL;
}
void ufs_mtk_wait_idle_state(struct ufs_hba *hba, unsigned long retry_ms)
{
u64 timeout, time_checked;
u32 val, sm;
bool wait_idle;
timeout = sched_clock() + retry_ms * 1000000UL;
/* wait a specific time after check base */
udelay(10);
wait_idle = false;
do {
time_checked = sched_clock();
ufshcd_writel(hba, 0x20, REG_UFS_MTK_DEBUG_SEL);
val = ufshcd_readl(hba, REG_UFS_MTK_PROBE);
sm = val & 0x1f;
/*
* if state is in H8 enter and H8 enter confirm
* wait until return to idle state.
*/
if ((sm >= 0x8) && (sm <= 0xd)) {
wait_idle = true;
udelay(50);
continue;
} else if (!wait_idle)
break;
if (wait_idle && (sm == 0x1))
break;
} while (time_checked < timeout);
if (wait_idle && sm != 1)
dev_info(hba->dev, "wait idle tmo: 0x%x\n", val);
}
static void _ufs_mtk_auto_hibern8_update(struct ufs_hba *hba, bool enable)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
/*
* To prevent dummy "enable" while multiple slots are finished in
* the same loop in __ufshcd_transfer_req_compl().
*/
if (enable && host->auto_hibern_enabled)
return;
ufshcd_writel(hba, (enable) ? hba->ahit : 0,
REG_AUTO_HIBERNATE_IDLE_TIMER);
host->auto_hibern_enabled = enable;
/* wait host return to idle state when ah8 off */
if (!enable)
ufs_mtk_wait_idle_state(hba, 5);
}
static void ufs_mtk_auto_hibern8_update(struct ufs_hba *hba, bool enable)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
_ufs_mtk_auto_hibern8_update(hba, enable);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static int ufs_mtk_pre_pwr_change(struct ufs_hba *hba,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
struct ufs_dev_params host_cap;
u32 adapt_val;
int ret;
if (ufs_mtk_has_broken_auto_hibern8(hba))
ufs_mtk_auto_hibern8_update(hba, false);
host_cap.tx_lanes = UFS_MTK_LIMIT_NUM_LANES_TX;
host_cap.rx_lanes = UFS_MTK_LIMIT_NUM_LANES_RX;
host_cap.hs_rx_gear = UFS_MTK_LIMIT_HSGEAR_RX;
host_cap.hs_tx_gear = UFS_MTK_LIMIT_HSGEAR_TX;
host_cap.pwm_rx_gear = UFS_MTK_LIMIT_PWMGEAR_RX;
host_cap.pwm_tx_gear = UFS_MTK_LIMIT_PWMGEAR_TX;
host_cap.rx_pwr_pwm = UFS_MTK_LIMIT_RX_PWR_PWM;
host_cap.tx_pwr_pwm = UFS_MTK_LIMIT_TX_PWR_PWM;
host_cap.rx_pwr_hs = UFS_MTK_LIMIT_RX_PWR_HS;
host_cap.tx_pwr_hs = UFS_MTK_LIMIT_TX_PWR_HS;
host_cap.hs_rate = UFS_MTK_LIMIT_HS_RATE;
host_cap.desired_working_mode =
UFS_MTK_LIMIT_DESIRED_MODE;
ret = ufshcd_get_pwr_dev_param(&host_cap,
dev_max_params,
dev_req_params);
if (ret) {
pr_info("%s: failed to determine capabilities\n",
__func__);
}
if (host->hw_ver.major >= 3) {
if (dev_req_params->gear_tx == UFS_HS_G4)
adapt_val = PA_INITIAL_ADAPT;
else
adapt_val = PA_NO_ADAPT;
#ifndef CONFIG_MACH_MT6877
// TODO: temporary disable the action to avoid boot fail for MT6877
ufshcd_dme_set(hba,
UIC_ARG_MIB(PA_TXHSADAPTTYPE),
adapt_val);
#endif
}
return ret;
}
static int ufs_mtk_pwr_change_notify(struct ufs_hba *hba,
enum ufs_notify_change_status stage,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
int ret = 0;
switch (stage) {
case PRE_CHANGE:
ret = ufs_mtk_pre_pwr_change(hba, dev_max_params,
dev_req_params);
break;
case POST_CHANGE:
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ufs_mtk_unipro_set_pm(struct ufs_hba *hba, bool lpm)
{
int ret;
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
ret = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(VS_UNIPROPOWERDOWNCONTROL, 0),
lpm);
if (!ret || !lpm) {
/*
* Forcibly set as non-LPM mode if UIC commands is failed
* to use default hba_enable_delay_us value for re-enabling
* the host.
*/
host->unipro_lpm = lpm;
}
return ret;
}
static int ufs_mtk_pre_link(struct ufs_hba *hba)
{
int ret;
u32 tmp;
ufs_mtk_get_controller_version(hba);
ret = ufs_mtk_unipro_set_pm(hba, false);
if (ret)
return ret;
/*
* Setting PA_Local_TX_LCC_Enable to 0 before link startup
* to make sure that both host and device TX LCC are disabled
* once link startup is completed.
*/
ret = ufshcd_disable_host_tx_lcc(hba);
if (ret)
return ret;
/* disable deep stall */
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp);
if (ret)
return ret;
tmp &= ~(1 << 6);
ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp);
return ret;
}
static void ufs_mtk_setup_clk_gating(struct ufs_hba *hba)
{
unsigned long flags;
u32 delay;
if (ufshcd_is_clkgating_allowed(hba)) {
if (ufshcd_is_auto_hibern8_supported(hba) && hba->ahit)
delay = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK,
hba->ahit) + 5;
else
delay = 15;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms = delay;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
}
static int ufs_mtk_post_link(struct ufs_hba *hba)
{
/* enable unipro clock gating feature */
ufs_mtk_cfg_unipro_cg(hba, true);
/* configure auto-hibern8 timer to 10 ms */
if (ufshcd_is_auto_hibern8_supported(hba)) {
ufshcd_auto_hibern8_update(hba,
FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 10) |
FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3));
}
ufs_mtk_setup_clk_gating(hba);
return 0;
}
static int ufs_mtk_link_startup_notify(struct ufs_hba *hba,
enum ufs_notify_change_status stage)
{
int ret = 0;
switch (stage) {
case PRE_CHANGE:
ret = ufs_mtk_pre_link(hba);
break;
case POST_CHANGE:
ret = ufs_mtk_post_link(hba);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static void ufs_mtk_device_reset(struct ufs_hba *hba)
{
struct arm_smccc_res res;
/* disable hba before device reset */
ufshcd_hba_stop(hba, true);
ufs_mtk_device_reset_ctrl(0, res);
/*
* The reset signal is active low. UFS devices shall detect
* more than or equal to 1us of positive or negative RST_n
* pulse width.
*
* To be on safe side, keep the reset low for at least 10us.
*/
usleep_range(10, 15);
ufs_mtk_device_reset_ctrl(1, res);
/* Some devices may need time to respond to rst_n */
usleep_range(10000, 15000);
dev_info(hba->dev, "device reset done\n");
}
static int ufs_mtk_link_set_hpm(struct ufs_hba *hba)
{
int err;
err = ufshcd_hba_enable(hba);
if (err)
goto out;
err = ufs_mtk_unipro_set_pm(hba, false);
if (err)
goto out;
err = ufshcd_uic_hibern8_exit(hba);
if (!err)
ufshcd_set_link_active(hba);
else
goto out;
err = ufshcd_make_hba_operational(hba);
out:
if (err)
ufshcd_print_info(hba, UFS_INFO_HOST_STATE |
UFS_INFO_HOST_REGS | UFS_INFO_PWR);
return err;
}
static int ufs_mtk_link_set_lpm(struct ufs_hba *hba)
{
int err;
err = ufs_mtk_unipro_set_pm(hba, true);
if (err) {
ufshcd_print_info(hba, UFS_INFO_HOST_STATE |
UFS_INFO_HOST_REGS | UFS_INFO_PWR);
/* Resume UniPro state for following error recovery */
ufs_mtk_unipro_set_pm(hba, false);
return err;
}
return 0;
}
static void ufs_mtk_vreg_set_lpm(struct ufs_hba *hba, bool lpm)
{
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (lpm & !hba->vreg_info.vcc->enabled) {
if (hba->vreg_info.vccq2)
regulator_set_mode(hba->vreg_info.vccq2->reg,
REGULATOR_MODE_IDLE);
else if (host->vreg_lpm_supported)
ufs_mtk_vufs_set_lpm(1);
} else if (!lpm) {
if (hba->vreg_info.vccq2)
regulator_set_mode(hba->vreg_info.vccq2->reg,
REGULATOR_MODE_NORMAL);
else if (host->vreg_lpm_supported)
ufs_mtk_vufs_set_lpm(0);
}
}
static int ufs_mtk_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int err;
struct arm_smccc_res res;
if (ufshcd_is_link_hibern8(hba)) {
err = ufs_mtk_link_set_lpm(hba);
if (err)
goto fail;
}
if (!ufshcd_is_link_active(hba)) {
/*
* Make sure no error will be returned to prevent
* ufshcd_suspend() re-enabling regulators while vreg is still
* in low-power mode.
*/
ufs_mtk_vreg_set_lpm(hba, true);
err = ufs_mtk_mphy_power_on(hba, false);
if (err)
goto fail;
}
if (ufshcd_is_link_off(hba))
ufs_mtk_device_reset_ctrl(0, res);
return 0;
fail:
/*
* Set link as off state enforcedly to trigger
* ufshcd_host_reset_and_restore() in ufshcd_suspend()
* for completed host reset.
*/
ufshcd_set_link_off(hba);
return -EAGAIN;
}
static int ufs_mtk_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int err;
err = ufs_mtk_mphy_power_on(hba, true);
if (err)
goto fail;
ufs_mtk_vreg_set_lpm(hba, false);
if (ufshcd_is_link_hibern8(hba)) {
err = ufs_mtk_link_set_hpm(hba);
if (err)
goto fail;
}
return 0;
fail:
return ufshcd_link_recovery(hba);
}
static void ufs_mtk_dbg_register_dump(struct ufs_hba *hba)
{
ufshcd_dump_regs(hba, REG_UFS_REFCLK_CTRL, 0x4, "Ref-Clk Ctrl ");
ufshcd_dump_regs(hba, REG_UFS_EXTREG, 0x4, "Ext Reg ");
ufshcd_dump_regs(hba, REG_UFS_MPHYCTRL,
REG_UFS_REJECT_MON - REG_UFS_MPHYCTRL + 4,
"MPHY Ctrl ");
/* Direct debugging information to REG_MTK_PROBE */
ufshcd_writel(hba, 0x20, REG_UFS_DEBUG_SEL);
ufshcd_dump_regs(hba, REG_UFS_PROBE, 0x4, "Debug Probe ");
}
static int ufs_mtk_apply_dev_quirks(struct ufs_hba *hba)
{
struct ufs_dev_info *dev_info = &hba->dev_info;
u16 mid = dev_info->wmanufacturerid;
if (mid == UFS_VENDOR_SAMSUNG)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 6);
/*
* Decide waiting time before gating reference clock and
* after ungating reference clock according to vendors'
* requirements.
*/
if (mid == UFS_VENDOR_SAMSUNG)
ufs_mtk_setup_ref_clk_wait_us(hba, 1, 32);
else if (mid == UFS_VENDOR_SKHYNIX)
ufs_mtk_setup_ref_clk_wait_us(hba, 30, 30);
else if (mid == UFS_VENDOR_TOSHIBA)
ufs_mtk_setup_ref_clk_wait_us(hba, 100, 32);
return 0;
}
static void ufs_mtk_abort_handler(struct ufs_hba *hba, int tag,
char *file, int line)
{
#ifdef CONFIG_MTK_AEE_FEATURE
u8 cmd = 0;
if (hba->lrb[tag].cmd)
cmd = hba->lrb[tag].cmd->cmnd[0];
cmd_hist_disable();
ufs_mediatek_dbg_dump();
aee_kernel_warning_api(file, line, DB_OPT_FS_IO_LOG,
"[UFS] Command Timeout", "Command 0x%x timeout, %s:%d", cmd,
file, line);
cmd_hist_enable();
#endif
}
static void ufs_mtk_handle_broken_auto_hibern8(struct ufs_hba *hba,
unsigned long out_reqs,
bool enable)
{
/*
* Always allow "disable" and allow "enable" in non-PM scenario
* only. For PM scenario, auto-hibern8 will be enabled by core
* driver, e.g., ufshcd_resume().
*/
if (!out_reqs && !hba->outstanding_tasks &&
(!enable || (enable && !hba->pm_op_in_progress)))
_ufs_mtk_auto_hibern8_update(hba, enable);
}
static void ufs_mtk_event_notify(struct ufs_hba *hba,
enum ufs_event_type evt, void *data)
{
static bool skip_first_dev_reset = true;
unsigned int val = *(u32 *)data;
/* Ignore the first device reset during initialization */
if ((hba->lanes_per_direction == 2) &&
(evt == UFS_EVT_DEV_RESET) &&
skip_first_dev_reset) {
skip_first_dev_reset = false;
return;
}
if ((evt == UFS_EVT_SUSPEND_ERR && val == -EAGAIN) ||
(evt == UFS_EVT_PERF_WARN))
return;
trace_ufs_mtk_event(evt, val);
}
static void ufs_mtk_setup_xfer_req(struct ufs_hba *hba, int tag,
bool is_scsi_cmd)
{
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
if (is_scsi_cmd) {
lrbp = &hba->lrb[tag];
cmd = lrbp->cmd;
if (!ufs_mtk_is_data_cmd(cmd->cmnd[0], false))
return;
ufs_mtk_biolog_send_command(tag, cmd);
ufs_mtk_biolog_check(hba->outstanding_reqs | (1 << tag));
}
if (!ufs_mtk_has_broken_auto_hibern8(hba))
return;
ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, false);
}
static void ufs_mtk_compl_xfer_req(struct ufs_hba *hba, int tag,
unsigned long completed_reqs,
bool is_scsi_cmd)
{
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
unsigned long req_mask;
if (is_scsi_cmd) {
lrbp = &hba->lrb[tag];
cmd = lrbp->cmd;
if (!ufs_mtk_is_data_cmd(cmd->cmnd[0], false))
return;
req_mask = hba->outstanding_reqs &
~(1 << tag);
ufs_mtk_biolog_transfer_req_compl(tag, req_mask);
ufs_mtk_biolog_check(req_mask);
}
if (!ufs_mtk_has_broken_auto_hibern8(hba))
return;
ufs_mtk_handle_broken_auto_hibern8(hba,
hba->outstanding_reqs ^ completed_reqs,
true);
}
static void ufs_mtk_setup_task_mgmt(struct ufs_hba *hba,
int tag, u8 tm_function)
{
if (!ufs_mtk_has_broken_auto_hibern8(hba))
return;
ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, false);
}
static void ufs_mtk_compl_task_mgmt(struct ufs_hba *hba,
int tag, int err)
{
if (!ufs_mtk_has_broken_auto_hibern8(hba))
return;
ufs_mtk_handle_broken_auto_hibern8(hba, hba->outstanding_reqs, true);
}
static void ufs_mtk_hibern8_notify(struct ufs_hba *hba, enum uic_cmd_dme cmd,
enum ufs_notify_change_status status)
{
int ret;
if (!ufs_mtk_has_broken_auto_hibern8(hba))
return;
if (cmd == UIC_CMD_DME_HIBER_ENTER && status == PRE_CHANGE) {
ufs_mtk_auto_hibern8_update(hba, false);
ret = ufs_mtk_wait_link_state(hba, VS_LINK_UP, 100);
if (ret)
ufshcd_link_recovery(hba);
}
}
static bool ufs_mtk_has_vcc_always_on(struct ufs_hba *hba) {
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
return (host && host->cfg
&& (host->cfg->quirks & UFS_MTK_HOST_QUIRK_UFS_VCC_ALWAYS_ON));
}
static bool ufs_mtk_has_ufshci_perf_heuristic(struct ufs_hba *hba) {
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
return (host && host->cfg
&& (host->cfg->quirks & UFS_MTK_HOST_QUIRK_UFS_HCI_PERF_HEURISTIC));
}
/**
* struct ufs_hba_mtk_vops - UFS MTK specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static struct ufs_hba_variant_ops ufs_hba_mtk_vops = {
.name = "mediatek.ufshci",
.init = ufs_mtk_init,
.exit = ufs_mtk_exit,
.setup_clocks = ufs_mtk_setup_clocks,
.hce_enable_notify = ufs_mtk_hce_enable_notify,
.link_startup_notify = ufs_mtk_link_startup_notify,
.pwr_change_notify = ufs_mtk_pwr_change_notify,
.setup_xfer_req = ufs_mtk_setup_xfer_req,
.compl_xfer_req = ufs_mtk_compl_xfer_req,
.setup_task_mgmt = ufs_mtk_setup_task_mgmt,
.compl_task_mgmt = ufs_mtk_compl_task_mgmt,
.hibern8_notify = ufs_mtk_hibern8_notify,
.apply_dev_quirks = ufs_mtk_apply_dev_quirks,
.suspend = ufs_mtk_suspend,
.resume = ufs_mtk_resume,
.dbg_register_dump = ufs_mtk_dbg_register_dump,
.device_reset = ufs_mtk_device_reset,
.abort_handler = ufs_mtk_abort_handler,
.event_notify = ufs_mtk_event_notify,
.has_vcc_always_on = ufs_mtk_has_vcc_always_on,
.has_ufshci_perf_heuristic = ufs_mtk_has_ufshci_perf_heuristic,
};
struct tag_bootmode {
u32 size;
u32 tag;
u32 bootmode;
u32 boottype;
};
unsigned int ufs_mtk_get_boot_type(void)
{
struct tag_bootmode *tags = NULL;
struct device_node *node = NULL;
unsigned long size = 0;
int ret = BOOTDEV_UFS;
node = of_find_node_by_path("/chosen");
if (!node)
node = of_find_node_by_path("/chosen@0");
if (node) {
tags = (struct tag_bootmode *)of_get_property(node,
"atag,boot", (int *)&size);
} else
pr_notice("[%s] of_chosen not found\n", __func__);
if (tags) {
ret = tags->boottype;
if ((ret > 2) || (ret < 0))
ret = BOOTDEV_SDMMC;
} else {
pr_notice("[%s] 'atag,boot' is not found\n", __func__);
}
return ret;
}
/**
* ufs_mtk_probe - probe routine of the driver
* @pdev: pointer to Platform device handle
*
* Return zero for success and non-zero for failure
*/
static int ufs_mtk_probe(struct platform_device *pdev)
{
int err;
int boot_type;
struct device *dev = &pdev->dev;
/* Add get_boot_type check and return ENODEV if not ufs boot */
boot_type = ufs_mtk_get_boot_type();
if (boot_type != BOOTDEV_UFS)
return -ENODEV;
/* perform generic probe */
err = ufshcd_pltfrm_init(pdev, &ufs_hba_mtk_vops);
if (err)
dev_info(dev, "probe failed %d\n", err);
return err;
}
struct ufs_hba *ufs_mtk_get_hba(void)
{
return ufs_mtk_hba;
}
EXPORT_SYMBOL_GPL(ufs_mtk_get_hba);
/**
* ufs_mtk_remove - set driver_data of the device to NULL
* @pdev: pointer to platform device handle
*
* Always return 0
*/
static int ufs_mtk_remove(struct platform_device *pdev)
{
struct ufs_hba *hba = platform_get_drvdata(pdev);
pm_runtime_get_sync(&(pdev)->dev);
ufshcd_remove(hba);
ufs_mtk_biolog_exit();
return 0;
}
int ufs_mtk_pltfrm_suspend(struct device *dev)
{
int ret;
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
if (down_trylock(&host->rpmb_sem))
return -EBUSY;
ret = ufshcd_pltfrm_suspend(dev);
if (ret)
up(&host->rpmb_sem);
return ret;
}
int ufs_mtk_pltfrm_resume(struct device *dev)
{
int ret;
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_mtk_host *host = ufshcd_get_variant(hba);
ret = ufshcd_pltfrm_resume(dev);
if (!ret)
up(&host->rpmb_sem);
return ret;
}
static const struct dev_pm_ops ufs_mtk_pm_ops = {
.suspend = ufs_mtk_pltfrm_suspend,
.resume = ufs_mtk_pltfrm_resume,
.runtime_suspend = ufshcd_pltfrm_runtime_suspend,
.runtime_resume = ufshcd_pltfrm_runtime_resume,
.runtime_idle = ufshcd_pltfrm_runtime_idle,
};
static struct platform_driver ufs_mtk_pltform = {
.probe = ufs_mtk_probe,
.remove = ufs_mtk_remove,
.shutdown = ufshcd_pltfrm_shutdown,
.driver = {
.name = "ufshcd-mtk",
.pm = &ufs_mtk_pm_ops,
.of_match_table = ufs_mtk_of_match,
},
};
MODULE_AUTHOR("Stanley Chu <stanley.chu@mediatek.com>");
MODULE_AUTHOR("Peter Wang <peter.wang@mediatek.com>");
MODULE_DESCRIPTION("MediaTek UFS Host Driver");
MODULE_LICENSE("GPL v2");
module_platform_driver(ufs_mtk_pltform);