Since wlr_output_enable doesn't have any effect before finishing all the
procedure, a little hack allows to make use of focusmon(), which must
know the latest in about which output is currently disabled
Also improve performance in focusmon() and cleaner code in
outputmgrapplyortest()
With the recent changes in output-management, the extra argument in
closemon() would be needed only when unplugging the monitor, so it isn't
worth it anymore. Also now is more efficient.
m->link.next leads to errors if the monitor to disable doesn't have a
"next" (right) monitor and is currently focused. dirtmon() does more
checks.
In some previous commits m->link.next is told to be left monitor, which
is wrong
Also focusclient() explicitly checks for disabled monitors (this fixes
in case of more than one disabled monitor)
Focus the top client on newmon, which we know for sure that it isn't
going to be unplugged or disabled and actually set that as the focused
monitor to move the focus. This is necessary to prevent crash when
disabling monitors with the output-management patch.
This allows to fix output-management: move clients to the monitor on the
left of the disabled one, instead of the leftmost (which might happen to
be the disabled one)
Also using wl_list_foreach() and then brake after the first iteration is
ugly and inefficient
When using wlr-randr every monitor's configuration is reevaluated, so it
must check which monitors are actually being disabled. The only way to
correctly do that is to compare the names.
When a monitor is disabled with wlr_randr, all clients on that monitor
aren't lost but they are moved to the leftmost monitor with the same
method that handles monitor hot unplug
There is no need to repeat this. This needs to be reculalculated in my
output-management implementation too, and since I'm already calling
updatemons, this patch avoids having to repeat the assignment again.
quitfullscreen() was replicating the functionalities of setfullscreen(c,
0)
Reusing setfullscreen() in quitfullscreen() leads to a 3 line function,
which is useless since quitfullscreen() is used once anyway
This fixes the bug that happens when changing workspace (or any time
arrange() is called) where there are fullscreen windows, which are still
fullscreen but leave the space for layer surfaces like waybar (which
should be hidden when going fullscreen)
Also as soon one fullscreen window is found hte function returns to
improve efficiency
Floating widndows with "x < removed monitor's width" aren't resized
(they used to disappear in negative coordinates).
Actually delete monitors when they are unplugged, recalculate sgeom and
give a new monitor to clients that were on the removed one with setmon()
arrangefloat() funcion has been exploded to save iterations in
cleanupmon().
Also if a monitor that supports auto suspension is turned off, dwl will
count it as unplugged (it will become unreachable and all clients will
be moved to the leftmost monitor). However, if at least one monitor
isn't plugged in, dwl will still crash the same as before.
Unlike sway, when the output configuration is changed and restored,
(unplug + plug the same monitor for example) previous application
positions aren't kept. This is due to the fact that on sway every
workspace is unique among all monitors.
Compensate the coordinate changes when adding a new monitor.
Every test so far confirms that monitors are always added to the left,
on top of the list, so every floating window's x coordinate has to be
incremented by the width of the new monitor.
When a monitor is created or removed, the geometries of the old ones
must be updated. This is also more efficient than before since we
calculate the monitor geometries only when creating and destroying
monitors. arrangelayers() is needed to recalculate m->w. arrange() is so
clients don't move to the left monitor when plugging or unplugging
monitors (clients keep the same coordinates but the field below them
changes).
The bug was caused by usable_area's x and y not being set in
arrangelayers. For example if on a 2nd HD monitor, x should be 1920
while the first one ends at 1919. So I don't see why m->m should be
recalculated after creating the monitor.
If you don't recalculate the monitor's geometry before arranging,
clients get arranged in the first monitor. I don't understand why this
fixes the bug since tile() uses m->w rather than m->m, nor why it needs
to be recalculated after creating the monitor but sway does it too.
Although not necessary to fix the bug I also made arrangelayer() do like
sway again and recalculate usable_area instead of reusing m->m, since
m->m seems to be incorrect until it gets recalculated shortly after in
arrange(), so I suspect that leaving usable_area = m->m will cause
issues under certain circumstances.
Someone with a multi-monitor setup or better knowledge of Wayland may be
able to figure out the cause of the bug. For now, this makes layer shell
work.
When a layer surface is destroyed focus should be returned to the last
client. Luckily if there are multiple overlays the previous overlay
still gets focused.
Store position and size of windows before going fullscreen. This is more
efficient than arrange() and also works with floating windows
All the clients keep their original position because arrange() isn't
used after quitting fullscreen
rename Layer to LayerSurface; layer should refer to overlay, top, bottom
or background
LayerSurface variables are always called layersurface
wlr_layer_surface_v1 variables are always called wlr_layer_surface
Honestly not sure why a specific surface is focused rather than the
client figuring that out. Seems to work in a quick test, but we can
remember this commit if something breaks for, I dunno, mouse people.
This arranges the function into some logical tasks: deactivate the old
client, update wlroots' keyboard focus, update our data structures, and
activate the new client. The last two only need to be done when
focusing something new, so an early return saves some horizontal space.
The getatom function returns the atom variable, which is only
initialized in case of a success. This results in a maybe-uninitialized
warning/error. After this commit, now a zero value is returned in case
of error.
attach_render tells the output that a "new" buffer has been prepared
(even if we haven't changed it). We need to call that and then commit
it to keep the render loop going.
Software cursors will freeze momentarily during layout updates, but I
suspect that this is not as easily fixed as it sounds. You can force
software cursors by running:
WLR_NO_HARDWARE_CURSORS=1 ./dwl
* xwayland: add server and basic window functionality
* xwayland: add server and basic window functionality
* xwayland: add server and basic window functionality
* xwayland: add server and basic window functionality
It was just exiting with code 1 for me. The problem turned out to be
that you *need* to set XDG_RUNTIME_DIR or it won't work (I think e.g.
systemd does that for you, but on Void it's not set by default), so
mention that in the README.